Blog
/
/
March 20, 2019

The Invisible Threat: How AI Catches the Ursnif Trojan

The cyber AI approach successfully detected the Ursnif infections even though the new variant of this malware was unknown to security vendors at the time.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Mar 2019

Over the past few months, I’ve analyzed some of the world’s stealthiest trojan attacks like Emotet, which employ deception to bypass traditional security tools that rely on rules and signatures. Guest contributor Keith Siepel also explained how cyber AI defenses managed to catch a zero-day trojan on his firm’s network for which no such rules or signatures yet exist. Indeed, with the incidence of banking trojans having increased by 239% among our customer base last year, it appears that this kind of subterfuge is the new normal.

However, one particularly sophisticated trojan, Ursnif, takes deception a step further evidence of which we are still seeing emerge. Rather than writing executable files that contain malicious code, some of its variants instead exploit vulnerabilities inherent to a user’s own applications, essentially turning the victim’s computer against them. The result of this increasingly common technique is that — once the victim has been tricked into clicking a malicious link or duped into opening an attachment via a phishing email — Ursnif begins to ‘live off the land’, blending into the victim’s environment. And by exploiting Microsoft Office and Windows features, such as document macros, PsExec, and PowerShell scripts, Ursnif can execute commands directly from the computer’s RAM.

One of the most prevalent and destructive strains of the Gozi banking malware, Ursnif was recently placed at the center of a new campaign that saw it dramatically expand its functionality. Originally created to infect hosts with spyware in order to steal sensitive banking information and user credentials, it can now also deploy advanced ransomware like GandCrab. These new functions are aided by the elusive trojan’s aforementioned file-less capabilities, which render it invisible to many security tools and allow it to hide in plain sight within legitimate, albeit corrupted applications. Shining a light on Ursnif therefore requires AI tools that can learn to spot when these applications act abnormally:

Cyber AI detects Ursnif on multiple client networks

First campaign: February 4, 2019

Darktrace detected the initial Ursnif compromise on a customer’s network when it caught several devices connecting to a highly unusual endpoint and subsequently downloading masqueraded files, causing Darktrace’s “Anomalous File / Masqueraded File Transfer” model to breach. Such files are often masqueraded as other file types not only to bypass traditional security measures but also to deceive users — for instance, with the intention of tricking a user into executing a file received in a malicious email by disguising it as a document.

As it happens, this Ursnif variant was a zero-day at the time Darktrace detected it, meaning that its files were unknown to antivirus vendors. But while the never-before-seen files bypassed the customer’s endpoint tools, Darktrace AI leveraged its understanding of the unique ‘pattern of life’ for every user and device in the customer’s network to flag these file downloads as threatening anomalies — without relying on signatures.

A sample of the masqueraded files initially downloaded:

File: xtex13.gas
File MIME type: application/x-dosexec
Size: 549.38 KB
Connection UID: C8SlueG1mT7VdcJ00

File: zyteb17.gas
File MIME type: application/x-dosexec
SHA-1 hash: 4ed60393575d6b47bd82eeb03629bdcb8876a73f
Size: 276.48 KB

File: File: adnaz2.gas
File MIME type: application/x-dosexec
Size: 380.93 KB
Connection UID: CmPOzP1AC4tzuuuW00

A sample of the endpoints detected:

kieacsangelita[.]city · 209.141.60[.]214
muikarellep[.]band · 46.29.167[.]73
cjasminedison[.]com · 185.120.58[.]13

Following the initial suspicious downloads, the compromised devices were further observed making regular connections to multiple rare destinations not previously seen on the affected network in a pattern of beaconing connectivity. In some cases, Darktrace marked these external destinations as suspicious when it recognized the hostnames they queried as algorithm-generated domains. High volumes of DNS requests for such domains is a common characteristic of malware infections, which use this tactic to maintain communication with C2 servers in spite of domain black-listing. In other cases, the endpoints were deemed suspicious because of their use of self-signed SSL certificates, which cyber-criminals often use because they do not require verification by a trusted authority.

In fact, the large volume of anomalous connections commonly triggered a number of Darktrace’s behavioral models, including:

Compromise / DGA Beacon
Anomalous Connection / Suspicious Self-Signed SSL
Compromise / High Volume of Connections with Beacon Score
Compromise / Beaconing Activity To Rare External Endpoint

Beaconing is a method of communication frequently seen when a compromised device attempts to relay information to its control infrastructure in order to receive further instructions. This behavior is characterized by persistent external connections to one or multiple endpoints, a pattern that was repeatedly observed for those devices that had previously downloaded malicious files from the endpoints later associated with the Ursnif campaign. While beaconing behavior to unusual destinations is not necessarily always indicative of infection, Darktrace AI concluded that, in combination with the suspicious file downloads, this type of activity represented a clear indication of compromise.

Figure 1: A device event log that shows the device had connected to internal mail servers shortly before downloading the malicious files.

Lateral movement and file-less capabilities

In the wake of the initial compromise, Darktrace AI also detected Ursnif’s lateral movement and file-less capabilities in real time. In the case of one infected device, an “Anomalous Connection / High Volume of New Service Control” model breach was triggered following the aforementioned suspicious activities. The device in question was flagged after making anomalous SMB connections to at least 47 other internal devices, and after accessing file shares which it had not previously connected. Subsequently, the device was observed writing to the other devices’ service control pipe – a channel used for the remote control of services. The anomalous use of these remote-control channels represent compelling examples of how Ursnif leverages its file-less capabilities to facilitate lateral movement.

Figure 2: Volume of SMB writes made to the service control pipe on internal devices by one of the infected devices, as shown on the Darktrace UI.

Although network administrators often use remote control channels for legitimate purposes, Darktrace AI considered this particular usage highly suspicious, particularly as both devices had previously breached a number of behavioral models as a result of infection.

Second campaign: March 18, 2019

A second Ursnif campaign was detected just this week. At the time of detection, no OSINT was available for the C2 servers nor the malware samples.

On a US manufacturer’s network, the initial malware download took place from: xqzuua1594[.]com/loq91/10x.php?l=mow1.jad hosted on IP 94.154.10[.]62.
Every single malware download is unique. This is indicating auto-patching or a malware factory working in the background.
Darktrace immediately identified this as another Anomalous File / Masqueraded File Transfer.

Directly after this, initial C2 was observed with the following parameters:

HTTP GET to: vwdlpknpsierra[.]email
Destination IP: 162.248.225[.]14
URI: /images/CKicJCsNNNfaJwX6CJ/0Ohp3OUfj/pI_2FszUK7ybqh33Qdwz/bOUeatCG2Qfks5DTzzO/H6SeiL8YozEYXKfornjfVt/hBgfcPVPCOf1H/2qo12IGl/L3B18ld4ZSx37TbdTUpALih/A5dl8FVHel/jMPIKnQfd/H.avi
User Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko

What’s interesting here is that the C2 server provides a Sufee Admin login page:

This C2 appears to have bad operational security (OPSEC) as browsing random URIs on the server reveals some of the dashboard’s contents:

The initial C2 communication was followed by sustained TCP beaconing to ksylviauudaren[.]band on 185.180.198[.]245 over port 443 with SSL encryption using a self-signed certificate. Darktrace highlighted this C2 behavior as Compromise / Sustained TCP Beaconing Activity To Rare Endpoint and Anomalous Connection / Repeated Rare External SSL Self-Signed IP.

As of the writing of this article, the domain ksylviauudaren[.]band was still not recognized in OSINT as malicious – highlighting again Darktrace’s independence of signatures and rules to catch previously unknown threats.

Conclusion

The cyber AI approach successfully detected the Ursnif infections even though the new variant of this malware was unknown to security vendors at the time. Moreover, it even managed to catch Ursnif’s file-less capabilities for lateral movement through its modelling of expected patterns of connectivity. In terms of the wider security context, the ease with which cyber AI flagged such sophisticated malware — malware which takes action by corrupting a computer’s own applications — further demonstrates that AI anomaly detection is the only way to navigate a threat landscape increasingly populated by near-invisible trojans.

IoCs

kieacsangelita[.]city · 209.141.60[.]214
muikarellep[.]band · 46.29.167[.]73
cjasminedison[.]com · 185.120.58[.]13
xqzuua1594[.]com · 94.154.10.[6]2
vwdlpknpsierra[.]email · 162.248.225[.]14
ksylviauudaren[.]band · 185.180.198[.]245

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

October 29, 2025

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287Default blog imageDefault blog image

Introduction

On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287.  Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].

WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported  thousands of publicly exposed instances that may be vulnerable to exploitation [2].

Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].

Attack Overview

The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.

The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.

Case Study 1

The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.

OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].

In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].

Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.

Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The anomalous nature of the connections to both webhook[.]site and workers[.]dev led to Darktrace generating multiple alerts including high-fidelity Enhanced Monitoring alerts and alerts for Darktrace’s Autonomous Response.

Infrastructure insight

Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.

Screenshot of v3.msi content.
Figure 1: Screenshot of v3.msi content.

Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.

 Screenshot of Config file.
Figure 2: Screenshot of Config file.

Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .

The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.

The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.

Case Study 2

The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server

Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.

While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.

By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.

Conclusion

Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.

By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORK, enabling defenders to investigate and respond to attacks more effectively.

With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.

Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.        https://nvd.nist.gov/vuln/detail/CVE-2025-59287

2.    https://www.bleepingcomputer.com/news/security/hackers-now-exploiting-critical-windows-server-wsus-flaw-in-attacks/

3.    https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus

4.    https://www.cisa.gov/news-events/alerts/2025/10/24/microsoft-releases-out-band-security-update-mitigate-windows-server-update-service-vulnerability-cve

5.    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-59287

6.    https://thehackernews.com/2025/10/microsoft-issues-emergency-patch-for.html

7.    https://www.cisa.gov/known-exploited-vulnerabilities-catalog

8.    https://www.huntress.com/blog/exploitation-of-windows-server-update-services-remote-code-execution-vulnerability

9.    https://unit42.paloaltonetworks.com/microsoft-cve-2025-59287/

10. https://blog.talosintelligence.com/velociraptor-leveraged-in-ransomware-attacks/

11. https://github.com/hackirby/skuld

Darktrace Model Detections

·       Device / New PowerShell User Agent

·       Anomalous Connection / Powershell to Rare External

·       Compromise / Possible Tunnelling to Bin Services

·       Compromise / High Priority Tunnelling to Bin Services

·       Anomalous Server Activity / New User Agent from Internet Facing System

·       Device / New User Agent

·       Device / Internet Facing Device with High Priority Alert

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Server Activity / Rare External from Server

·       Compromise / Agent Beacon (Long Period)

·       Device / Large Number of Model Alerts

·       Compromise / Agent Beacon (Medium Period)

·       Device / Long Agent Connection to New Endpoint

·       Compromise / Slow Beaconing Activity To External Rare

·       Security Integration / Low Severity Integration Detection

·       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

·       Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

o   royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure

o   royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload

o   chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure

o   185.69.24[.]18 – IP address – Possible C2 Infrastructure

o   185.69.24[.]18/bin.msi - URI – Likely payload

o   185.69.24[.]18/singapure - URI – Likely payload

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI