ブログ
/
/
April 12, 2023

P2Pinfect - New Variant Targets MIPS Devices

A new P2Pinfect variant compiled for the Microprocessor without Interlocked Pipelined Stages (MIPS) architecture has been discovered. This demonstrates increased targeting of routers, Internet of Things (IoT) and other embedded devices by those behind P2Pinfect.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Apr 2023

Introduction: P2PInfect

Since July 2023, researchers at Cado Security Labs (now part of Darktrace) have been monitoring and reporting on the rapid growth of a cross-platform botnet, named “P2Pinfect”. As the name suggests, the malware - written in Rust - acts as a botnet agent, connecting infected hosts in a peer-to-peer topology. In early samples, the malware exploited Redis for initial access - a relatively common technique in cloud environments. 

There are a number of methods for exploiting Redis servers, several of which appear to be utilized by P2Pinfect. These include exploitation of CVE-2022-0543[1] - a sandbox escape vulnerability in the LUA scripting language (reported by Unit42 [2]), and, as reported previously by Cado Security Labs, an unauthorized replication attack resulting in the loading of a malicious Redis module.  

Researchers have since encountered a new variant of the malware, specifically targeting embedded devices based on 32-bit MIPS processors, and attempting to brute force SSH access to these devices. It’s highly likely that by targeting MIPS, the P2Pinfect developers intend to infect routers and IoT devices with the malware. Use of MIPS processors is common for embedded devices and the architecture has been previously targeted by botnet malware, including high-profile families like Mirai [3], and its variants/derivatives.

Not only is this an interesting development in that it demonstrates a widening of scope for the developers behind P2Pinfect (more supported processor architectures equals more nodes in the botnet itself), but the MIPS32 sample includes some notable defense evasion techniques. 

This, combined with the malware’s utilization of Rust (aiding cross-platform development) and rapid growth of the botnet itself, reinforces previous suggestions that this campaign is being conducted by a sophisticated threat actor.

Initial access

Cado researchers encountered the MIPS variant of P2Pinfect after triaging files uploaded via SFTP and SCP to a SSH honeypot. Although earlier variants had been observed scanning for SSH servers, and attempting to propagate the malware via SSH as part of its worming procedure, researchers had yet to observe successful implantation of a P2Pinfect sample using this method - until now.

In keeping with similar botnet families, P2Pinfect includes a number of common username/password pairs embedded within the MIPS binary itself. The malware will then iterate through these pairs, initiating a SSH connection with servers identified during the scanning phase to conduct a brute force attack. 

It was assumed that SSH would be the primary method of propagation for the MIPS variant, due to routers and other embedded devices being more likely to utilize SSH. However, additional research shows that it is in fact possible to run the Redis server on MIPS. This is achievable via an OpenWRT package named redis-server. [4]

It is unclear what use-case running Redis on an embedded MIPS device solves, or whether it is commonly encountered in the wild. If such a device is compromised by P2Pinfect and has the Redis-server package installed, it is perfectly feasible for that node to then be used to compromise new peers via one of the reported P2Pinfect attack patterns, involving exploitation of Redis or SSH brute-forcing.

Static analysis

The MIPS variant of P2Pinfect is a 32-bit, statically-linked, ELF binary with stripped debug information. Basic static analysis revealed the presence of an additional ELF executable, along with a 32-bit Windows DLL in the PE32 format - more on this later. 

This piqued the interest of Cado analysts, as it is unusual to encounter a compiled ELF with an embedded DLL. Consequently, it was a defining feature of the original P2Pinfect samples.

Embedded Windows PE32 executable
Figure 1: Embedded Windows PE32 executable

Further analysis of the host executable revealed a structure named “BotnetConf” with members consistent in naming with the original P2Pinfect samples. 

Example of a partially populated version of the BotnetConf struct 
Figure 2: Example of a partially populated version of the BotnetConf struct 

As the name suggests, this structure defines the configuration of the malware itself, whilst also storing the IP addresses of nodes identified during the SSH and Redis scans. This, in combination with the embedded ELF and DLL, along with the use of the Rust programming language allowed for positive attribution of this sample to the P2Pinfect family.

Updated evasion - consulting tracerpid

One of the more interesting aspects of the MIPS sample was the inclusion of a new evasion technique. Shortly after execution, the sample calls fork() to spawn a child process. 

The child process then proceeds to access /proc using openat(), determines its own Process Identifier (PID) using the Linux getpid() syscall, and then uses this PID to consult the relevant /proc subdirectory and read the status file within that. Note that this is likely achieved in the source code by resolving the symbolic link at /proc/self/status.

Example contents of /proc/pid/status when process not being traced
Figure 3: Example contents of /proc/pid/status when process not being traced

/proc/<pid>/status contains human-readable metadata and other information about the process itself, including memory usage and the name of the command currently being run. Importantly, the status file also contains a field TracerPID:. This field is assigned a value of 0 if the current process is not being traced by dynamic analysis tools, such as strace and ltrace.

Example MIPS disassembly showing reading of /proc/pid/status file
Figure 4: Example MIPS disassembly showing reading of /proc/pid/status file

If this value is non-zero, the MIPS variant of P2Pinfect determines that it is being analyzed and will immediately terminate both the child process and its parent. 

read(5, "Name:\tmips_embedded_p\nUmask:\t002", 32) = 32 
read(5, "2\nState:\tR (running)\nTgid:\t975\nN", 32) = 32 
read(5, "gid:\t0\nPid:\t975\nPPid:\t1\nTracerPid:\t971\nUid:\t0\t0\t0\t0\nGid:\t0\t0\t0\t0", 64) = 64 
read(5, "\nFDSize:\t32\nGroups:\t0 \nNStgid:\t975\nNSpid:\t975\nNSpgid:\t975\nNSsid:\t975\nVmPeak:\t    3200 kB\nVmSize:\t    3192 kB\nVmLck:\t       0 kB\n", 128) = 128 
read(5, "VmPin:\t       0 kB\nVmHWM:\t    1564 kB\nVmRSS:\t    1560 kB\nRssAnon:\t      60 kB\nRssFile:\t    1500 kB\nRssShmem:\t       0 kB\nVmData:\t     108 kB\nVmStk:\t     132 kB\nVmExe:\t    2932 kB\nVmLib:\t       8 kB\nVmPTE:\t      16 kB\nVmSwap:\t       0 kB\nCoreDumping:\t0\nThre", 256) = 256 
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x77ff1000 
read(5, "ads:\t1\nSigQ:\t0/1749\nSigPnd:\t00000000000000000000000000000000\nShdPnd:\t00000000000000000000000000000000\nSigBlk:\t00000000000000000000000000000000\nSigIgn:\t00000000000000000000000000001000\nSigCgt:\t00000000000000000000000000000600\nCapInh:\t0000000000000000\nCapPrm:\t0000003fffffffff\nCapEff:\t0000003fffffffff\nCapBnd:\t0000003fffffffff\nCapAmb:\t0000000000000000\nNoNewPrivs:\t0\nSeccomp:\t0\nSpeculation_Store_Bypass:\tunknown\nCpus_allowed:\t1\nCpus_allowed_list:\t0\nMems_allowed:\t1\nMems_allowed_list:\t0\nvoluntary_ctxt_switches:\t92\nn", 512) = 512 
mmap2(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x77fef000 
munmap(0x77ff1000, 4096)                = 0 
read(5, "onvoluntary_ctxt_switches:\t0\n", 1024) = 29 
read(5, "", 995)                        = 0 
close(5)                                = 0 
munmap(0x77fef000, 8192)                = 0 
sigaltstack({ss_sp=NULL, ss_flags=SS_DISABLE, ss_size=8192}, NULL) = 0 
munmap(0x77ff4000, 12288)               = 0 
exit_group(-101)                        = ? 
+++ exited with 155 +++ 

Strace output demonstrating TracerPid evasion technique

Updated evasion - disabling core dumps

Interestingly, the sample will also attempt to disable Linux core dumps. This is likely used as an anti-forensics procedure as the memory regions written to disk as part of the core dump can often contain internal information about the malware itself. In the case of P2Pinfect, this would likely include information such as IP addresses of connected peers and the populated BotnetConf structure mentioned previously. 

It is also possible that the sample prevents core dumps from being created to protect the availability of the MIPS device itself. Low-powered embedded devices are unlikely to have much local storage available and core dumps could quickly fill what little storage they do have, affecting performance of the device itself.

A screen shot of a computer codeAI-generated content may be incorrect.
Image 5

This procedure can be observed during dynamic analysis, with the binary utilising the prctl() syscall and passing the parameters PR_SET_DUMPABLE, SUID_DUMP_DISABLE.

munmap(0x77ff1000, 4096)                = 0 
prctl(PR_SET_DUMPABLE, SUID_DUMP_DISABLE) = 0 
prlimit64(0, RLIMIT_CORE, {rlim_cur=0, rlim_max=0}, NULL) = 0 

Example strace output demonstrating disabling of core dumps

Embedded DLL

As mentioned in the Static Analysis section, the MIPS variant of P2Pinfect includes an embedded 64-bit Windows DLL. This DLL acts as a malicious loadable module for Redis, implementing the system.exec functionality to allow the running of shell commands on a compromised host.

Disassembly of the Redis module entrypoint
Figure 6: Disassembly of the Redis module entrypoint, mapping the system.exec command to a handler

This is consistent with the previous examples of P2Pinfect, and demonstrates that the intention is to utilize MIPS devices for the Redis-specific initial access attack patterns mentioned throughout this blog. 

Interestingly, this embedded DLL also includes a Virtual Machine (VM) evasion function, demonstrating the lengths that the P2Pinfect developers have taken to hinder the analysis process. In the DLLs main function, a call can be observed to a function helpfully labelled anti_vm by IDAs Lumina feature.

Decompiler output showing call to anti_vm function
Figure 7: Decompiler output showing call to anti_vm function

Viewing the function itself, it can be seen that researchers Christopher Gardner and Moritz Raabe have identified it as a known VM evasion method in other malware samples.

IDA’s graph view for the anti_vm function showing Lumina annotations
Figure 8: IDA’s graph view for the anti_vm function showing Lumina annotations

Conclusion

P2Pinfect’s continued evolution and broadened targeting appear to be the utilization of a variety of evasion techniques demonstrate an above-average level of sophistication when it comes to malware development. This is a botnet that will continue to grow until it’s properly utilized by its operators. 

While much of the functionality of the MIPS variant is consistent with the previous variants of this malware, the developer’s efforts in making both the host and embedded executables as evasive as possible show a continued commitment to complicating the analysis procedure. The use of anti-forensics measures such as the disabling of core dumps on Linux systems also supports this.

Indicators of compromise (IoCs)

Files SHA256

MIPS ELF 8b704d6334e59475a578d627ae4bcb9c1d6987635089790350c92eafc28f5a6c

Embedded DLL Redis Module  d75d2c560126080f138b9c78ac1038ff2e7147d156d1728541501bc801b6662f

References:

[1] https://nvd.nist.gov/vuln/detail/CVE-2022-0543

[2] https://unit42.paloaltonetworks.com/peer-to-peer-worm-p2pinfect/

[3] https://unit42.paloaltonetworks.com/mirai-variant-iz1h9/

[4] https://openwrt.org/packages/pkgdata/redis-server

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
The Darktrace Community

More in this series

No items found.

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community

Blog

/

Email

/

December 22, 2025

Why Organizations are Moving to Label-free, Behavioral DLP for Outbound Email

Default blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ