Blog
/
/
February 1, 2021

Explore AI Email Security Approaches with Darktrace

Stay informed on the latest AI approaches to email security. Explore Darktrace's comparisons to find the best solution for your cybersecurity needs!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
01
Feb 2021

Innovations in artificial intelligence (AI) have fundamentally changed the email security landscape in recent years, but it can often be hard to determine what makes one system different to the next. In reality, under that umbrella term there exists a significant distinction in approach which may determine whether the technology provides genuine protection or simply a perceived notion of defense.

One backward-looking approach involves feeding a machine thousands of emails that have already been deemed to be malicious, and training it to look for patterns in these emails in order to spot future attacks. The second approach uses an AI system to analyze the entirety of an organization’s real-world data, enabling it to establish a notion of what is ‘normal’ and then spot subtle deviations indicative of an attack.

In the below, we compare the relative merits of each approach, with special consideration to novel attacks that leverage the latest news headlines to bypass machine learning systems trained on data sets. Training a machine on previously identified ‘known bads’ is only advantageous in certain, specific contexts that don’t change over time: to recognize the intent behind an email, for example. However, an effective email security solution must also incorporate a self-learning approach that understands ‘normal’ in the context of an organization in order to identify unusual and anomalous emails and catch even the novel attacks.

Signatures – a backward-looking approach

Over the past few decades, cyber security technologies have looked to mitigate risk by preventing previously seen attacks from occurring again. In the early days, when the lifespan of a given strain of malware or the infrastructure of an attack was in the range of months and years, this method was satisfactory. But the approach inevitably results in playing catch-up with malicious actors: it always looks to the past to guide detection for the future. With decreasing lifetimes of attacks, where a domain could be used in a single email and never seen again, this historic-looking signature-based approach is now being widely replaced by more intelligent systems.

Training a machine on ‘bad’ emails

The first AI approach we often see in the wild involves harnessing an extremely large data set with thousands or millions of emails. Once these emails have come through, an AI is trained to look for common patterns in malicious emails. The system then updates its models, rules set, and blacklists based on that data.

This method certainly represents an improvement to traditional rules and signatures, but it does not escape the fact that it is still reactive, and unable to stop new attack infrastructure and new types of email attacks. It is simply automating that flawed, traditional approach – only instead of having a human update the rules and signatures, a machine is updating them instead.

Relying on this approach alone has one basic but critical flaw: it does not enable you to stop new types of attacks that it has never seen before. It accepts that there has to be a ‘patient zero’ – or first victim – in order to succeed.

The industry is beginning to acknowledge the challenges with this approach, and huge amounts of resources – both automated systems and security researchers – are being thrown into minimizing its limitations. This includes leveraging a technique called “data augmentation” that involves taking a malicious email that slipped through and generating many “training samples” using open-source text augmentation libraries to create “similar” emails – so that the machine learns not only the missed phish as ‘bad’, but several others like it – enabling it to detect future attacks that use similar wording, and fall into the same category.

But spending all this time and effort into trying to fix an unsolvable problem is like putting all your eggs in the wrong basket. Why try and fix a flawed system rather than change the game altogether? To spell out the limitations of this approach, let us look at a situation where the nature of the attack is entirely new.

The rise of ‘fearware’

When the global pandemic hit, and governments began enforcing travel bans and imposing stringent restrictions, there was undoubtedly a collective sense of fear and uncertainty. As explained previously in this blog, cyber-criminals were quick to capitalize on this, taking advantage of people’s desire for information to send out topical emails related to COVID-19 containing malware or credential-grabbing links.

These emails often spoofed the Centers for Disease Control and Prevention (CDC), or later on, as the economic impact of the pandemic began to take hold, the Small Business Administration (SBA). As the global situation shifted, so did attackers’ tactics. And in the process, over 130,000 new domains related to COVID-19 were purchased.

Let’s now consider how the above approach to email security might fare when faced with these new email attacks. The question becomes: how can you train a model to look out for emails containing ‘COVID-19’, when the term hasn’t even been invented yet?

And while COVID-19 is the most salient example of this, the same reasoning follows for every single novel and unexpected news cycle that attackers are leveraging in their phishing emails to evade tools using this approach – and attracting the recipient’s attention as a bonus. Moreover, if an email attack is truly targeted to your organization, it might contain bespoke and tailored news referring to a very specific thing that supervised machine learning systems could never be trained on.

This isn’t to say there’s not a time and a place in email security for looking at past attacks to set yourself up for the future. It just isn’t here.

Spotting intention

Darktrace uses this approach for one specific use which is future-proof and not prone to change over time, to analyze grammar and tone in an email in order to identify intention: asking questions like ‘does this look like an attempt at inducement? Is the sender trying to solicit some sensitive information? Is this extortion?’ By training a system on an extremely large data set collected over a period of time, you can start to understand what, for instance, inducement looks like. This then enables you to easily spot future scenarios of inducement based on a common set of characteristics.

Training a system in this way works because, unlike news cycles and the topics of phishing emails, fundamental patterns in tone and language don’t change over time. An attempt at solicitation is always an attempt at solicitation, and will always bear common characteristics.

For this reason, this approach only plays one small part of a very large engine. It gives an additional indication about the nature of the threat, but is not in itself used to determine anomalous emails.

Detecting the unknown unknowns

In addition to using the above approach to identify intention, Darktrace uses unsupervised machine learning, which starts with extracting and extrapolating thousands of data points from every email. Some of these are taken directly from the email itself, while others are only ascertainable by the above intention-type analysis. Additional insights are also gained from observing emails in the wider context of all available data across email, network and the cloud environment of the organization.

Only after having a now-significantly larger and more comprehensive set of indicators, with a more complete description of that email, can the data be fed into a topic-indifferent machine learning engine to start questioning the data in millions of ways in order to understand if it belongs, given the wider context of the typical ‘pattern of life’ for the organization. Monitoring all emails in conjunction allows the machine to establish things like:

  • Does this person usually receive ZIP files?
  • Does this supplier usually send links to Dropbox?
  • Has this sender ever logged in from China?
  • Do these recipients usually get the same emails together?

The technology identifies patterns across an entire organization and gains a continuously evolving sense of ‘self’ as the organization grows and changes. It is this innate understanding of what is and isn’t ‘normal’ that allows AI to spot the truly ‘unknown unknowns’ instead of just ‘new variations of known bads.’

This type of analysis brings an additional advantage in that it is language and topic agnostic: because it focusses on anomaly detection rather than finding specific patterns that indicate threat, it is effective regardless of whether an organization typically communicates in English, Spanish, Japanese, or any other language.

By layering both of these approaches, you can understand the intention behind an email and understand whether that email belongs given the context of normal communication. And all of this is done without ever making an assumption or having the expectation that you’ve seen this threat before.

Years in the making

It’s well established now that the legacy approach to email security has failed – and this makes it easy to see why existing recommendation engines are being applied to the cyber security space. On first glance, these solutions may be appealing to a security team, but highly targeted, truly unique spear phishing emails easily skirt these systems. They can’t be relied on to stop email threats on the first encounter, as they have a dependency on known attacks with previously seen topics, domains, and payloads.

An effective, layered AI approach takes years of research and development. There is no single mathematical model to solve the problem of determining malicious emails from benign communication. A layered approach accepts that competing mathematical models each have their own strengths and weaknesses. It autonomously determines the relative weight these models should have and weighs them against one another to produce an overall ‘anomaly score’ given as a percentage, indicating exactly how unusual a particular email is in comparison to the organization’s wider email traffic flow.

It is time for email security to well and truly drop the assumption that you can look at threats of the past to predict tomorrow’s attacks. An effective AI cyber security system can identify abnormalities with no reliance on historical attacks, enabling it to catch truly unique novel emails on the first encounter – before they land in the inbox.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI