Blog
/
/
October 30, 2023

Exploring AI Threats: Package Hallucination Attacks

Learn how malicious actors exploit errors in generative AI tools to launch packet attacks. Read how Darktrace products detect and prevent these threats!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
30
Oct 2023

AI tools open doors for threat actors

On November 30, 2022, the free conversational language generation model ChatGPT was launched by OpenAI, an artificial intelligence (AI) research and development company. The launch of ChatGPT was the culmination of development ongoing since 2018 and represented the latest innovation in the ongoing generative AI boom and made the use of generative AI tools accessible to the general population for the first time.

ChatGPT is estimated to currently have at least 100 million users, and in August 2023 the site reached 1.43 billion visits [1]. Darktrace data indicated that, as of March 2023, 74% of active customer environments have employees using generative AI tools in the workplace [2].

However, with new tools come new opportunities for threat actors to exploit and use them maliciously, expanding their arsenal.

Much consideration has been given to mitigating the impacts of the increased linguistic complexity in social engineering and phishing attacks resulting from generative AI tool use, with Darktrace observing a 135% increase in ‘novel social engineering attacks’ across thousands of active Darktrace/Email™ customers from January to February 2023, corresponding with the widespread adoption of ChatGPT and its peers [3].

Less overall consideration, however, has been given to impacts stemming from errors intrinsic to generative AI tools. One of these errors is AI hallucinations.

What is an AI hallucination?

AI “hallucination” is a term which refers to the predictive elements of generative AI and LLMs’ AI model gives an unexpected or factually incorrect response which does not align with its machine learning training data [4]. This differs from regular and intended behavior for an AI model, which should provide a response based on the data it was trained upon.  

Why are AI hallucinations a problem?

Despite the term indicating it might be a rare phenomenon, hallucinations are far more likely than accurate or factual results as the AI models used in LLMs are merely predictive and focus on the most probable text or outcome, rather than factual accuracy.

Given the widespread use of generative AI tools in the workplace employees are becoming significantly more likely to encounter an AI hallucination. Furthermore, if these fabricated hallucination responses are taken at face value, they could cause significant issues for an organization.

Use of generative AI in software development

Software developers may use generative AI for recommendations on how to optimize their scripts or code, or to find packages to import into their code for various uses. Software developers may ask LLMs for recommendations on specific pieces of code or how to solve a specific problem, which will likely lead to a third-party package. It is possible that packages recommended by generative AI tools could represent AI hallucinations and the packages may not have been published, or, more accurately, the packages may not have been published prior to the date at which the training data for the model halts. If these hallucinations result in common suggestions of a non-existent package, and the developer copies the code snippet wholesale, this may leave the exchanges vulnerable to attack.

Research conducted by Vulcan revealed the prevalence of AI hallucinations when ChatGPT is asked questions related to coding. After sourcing a sample of commonly asked coding questions from Stack Overflow, a question-and-answer website for programmers, researchers queried ChatGPT (in the context of Node.js and Python) and reviewed its responses. In 20% of the responses provided by ChatGPT pertaining to Node.js at least one un-published package was included, whilst the figure sat at around 35% for Python [4].

Hallucinations can be unpredictable, but would-be attackers are able to find packages to create by asking generative AI tools generic questions and checking whether the suggested packages exist already. As such, attacks using this vector are unlikely to target specific organizations, instead posing more of a widespread threat to users of generative AI tools.

Malicious packages as attack vectors

Although AI hallucinations can be unpredictable, and responses given by generative AI tools may not always be consistent, malicious actors are able to discover AI hallucinations by adopting the approach used by Vulcan. This allows hallucinated packages to be used as attack vectors. Once a malicious actor has discovered a hallucination of an un-published package, they are able to create a package with the same name and include a malicious payload, before publishing it. This is known as a malicious package.

Malicious packages could also be recommended by generative AI tools in the form of pre-existing packages. A user may be recommended a package that had previously been confirmed to contain malicious content, or a package that is no longer maintained and, therefore, is more vulnerable to hijack by malicious actors.

In such scenarios it is not necessary to manipulate the training data (data poisoning) to achieve the desired outcome for the malicious actor, thus a complex and time-consuming attack phase can easily be bypassed.

An unsuspecting software developer may incorporate a malicious package into their code, rendering it harmful. Deployment of this code could then result in compromise and escalation into a full-blown cyber-attack.

Figure 1: Flow diagram depicting the initial stages of an AI Package Hallucination Attack.

For providers of Software-as-a-Service (SaaS) products, this attack vector may represent an even greater risk. Such organizations may have a higher proportion of employed software developers than other organizations of comparable size. A threat actor, therefore, could utilize this attack vector as part of a supply chain attack, whereby a malicious payload becomes incorporated into trusted software and is then distributed to multiple customers. This type of attack could have severe consequences including data loss, the downtime of critical systems, and reputational damage.

How could Darktrace detect an AI Package Hallucination Attack?

In June 2023, Darktrace introduced a range of DETECT™ and RESPOND™ models designed to identify the use of generative AI tools within customer environments, and to autonomously perform inhibitive actions in response to such detections. These models will trigger based on connections to endpoints associated with generative AI tools, as such, Darktrace’s detection of an AI Package Hallucination Attack would likely begin with the breaching of one of the following DETECT models:

  • Compliance / Anomalous Upload to Generative AI
  • Compliance / Beaconing to Rare Generative AI and Generative AI
  • Compliance / Generative AI

Should generative AI tool use not be permitted by an organization, the Darktrace RESPOND model ‘Antigena / Network / Compliance / Antigena Generative AI Block’ can be activated to autonomously block connections to endpoints associated with generative AI, thus preventing an AI Package Hallucination attack before it can take hold.

Once a malicious package has been recommended, it may be downloaded from GitHub, a platform and cloud-based service used to store and manage code. Darktrace DETECT is able to identify when a device has performed a download from an open-source repository such as GitHub using the following models:

  • Device / Anomalous GitHub Download
  • Device / Anomalous Script Download Followed By Additional Packages

Whatever goal the malicious package has been designed to fulfil will determine the next stages of the attack. Due to their highly flexible nature, AI package hallucinations could be used as an attack vector to deliver a large variety of different malware types.

As GitHub is a commonly used service by software developers and IT professionals alike, traditional security tools may not alert customer security teams to such GitHub downloads, meaning malicious downloads may go undetected. Darktrace’s anomaly-based approach to threat detection, however, enables it to recognize subtle deviations in a device’s pre-established pattern of life which may be indicative of an emerging attack.

Subsequent anomalous activity representing the possible progression of the kill chain as part of an AI Package Hallucination Attack could then trigger an Enhanced Monitoring model. Enhanced Monitoring models are high-fidelity indicators of potential malicious activity that are investigated by the Darktrace analyst team as part of the Proactive Threat Notification (PTN) service offered by the Darktrace Security Operation Center (SOC).

Conclusion

Employees are often considered the first line of defense in cyber security; this is particularly true in the face of an AI Package Hallucination Attack.

As the use of generative AI becomes more accessible and an increasingly prevalent tool in an attacker’s toolbox, organizations will benefit from implementing company-wide policies to define expectations surrounding the use of such tools. It is simple, yet critical, for example, for employees to fact check responses provided to them by generative AI tools. All packages recommended by generative AI should also be checked by reviewing non-generated data from either external third-party or internal sources. It is also good practice to adopt caution when downloading packages with very few downloads as it could indicate the package is untrustworthy or malicious.

As of September 2023, ChatGPT Plus and Enterprise users were able to use the tool to browse the internet, expanding the data ChatGPT can access beyond the previous training data cut-off of September 2021 [5]. This feature will be expanded to all users soon [6]. ChatGPT providing up-to-date responses could prompt the evolution of this attack vector, allowing attackers to publish malicious packages which could subsequently be recommended by ChatGPT.

It is inevitable that a greater embrace of AI tools in the workplace will be seen in the coming years as the AI technology advances and existing tools become less novel and more familiar. By fighting fire with fire, using AI technology to identify AI usage, Darktrace is uniquely placed to detect and take preventative action against malicious actors capitalizing on the AI boom.

Credit to Charlotte Thompson, Cyber Analyst, Tiana Kelly, Analyst Team Lead, London, Cyber Analyst

References

[1] https://seo.ai/blog/chatgpt-user-statistics-facts

[2] https://darktrace.com/news/darktrace-addresses-generative-ai-concerns

[3] https://darktrace.com/news/darktrace-email-defends-organizations-against-evolving-cyber-threat-landscape

[4] https://vulcan.io/blog/ai-hallucinations-package-risk?nab=1&utm_referrer=https%3A%2F%2Fwww.google.com%2F

[5] https://twitter.com/OpenAI/status/1707077710047216095

[6] https://www.reuters.com/technology/openai-says-chatgpt-can-now-browse-internet-2023-09-27/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst
Written by
Tiana Kelly
Deputy Team Lead, London & Cyber Analyst

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 21, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

xillen stealer updates to version 5 to evade ai detectionDefault blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  

Credit to Tara Gould (Threat Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github[.]com/BengaminButton/XillenStealer

https://github[.]com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI