Blog
/
Identity
/
November 27, 2024

Behind the veil: Darktrace's detection of VPN exploitation in SaaS environments

A recent phishing attack compromised an internal email account, but Darktrace’s advanced AI quickly intervened. By identifying unusual activity across email and SaaS environments, Darktrace uncovered the attacker’s use of VPNs to mask their location and shut down the threat.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Priya Thapa
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Nov 2024

Introduction

In today’s digital landscape, Software-as-a-Service (SaaS) platforms have become indispensable for businesses, offering unparalleled flexibly, scalability, and accessibly across locations. However, this convenience comes with a significant caveat - an expanded attack surface that cyber criminals are increasingly exploiting. In 2023, 96.7% of organizations reported security incidents involving at least one SaaS application [1].

Virtual private networks (VPNs) play a crucial role in SaaS security, acting as gateways for secure remote access and safeguarding sensitive data and systems when properly configured. However, vulnerabilities in VPNs can create openings for attacks to exploit, allowing them to infiltrate SaaS environments, compromise data, and disrupt business operations. Notably, in early 2024, the Darktrace Threat Research team investigated the exploitation of zero-day vulnerabilities in Ivanti Connect Secure VPNs, which would allow threat actors to gain access to sensitive systems and execute remote code.

More recently, in August, Darktrace identified a SaaS compromise where a threat actor logged into a customer’s VPN from an unusual IP address, following an initial email compromise. The attacker then used a separate VPN to create a new email rule designed to obfuscate the phishing campaign they would later launch.

Attack Overview

The initial attack vector in this case appeared to be through the customer’s email environment. A trusted external contact received a malicious email from another mutual contact who had been compromised and forwarded it to several of the organization’s employees, believing it to be legitimate. Attackers often send malicious emails from compromised accounts to their past contacts, leveraging the trust associated with familiar email addresses. In this case, that trust caused an external victim to unknowingly propagate the attack further. Unfortunately, an internal user then interacted with a malicious payload included in the reply section of the forwarded email.

Later the same day, Darktrace / IDENTITY detected unusual login attempts from the IP 5.62.57[.]7, which had never been accessed by other SaaS users before. There were two failed attempts prior to the successful logins, with the error messages “Authentication failed due to flow token expired” and “This occurred due to 'Keep me signed in' interrupt when the user was signing in.” These failed attempts indicate that the threat actor may have been attempting to gain unauthorized access using stolen credentials or exploiting session management vulnerabilities. Furthermore, there was no attempt to use multi-factor authentication (MFA) during the successful login, suggesting that the threat actor had compromised the account’s credentials.

Following this, Darktrace detected the now compromised account creating a new email rule named “.” – a telltale sign of a malicious actor attempting to hide behind an ambiguous or generic rule name.

The email rule itself was designed to archive incoming emails and mark them as read, effectively hiding them from the user’s immediate view. By moving emails to the “Archive” folder, which is not frequently checked by end users, the attacker can conceal malicious communications and avoid detection. The settings also prevent any automatic deletion of the rules or forced overrides, indicating a cautious approach to maintaining control over the mailbox without raising suspicion. This technique allows the attacker to manipulate email visibility while maintaining a façade of normality in the compromised account.

Email Rule:

  • AlwaysDeleteOutlookRulesBlob: False
  • Force: False
  • MoveToFolder: Archive
  • Name: .
  • MarkAsRead: True
  • StopProcessingRules: True

Darktrace further identified that this email rule had been created from another IP address, 95.142.124[.]42, this time located in Canada. Open-source intelligence (OSINT) sources indicated this endpoint may have been malicious [2].

Given that this new email rule was created just three minutes after the initial login from a different IP in a different country, Darktrace recognized a geographic inconsistency. By analyzing the timing and rarity of the involved IP addresses, Darktrace identified the likelihood of malicious activity rather than legitimate user behavior, prompting further investigation.

Figure 1: The compromised SaaS account making anomalous login attempts from an unusual IP address in the US, followed by the creation of a new email rule from another VPN IP in Canada.

Just one minute later, Darktrace observed the attacker sending a large number of phishing emails to both internal and external recipients.

Figure 2: The compromised SaaS user account sending a high volume of outbound emails to new recipients or containing suspicious content.

Darktrace / EMAIL detected a significant spike in inbound emails for the compromised account, likely indicating replies to phishing emails.

Figure 3: The figure demonstrates the spike in inbound emails detected for the compromised account, including phishing-related replies.

Furthermore, Darktrace identified that these phishing emails contained a malicious DocSend link. While docsend[.]com is generally recognized as a legitimate file-sharing service belonging to Dropbox, it can be vulnerable to exploitation for hosting malicious content. In this instance, the DocSend domain in question, ‘hxxps://docsend[.]com/view/h9t85su8njxtugmq’, was flagged as malicious by various OSINT vendors [3][4].

Figure 4: Phishing emails detected containing a malicious DocSend link.

In this case, Darktrace Autonomous Response was not in active mode in the customer’s environment, which allowed the compromise to escalate until their security team intervened based on Darktrace’s alerts. Had Autonomous Response been enabled during the incident, it could have quickly mitigated the threat by disabling users and inbox rules, as suggested by Darktrace as actions that could be manually applied, exhibiting unusual behavior within the customer’s SaaS environment.

Figure 5: Suggested Autonomous Response actions for this incident that required human confirmation.

Despite this, Darktrace’s Managed Threat Detection service promptly alerted the Security Operations Center (SOC) team about the compromise, allowing them to conduct a thorough investigation and inform the customer before any further damage could take place.

Conclusion

This incident highlights the role of Darktrace in enhancing cyber security through its advanced AI capabilities. By detecting the initial phishing email and tracking the threat actor's actions across the SaaS environment, Darktrace effectively identified the threat and brought it to the attention of the customer’s security team.

Darktrace’s proactive monitoring was crucial in recognizing the unusual behavior of the compromised account. Darktrace / IDENTITY detected unauthorized access attempts from rare IP addresses, revealing the attacker’s use of a VPN to hide their location.

Correlating these anomalies allowed Darktrace to prompt immediate investigation, showcasing its ability to identify malicious activities that traditional security tools might miss. By leveraging AI-driven insights, organizations can strengthen their defense posture and prevent further exploitation of compromised accounts.

Credit to Priya Thapa (Cyber Analyst), Ben Atkins (Senior Model Developer) and Ryan Traill (Analyst Content Lead)

Appendices

Real-time Detection Models

  • SaaS / Compromise / Unusual Login and New Email Rule
  • SaaS / Compromise / High Priority New Email Rule
  • SaaS / Compromise / New Email Rule and Unusual Email Activity
  • SaaS / Compromise / Unusual Login and Outbound Email Spam
  • SaaS / Compliance / Anomalous New Email Rule
  • SaaS / Compromise / Suspicious Login and Suspicious Outbound Email(s)
  • SaaS / Email Nexus / Possible Outbound Email Spam

Autonomous Response Models

  • Antigena / SaaS / Antigena Email Rule Block
  • Antigena / SaaS / Antigena Enhanced Monitoring from SaaS User Block
  • Antigena / SaaS / Antigena Suspicious SaaS Activity Block

MITRE ATT&CK Mapping

Technique Name Tactic ID Sub-Technique of

  • Cloud Accounts. DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS T1078.004 T1078
  • Compromise Accounts RESOURCE DEVELOPMENT T1586
  • Email Accounts RESOURCE DEVELOPMENT T1586.002 T1586
  • Internal Spearphishing LATERAL MOVEMENT T1534 -
  • Outlook Rules PERSISTENCE T1137.005 T1137
  • Phishing INITIAL ACCESS T1566 -

Indicators of Compromise (IoCs)

IoC – Type – Description

5.62.57[.]7 – Unusual Login Source

95.142.124[.]42– IP – Unusual Source for Email Rule

hxxps://docsend[.]com/view/h9t85su8njxtugmq - Domain - Phishing Link

References

[1] https://wing.security/wp-content/uploads/2024/02/2024-State-of-SaaS-Report-Wing-Security.pdf

[2] https://www.virustotal.com/gui/ip-address/95.142.124.42

[3] https://urlscan.io/result/0caf3eee-9275-4cda-a28f-6d3c6c3c1039/

[4] https://www.virustotal.com/gui/url/8631f8004ee000b3f74461e5060e6972759c8d38ea8c359d85da9014101daddb

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Priya Thapa
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

June 27, 2025

Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)

login on laptop dual factor authenticationDefault blog imageDefault blog image

What is Blind Eagle?

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombian organizations.

Blind Eagle characteristically targets government institutions, financial organizations, and critical infrastructure [1][2].

Attacks carried out by Blind Eagle actors typically start with a phishing email and the group have been observed utilizing various Remote Access Trojans (RAT) variants, which often have in-built methods for hiding command-and-control (C2) traffic from detection [3].

What we know about Blind Eagle from a recent campaign

Since November 2024, Blind Eagle actors have been conducting an ongoing campaign targeting Colombian organizations [1].

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

Despite Microsoft patching this vulnerability in November 2024 [1][4], Blind Eagle actors have continued to exploit the minimal interaction mechanism, though no longer with the intent of harvesting NTLMv2 password hashes. Instead, phishing emails are sent to targets containing a malicious URL which, when clicked, initiates the download of a malicious file. This file is then triggered by minimal user interaction.

Clicking on the file triggers a WebDAV request, with a connection being made over HTTP port 80 using the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19044’. WebDAV is a transmission protocol which allows files or complete directories to be made available through the internet, and to be transmitted to devices [5]. The next stage payload is then downloaded via another WebDAV request and malware is executed on the target device.

Attackers are notified when a recipient downloads the malicious files they send, providing an insight into potential targets [1].

Darktrace’s coverage of Blind Eagle

In late February 2025, Darktrace observed activity assessed with medium confidence to be  associated with Blind Eagle on the network of a customer in Colombia.

Within a period of just five hours, Darktrace / NETWORK detected a device being redirected through a rare external location, downloading multiple executable files, and ultimately exfiltrating data from the customer’s environment.

Since the customer did not have Darktrace’s Autonomous Response capability enabled on their network, no actions were taken to contain the compromise, allowing it to escalate until the customer’s security team responded to the alerts provided by Darktrace.

Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany. Multiple open-source intelligence (OSINT) providers have since linked this endpoint with phishing and malware campaigns [9].

The device then proceeded to download the executable file hxxp://62[.]60[.]226[.]112/file/3601_2042.exe.

Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Figure 1: Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.
Figure 2: Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.

The device was then observed making unusual connections to the rare endpoint 21ene.ip-ddns[.]com and performing unusual external data activity.

This dynamic DNS endpoint allows a device to access an endpoint using a domain name in place of a changing IP address. Dynamic DNS services ensure the DNS record of a domain name is automatically updated when the IP address changes. As such, malicious actors can use these services and endpoints to dynamically establish connections to C2 infrastructure [6].

Further investigation into this dynamic endpoint using OSINT revealed multiple associations with previous likely Blind Eagle compromises, as well as Remcos malware, a RAT commonly deployed via phishing campaigns [7][8][10].

Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.
Figure 3: Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.

Shortly after this, Darktrace observed the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19045’, indicating usage of the aforementioned transmission protocol WebDAV. The device was subsequently observed connected to an endpoint associated with Github and downloading data, suggesting that the device was retrieving a malicious tool or payload. The device then began to communicate to the malicious endpoint diciembrenotasenclub[.]longmusic[.]com over the new TCP port 1512 [11].

Around this time, the device was also observed uploading data to the endpoints 21ene.ip-ddns[.]com and diciembrenotasenclub[.]longmusic[.]com, with transfers of 60 MiB and 5.6 MiB observed respectively.

Figure 4: UI graph showing external data transfer activity.

This chain of activity triggered an Enhanced Monitoring model alert in Darktrace / NETWORK. These high-priority model alerts are designed to trigger in response to higher fidelity indicators of compromise (IoCs), suggesting that a device is performing activity consistent with a compromise.

 Darktrace’s detection of initial attack chain activity.
Figure 5: Darktrace’s detection of initial attack chain activity.

A second Enhanced Monitoring model was also triggered by this device following the download of the aforementioned executable file (hxxp://62[.]60[.]226[.]112/file/3601_2042.exe) and the observed increase in C2 activity.

Following this activity, Darktrace continued to observe the device beaconing to the 21ene.ip-ddns[.]com endpoint.

Darktrace’s Cyber AI Analyst was able to correlate each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 6: Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 7: Cyber AI Analyst’s detection of the affected device’s broader connectivity throughout the course of the attack.

As the affected customer did not have Darktrace’s Autonomous Response configured at the time, the attack was able to progress unabated. Had Darktrace been properly enabled, it would have been able to take a number of actions to halt the escalation of the attack.

For example, the unusual beaconing connections and the download of an unexpected file from an uncommon location would have been shut down by blocking the device from making external connections to the relevant destinations.

Conclusion

The persistence of Blind Eagle and ability to adapt its tactics, even after patches were released, and the speed at which the group were able to continue using pre-established TTPs highlights that timely vulnerability management and patch application, while essential, is not a standalone defense.

Organizations must adopt security solutions that use anomaly-based detection to identify emerging and adapting threats by recognizing deviations in user or device behavior that may indicate malicious activity. Complementing this with an autonomous decision maker that can identify, connect, and contain compromise-like activity is crucial for safeguarding organizational networks against constantly evolving and sophisticated threat actors.

Credit to Charlotte Thompson (Senior Cyber Analyst), Eugene Chua (Principal Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

IoCs

IoC – Type - Confidence
Microsoft-WebDAV-MiniRedir/10.0.19045 – User Agent

62[.]60[.]226[.]112 – IP – Medium Confidence

hxxp://62[.]60[.]226[.]112/file/3601_2042.exe – Payload Download – Medium Confidence

21ene.ip-ddns[.]com – Dynamic DNS Endpoint – Medium Confidence

diciembrenotasenclub[.]longmusic[.]com  - Hostname – Medium Confidence

Darktrace’s model alert coverage

Anomalous File / Suspicious HTTP Redirect
Anomalous File / EXE from Rare External Location
Anomalous File / Multiple EXE from Rare External Location
Anomalous Server Activity / Outgoing from Server
Unusual Activity / Unusual External Data to New Endpoint
Device / Anomalous Github Download
Anomalous Connection / Multiple Connections to New External TCP Port
Device / Initial Attack Chain Activity
Anomalous Server Activity / Rare External from Server
Compromise / Suspicious File and C2
Compromise / Fast Beaconing to DGA
Compromise / Large Number of Suspicious Failed Connections
Device / Large Number of Model Alert

Mitre Attack Mapping:

Tactic – Technique – Technique Name

Initial Access - T1189 – Drive-by Compromise
Initial Access - T1190 – Exploit Public-Facing Application
Initial Access ICS - T0862 – Supply Chain Compromise
Initial Access ICS - T0865 – Spearphishing Attachment
Initial Access ICS - T0817 - Drive-by Compromise
Resource Development - T1588.001 – Malware
Lateral Movement ICS - T0843 – Program Download
Command and Control - T1105 - Ingress Tool Transfer
Command and Control - T1095 – Non-Application Layer Protocol
Command and Control - T1571 – Non-Standard Port
Command and Control - T1568.002 – Domain Generation Algorithms
Command and Control ICS - T0869 – Standard Application Layer Protocol
Evasion ICS - T0849 – Masquerading
Exfiltration - T1041 – Exfiltration Over C2 Channel
Exfiltration - T1567.002 – Exfiltration to Cloud Storage

References

1)    https://research.checkpoint.com/2025/blind-eagle-and-justice-for-all/

2)    https://assets.kpmg.com/content/dam/kpmgsites/in/pdf/2025/04/kpmg-ctip-blind-eagle-01-apr-2025.pdf.coredownload.inline.pdf

3)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-remote-access-trojan/#:~:text=They%20might%20be%20attached%20to,remote%20access%20or%20system%20administration

4)    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-43451

5)    https://www.ionos.co.uk/digitalguide/server/know-how/webdav/

6)    https://vercara.digicert.com/resources/dynamic-dns-resolution-as-an-obfuscation-technique

7)    https://threatfox.abuse.ch/ioc/1437795

8)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/remcos-malware/

9)    https://www.virustotal.com/gui/url/b3189db6ddc578005cb6986f86e9680e7f71fe69f87f9498fa77ed7b1285e268

10) https://www.virustotal.com/gui/domain/21ene.ip-ddns.com

11) https://www.virustotal.com/gui/domain/diciembrenotasenclub.longmusic.com/community

Continue reading
About the author
Charlotte Thompson
Cyber Analyst

Blog

/

Network

/

June 19, 2025

Customer Case Study: Leading Petrochemical Manufacturer

Default blog imageDefault blog image

Headquartered in Saudi Arabia, this industry leading petrochemical manufacturer serves customers in more than 80 countries across diverse markets throughout Europe, Africa, Latin America, the Middle East, China, and Southeast Asia.

Cyber resiliency critical to growth strategy

This leading petrochemical manufacturer’s vision is to be one of the major global players in the production and marketing of designated petrochemicals and downstream products. The company aims to significantly increase its capacity to up to a million metric tons within the next few years.

With cyber-attacks on critical infrastructure increasing 30% globally last year, cyber resiliency is essential to supporting the company’s strategic business goals of:

  • Maximizing production through efficient asset utilization
  • Maximizing sales by conducting 90% of its business outside Saudi Arabia
  • Optimizing resources and processes by integrating with UN Global Compact principles for sustainability and efficiency
  • Growing its business portfolio by engaging in joint ventures to diversify production and add value to the economy

However, the industry leader faced several challenges in its drive to fortify its cybersecurity defenses.

Visibility gaps delay response time

The company’s existing security setup provided limited visibility to the in-house security team, hindering its ability to detect anomalous network and user activity in real time. This resulted in delayed responses to potential incidents, making proactive issue resolution difficult and any remediation in the event of a successful attack costly and time-consuming.

Manual detection drains resources

Without automated detection and response capabilities, the organization’s security team had to manually monitor for suspicious activity – a time-consuming and inefficient approach that strained resources and left the organization vulnerable. This made it difficult for the team to stay current with training or acquire new skills and certifications, which are core to the ethos of both the company’s owners and the team itself.

Cyber-attacks on critical infrastructure increasing

The petrochemical manufacturer is part of a broader ecosystem of companies, making the protection of its supply chain – both upstream and downstream – critical. With several manufacturing entities and multiple locations, the customer’s internal structure is complex and challenging to secure. As cyber-attacks on critical infrastructure escalate, it needed a more comprehensive approach to safeguard its business and the wider ecosystem.

Keeping and growing skills and focus in-house

To strengthen its cybersecurity strategy, the company considered two options:

  1. Make a significant initial and ongoing investment in a Security Operations Center (SOC), which would involve skills development outside the company and substantial management overhead.
  2. Use a combination of new, automated tools and an outsourced Managed Detection and Response (MDR) service to reduce the burden on internal security specialists and allow the company to invest in upskilling its staff so they can focus on more strategic tasks.

Faced with this choice between entirely outsourcing security and augmenting the security team with new capabilities, the customer chose the second option, selecting Darktrace to automate the company’s monitoring, detection, and response. Today, the petrochemical manufacturer is using:

Extending the SOC with 24/7 expert support

To alleviate the burden on its lean security team, the company augmented its in-house capabilities with Darktrace’s Managed Detection & Response service. This support acts as an extension of its SOC, providing 24/7 monitoring, investigation, and escalation of high-priority threats. With Darktrace’s global SOC managing alert triage and autonomously containing threats, the organization’s internal team can focus on strategic initiatives. The result is a stronger security posture and increased capacity to proactively address evolving cyber risks – without expanding headcount or sacrificing visibility.

A unique approach to AI

In its search for a new security platform, the company’s Director of Information Technology said Darktrace’s autonomous response capability, coupled with Self-Learning AI-driven threat reduction, were two big reasons for selecting Darktrace over competing products and services.

AI was a huge factor – no one else was doing what Darktrace was doing with [AI].”

Demonstrated visibility

Before Darktrace, the customer had no visibility into the network activity to and from remote worker devices. Some employees need the ability to connect to its networks at any time and from any location, including the Director of Information Technology. The trial deployment of Darktrace / ENDPOINT was a success and gave the team peace of mind that, no matter the location or device, high-value remote workers were protected by Darktrace.

Modular architecture  

Darktrace's modular architecture allowed the company to deploy security controls across its complex, multi-entity environment. The company’s different locations run on segregated networks but are still interconnected and need to be protected. Darktrace / NETWORK provides a unified view and coordinated security response across the organization’s entire network infrastructure, including endpoint devices.

Results

The petrochemical manufacturer is using Darktrace across all of its locations and has achieved total visibility across network and user activity. “Darktrace is increasing in value every day,” said the Director of Information Technology.

I don’t have a big team, and Darktrace makes our lives very, very easy, not least the automation of some of the tasks that require constant manual review.”

Time savings frees analysts to focus on proactive security

Darktrace / NETWORK provides continuous, AI-driven monitoring and analysis of the company’s network activity, user behavior, and threat patterns, establishing a baseline of what normal activity looks like, and then alerting analysts to any deviations from normal traffic, activity, and behaviors. Darktrace’s autonomous response capabilities speed up response to detected threats, meaning intervention from the security team is required for fewer incidents and alerts.

In October 2024 alone, Darktrace Cyber AI Analyst saved the team 810 investigation hours, and autonomously responded to 180 anomalous behaviors that were uncovered during the investigations. With Darktrace managing the majority of threat detection and response efforts, the security team has been able to change its day-to-day activity from manual review of traffic and alerts and belated response to activity, to proactively fortifying its detection and response posture and upskilling to meet evolving requirements.  

Layered email protection reduces phishing threats

The company’s email infrastructure posed a challenge due to petrochemical industry regulations requiring on-premises email servers, with some security delivered via Microsoft Azure. By integrating Darktrace / EMAIL into the Azure stack, the organization has reduced the volume of phishing emails its users receive by 5%.

“Now we have one more layer of security related to email – every email goes through two filters. If something is not being caught or traced by Azure, it is being detected by Darktrace,” said the Director of Information Technology. “As a result, we’re now seeing only about 15% to 20% of the phishing emails we used to receive before implementing Darktrace.”

Preparing for a secure future

The time saved using Darktrace has helped the security team take proactive steps, including preparing for new cyber resilience regulations for Saudi Arabia’s Critical National Infrastructure, as mandated by the National Cybersecurity Authority (NCA).

“The team now has ample time to prepare policies and procedures that meet the new NCA regulations and, in some cases, enhance the requirements of the new law,” said the Director of Information Technology. “All of this is possible because they don’t need to keep watch; Darktrace takes on so much of that task for them.”

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI