Blog
/
Cloud
/
April 12, 2023

P2Pinfect - New Variant Targets MIPS Devices

A new P2Pinfect variant compiled for the Microprocessor without Interlocked Pipelined Stages (MIPS) architecture has been discovered. This demonstrates increased targeting of routers, Internet of Things (IoT) and other embedded devices by those behind P2Pinfect.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
P2PinfectDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Apr 2023

Introduction: P2PInfect

Since July 2023, researchers at Cado Security Labs (now part of Darktrace) have been monitoring and reporting on the rapid growth of a cross-platform botnet, named “P2Pinfect”. As the name suggests, the malware - written in Rust - acts as a botnet agent, connecting infected hosts in a peer-to-peer topology. In early samples, the malware exploited Redis for initial access - a relatively common technique in cloud environments. 

There are a number of methods for exploiting Redis servers, several of which appear to be utilized by P2Pinfect. These include exploitation of CVE-2022-0543[1] - a sandbox escape vulnerability in the LUA scripting language (reported by Unit42 [2]), and, as reported previously by Cado Security Labs, an unauthorized replication attack resulting in the loading of a malicious Redis module.  

Researchers have since encountered a new variant of the malware, specifically targeting embedded devices based on 32-bit MIPS processors, and attempting to brute force SSH access to these devices. It’s highly likely that by targeting MIPS, the P2Pinfect developers intend to infect routers and IoT devices with the malware. Use of MIPS processors is common for embedded devices and the architecture has been previously targeted by botnet malware, including high-profile families like Mirai [3], and its variants/derivatives.

Not only is this an interesting development in that it demonstrates a widening of scope for the developers behind P2Pinfect (more supported processor architectures equals more nodes in the botnet itself), but the MIPS32 sample includes some notable defense evasion techniques. 

This, combined with the malware’s utilization of Rust (aiding cross-platform development) and rapid growth of the botnet itself, reinforces previous suggestions that this campaign is being conducted by a sophisticated threat actor.

Initial access

Cado researchers encountered the MIPS variant of P2Pinfect after triaging files uploaded via SFTP and SCP to a SSH honeypot. Although earlier variants had been observed scanning for SSH servers, and attempting to propagate the malware via SSH as part of its worming procedure, researchers had yet to observe successful implantation of a P2Pinfect sample using this method - until now.

In keeping with similar botnet families, P2Pinfect includes a number of common username/password pairs embedded within the MIPS binary itself. The malware will then iterate through these pairs, initiating a SSH connection with servers identified during the scanning phase to conduct a brute force attack. 

It was assumed that SSH would be the primary method of propagation for the MIPS variant, due to routers and other embedded devices being more likely to utilize SSH. However, additional research shows that it is in fact possible to run the Redis server on MIPS. This is achievable via an OpenWRT package named redis-server. [4]

It is unclear what use-case running Redis on an embedded MIPS device solves, or whether it is commonly encountered in the wild. If such a device is compromised by P2Pinfect and has the Redis-server package installed, it is perfectly feasible for that node to then be used to compromise new peers via one of the reported P2Pinfect attack patterns, involving exploitation of Redis or SSH brute-forcing.

Static analysis

The MIPS variant of P2Pinfect is a 32-bit, statically-linked, ELF binary with stripped debug information. Basic static analysis revealed the presence of an additional ELF executable, along with a 32-bit Windows DLL in the PE32 format - more on this later. 

This piqued the interest of Cado analysts, as it is unusual to encounter a compiled ELF with an embedded DLL. Consequently, it was a defining feature of the original P2Pinfect samples.

Embedded Windows PE32 executable
Figure 1: Embedded Windows PE32 executable

Further analysis of the host executable revealed a structure named “BotnetConf” with members consistent in naming with the original P2Pinfect samples. 

Example of a partially populated version of the BotnetConf struct 
Figure 2: Example of a partially populated version of the BotnetConf struct 

As the name suggests, this structure defines the configuration of the malware itself, whilst also storing the IP addresses of nodes identified during the SSH and Redis scans. This, in combination with the embedded ELF and DLL, along with the use of the Rust programming language allowed for positive attribution of this sample to the P2Pinfect family.

Updated evasion - consulting tracerpid

One of the more interesting aspects of the MIPS sample was the inclusion of a new evasion technique. Shortly after execution, the sample calls fork() to spawn a child process. 

The child process then proceeds to access /proc using openat(), determines its own Process Identifier (PID) using the Linux getpid() syscall, and then uses this PID to consult the relevant /proc subdirectory and read the status file within that. Note that this is likely achieved in the source code by resolving the symbolic link at /proc/self/status.

Example contents of /proc/pid/status when process not being traced
Figure 3: Example contents of /proc/pid/status when process not being traced

/proc/<pid>/status contains human-readable metadata and other information about the process itself, including memory usage and the name of the command currently being run. Importantly, the status file also contains a field TracerPID:. This field is assigned a value of 0 if the current process is not being traced by dynamic analysis tools, such as strace and ltrace.

Example MIPS disassembly showing reading of /proc/pid/status file
Figure 4: Example MIPS disassembly showing reading of /proc/pid/status file

If this value is non-zero, the MIPS variant of P2Pinfect determines that it is being analyzed and will immediately terminate both the child process and its parent. 

read(5, "Name:\tmips_embedded_p\nUmask:\t002", 32) = 32 
read(5, "2\nState:\tR (running)\nTgid:\t975\nN", 32) = 32 
read(5, "gid:\t0\nPid:\t975\nPPid:\t1\nTracerPid:\t971\nUid:\t0\t0\t0\t0\nGid:\t0\t0\t0\t0", 64) = 64 
read(5, "\nFDSize:\t32\nGroups:\t0 \nNStgid:\t975\nNSpid:\t975\nNSpgid:\t975\nNSsid:\t975\nVmPeak:\t    3200 kB\nVmSize:\t    3192 kB\nVmLck:\t       0 kB\n", 128) = 128 
read(5, "VmPin:\t       0 kB\nVmHWM:\t    1564 kB\nVmRSS:\t    1560 kB\nRssAnon:\t      60 kB\nRssFile:\t    1500 kB\nRssShmem:\t       0 kB\nVmData:\t     108 kB\nVmStk:\t     132 kB\nVmExe:\t    2932 kB\nVmLib:\t       8 kB\nVmPTE:\t      16 kB\nVmSwap:\t       0 kB\nCoreDumping:\t0\nThre", 256) = 256 
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x77ff1000 
read(5, "ads:\t1\nSigQ:\t0/1749\nSigPnd:\t00000000000000000000000000000000\nShdPnd:\t00000000000000000000000000000000\nSigBlk:\t00000000000000000000000000000000\nSigIgn:\t00000000000000000000000000001000\nSigCgt:\t00000000000000000000000000000600\nCapInh:\t0000000000000000\nCapPrm:\t0000003fffffffff\nCapEff:\t0000003fffffffff\nCapBnd:\t0000003fffffffff\nCapAmb:\t0000000000000000\nNoNewPrivs:\t0\nSeccomp:\t0\nSpeculation_Store_Bypass:\tunknown\nCpus_allowed:\t1\nCpus_allowed_list:\t0\nMems_allowed:\t1\nMems_allowed_list:\t0\nvoluntary_ctxt_switches:\t92\nn", 512) = 512 
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x77fef000 
munmap(0x77ff1000, 4096)                = 0 
read(5, "onvoluntary_ctxt_switches:\t0\n", 1024) = 29 
read(5, "", 995)                        = 0 
close(5)                                = 0 
munmap(0x77fef000, 8192)                = 0 
sigaltstack({ss_sp=NULL, ss_flags=SS_DISABLE, ss_size=8192}, NULL) = 0 
munmap(0x77ff4000, 12288)               = 0 
exit_group(-101)                        = ? 
+++ exited with 155 +++ 

Strace output demonstrating TracerPid evasion technique

Updated evasion - disabling core dumps

Interestingly, the sample will also attempt to disable Linux core dumps. This is likely used as an anti-forensics procedure as the memory regions written to disk as part of the core dump can often contain internal information about the malware itself. In the case of P2Pinfect, this would likely include information such as IP addresses of connected peers and the populated BotnetConf structure mentioned previously. 

It is also possible that the sample prevents core dumps from being created to protect the availability of the MIPS device itself. Low-powered embedded devices are unlikely to have much local storage available and core dumps could quickly fill what little storage they do have, affecting performance of the device itself.

A screen shot of a computer codeAI-generated content may be incorrect.
Image 5

This procedure can be observed during dynamic analysis, with the binary utilising the prctl() syscall and passing the parameters PR_SET_DUMPABLE, SUID_DUMP_DISABLE.

munmap(0x77ff1000, 4096)                = 0 
prctl(PR_SET_DUMPABLE, SUID_DUMP_DISABLE) = 0 
prlimit64(0, RLIMIT_CORE, {rlim_cur=0, rlim_max=0}, NULL) = 0 

Example strace output demonstrating disabling of core dumps

Embedded DLL

As mentioned in the Static Analysis section, the MIPS variant of P2Pinfect includes an embedded 64-bit Windows DLL. This DLL acts as a malicious loadable module for Redis, implementing the system.exec functionality to allow the running of shell commands on a compromised host.

Disassembly of the Redis module entrypoint
Figure 6: Disassembly of the Redis module entrypoint, mapping the system.exec command to a handler

This is consistent with the previous examples of P2Pinfect, and demonstrates that the intention is to utilize MIPS devices for the Redis-specific initial access attack patterns mentioned throughout this blog. 

Interestingly, this embedded DLL also includes a Virtual Machine (VM) evasion function, demonstrating the lengths that the P2Pinfect developers have taken to hinder the analysis process. In the DLLs main function, a call can be observed to a function helpfully labelled anti_vm by IDAs Lumina feature.

Decompiler output showing call to anti_vm function
Figure 7: Decompiler output showing call to anti_vm function

Viewing the function itself, it can be seen that researchers Christopher Gardner and Moritz Raabe have identified it as a known VM evasion method in other malware samples.

IDA’s graph view for the anti_vm function showing Lumina annotations
Figure 8: IDA’s graph view for the anti_vm function showing Lumina annotations

Conclusion

P2Pinfect’s continued evolution and broadened targeting appear to be the utilization of a variety of evasion techniques demonstrate an above-average level of sophistication when it comes to malware development. This is a botnet that will continue to grow until it’s properly utilized by its operators. 

While much of the functionality of the MIPS variant is consistent with the previous variants of this malware, the developer’s efforts in making both the host and embedded executables as evasive as possible show a continued commitment to complicating the analysis procedure. The use of anti-forensics measures such as the disabling of core dumps on Linux systems also supports this.

Indicators of compromise (IoCs)

Files SHA256

MIPS ELF 8b704d6334e59475a578d627ae4bcb9c1d6987635089790350c92eafc28f5a6c

Embedded DLL Redis Module  d75d2c560126080f138b9c78ac1038ff2e7147d156d1728541501bc801b6662f

References:

[1] https://nvd.nist.gov/vuln/detail/CVE-2022-0543

[2] https://unit42.paloaltonetworks.com/peer-to-peer-worm-p2pinfect/

[3] https://unit42.paloaltonetworks.com/mirai-variant-iz1h9/

[4] https://openwrt.org/packages/pkgdata/redis-server

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

Network

/

October 30, 2025

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287Default blog imageDefault blog image

Introduction

On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287.  Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].

WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported  thousands of publicly exposed instances that may be vulnerable to exploitation [2].

Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].

Attack Overview

The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.

The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.

Case Study 1

The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.

OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].

In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].

Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.

Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The anomalous nature of the connections to both webhook[.]site and workers[.]dev led to Darktrace generating multiple alerts including high-fidelity Enhanced Monitoring alerts and alerts for Darktrace’s Autonomous Response.

Infrastructure insight

Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.

Screenshot of v3.msi content.
Figure 1: Screenshot of v3.msi content.

Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.

 Screenshot of Config file.
Figure 2: Screenshot of Config file.

Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .

The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.

The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.

Case Study 2

The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server

Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.

While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.

By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.

Conclusion

Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.

By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORKTM, enabling defenders to investigate and respond to attacks more effectively.

With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.

Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.        https://nvd.nist.gov/vuln/detail/CVE-2025-59287

2.    https://www.bleepingcomputer.com/news/security/hackers-now-exploiting-critical-windows-server-wsus-flaw-in-attacks/

3.    https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus

4.    https://www.cisa.gov/news-events/alerts/2025/10/24/microsoft-releases-out-band-security-update-mitigate-windows-server-update-service-vulnerability-cve

5.    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-59287

6.    https://thehackernews.com/2025/10/microsoft-issues-emergency-patch-for.html

7.    https://www.cisa.gov/known-exploited-vulnerabilities-catalog

8.    https://www.huntress.com/blog/exploitation-of-windows-server-update-services-remote-code-execution-vulnerability

9.    https://unit42.paloaltonetworks.com/microsoft-cve-2025-59287/

10. https://blog.talosintelligence.com/velociraptor-leveraged-in-ransomware-attacks/

11. https://github.com/hackirby/skuld

Darktrace Model Detections

·       Device / New PowerShell User Agent

·       Anomalous Connection / Powershell to Rare External

·       Compromise / Possible Tunnelling to Bin Services

·       Compromise / High Priority Tunnelling to Bin Services

·       Anomalous Server Activity / New User Agent from Internet Facing System

·       Device / New User Agent

·       Device / Internet Facing Device with High Priority Alert

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Server Activity / Rare External from Server

·       Compromise / Agent Beacon (Long Period)

·       Device / Large Number of Model Alerts

·       Compromise / Agent Beacon (Medium Period)

·       Device / Long Agent Connection to New Endpoint

·       Compromise / Slow Beaconing Activity To External Rare

·       Security Integration / Low Severity Integration Detection

·       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

·       Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

o   royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure

o   royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload

o   chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure

o   185.69.24[.]18 – IP address – Possible C2 Infrastructure

o   185.69.24[.]18/bin.msi - URI – Likely payload

o   185.69.24[.]18/singapure - URI – Likely payload

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

Proactive Security

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI