Blog
/
Network
/
January 3, 2023

How an Insider Exfiltrated Corporate Data to Google Cloud

Darktrace examines an insider exfiltrating corporate data from a Singaporean file server to Google Cloud. Explore Bytesize Security on Darktrace's blog.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Signe Zaharka
Principal Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Jan 2023

According to the ‘2021 Insider Threat Report’ by Cybersecurity Insiders, the Great Resignation and shift to a remote work culture has seen organizations report a 57% increase in insider-motivated attacks [1]. Insider attacks can be difficult to detect and respond to, (especially those perpetrated by malicious individuals who have privileged access and knowledge of internal business workings) and it is likely that this number is even higher in practice. The same report states that insider threats go unnoticed in 18% of organizations, whilst 31% can only remediate them after the data has already been siphoned out of their environments.  

Given this, visibility and defense against insider attacks needs to be treated as a priority by security teams. If left unchecked theft of critical data can have serious effects on an organization's reputation, competitive edge and business operations, not to mention the possibly resulting legal liabilities. The worst of the consequences are financial costs- according to the Ponemon Institute, the average global cost to remediate insider threat breaches is now estimated to be $15.38 million a year [2].

Darktrace DETECT

Darktrace's product suite has been empowering network defenders to recognize and stop insider threats like data exfiltration, (whether intentional or unintentional) for years. This summer highlighted a notable example. 

In July 2022, while a Singaporean construction corporation was trialling Darktrace DETECT/Network, it observed suspicious connections from a desktop within the corporation's network to an internal file server over the Server Message Block (SMB) protocol and a download of more than 1GB of data. Connections between these devices went on for an hour, ranging from 02:35 to 03:35 UTC in the early hours of the morning (Figures 1 & 2). 

Figure 1: A screenshot showing a spike in data downloaded internally from the breach device.
Figure 2: A zoomed-in view showing the increase in data being downloaded internally.

The files identified during these connections (MS word, pdf, image, etc.) were related to both ongoing projects as well as 3D and 2D designs. It was clear these files were part of critical company property. Around the same time (02:35 - 04:05 UTC), an unusual data transfer of more than 2 GB (Figures 3 & 4) to an external endpoint associated with Google Drive and Sites (clients[N].google[.]com.), as well as SSL connections to Google Drive, Email, and Google Docs domains; these are all related to some of the most common electronic data exfiltration vectors and were seen from the same device (Figure 5).

Figure 3: A screenshot showing a spike in data uploaded externally from the breach device.
Figure 4: A zoomed-in view showing the increase in data being uploaded externally
Figure 5: Around the time of the suspicious external data transfer, SSL connections were seen from the breach device to Google related domains (suggesting the use of Google Drive, Mail and Docs). This is a ranked list of the connected endpoints

Although clients[N].google[.]com was 0% rare for the network, Darktrace model breaches still managed to flag the anomalous increase in the volume of data uploaded externally and downloaded internally by the device. Thanks to an independent investigation by the Cyber AI Analyst feature (Figure 6), this activity was brought to the attention of the company’s management and a subsequent internal investigation was launched into why the device of a now ex-employee was copying data out of the network without authorization. Had Darktrace RESPOND/Network also been active on the deployment, it would have been possible to stop the exfiltration. 

Figure 6: AI Analyst incidents associated with the unusual data transfers.

Conclusion

There are a large range of insiders from departing employees, industrial spies, staff being blackmailed, (or bribed by criminals) compromised contractors and even regular employees with low IT or compliance literacy using unauthorized online data storage services. Each of these can have a devastating impact on businesses if there are no monitoring and prevention capabilities in place to combat data exfiltration, even more so if security teams are understaffed and overworked. As part of the DETECT package, this incident highlights how Darktrace's Cyber AI Analyst autonomously triages unusual activity such as large volumes of data leaving the network without needing to know information like if an employee has handed in their notice. Meanwhile while Darktrace RESPOND has the ability to automatically block abnormal data transfers making it a perfect complement to halt insiders in action. Together Darktrace's technology balances security teams saving them time and ensuring humans can focus on other issues that truly matter.

Appendices

Darktrace Detections

  • Internal Download and External Upload (AI Incident)
  • Unusual External Data Transfer (AI Incident)
  • Unusual Activity /Unusual File Storage Data Transfer (Model Breach)

Primary MITRE technique

Reference List

[1] https://www.cybersecurity-insiders.com/wp-content/uploads/2021/06/2021-Insider-Threat-Report-Gurucul-Final-dd8f5a75.pdf

[2] https://www.blackfog.com/preventing-insider-threats-anti-data-exfiltration/ 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Signe Zaharka
Principal Cyber Analyst

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Proactive Security

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI