Blog
/
/
September 23, 2020

Detecting OT Threats: ICS Attack at International Airport

Learn how Darktrace's OT Threat Detection technology identified a sophisticated ICS attack on an international airport. Read more on Darktrace's blog.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
Sep 2020

As Industrial Control Systems (ICS) and traditional IT networks converge, the number of cyber-attacks that start in the corporate network before spreading to operational technology has increased dramatically in the last 12 months. From North Korean hackers targeting a nuclear power plant in India to ransomware shutting down operations at a US gas facility, and across Honda’s manufacturing sites, 2020 has been the year OT attacks have become mainstream.

Darktrace recently detected a simulation of a state-of-the-art attack at an international airport, identifying ICS reconnaissance, lateral movement, vulnerability scanning and protocol fuzzing – a technique in which the attacker sends nonsensical commands over an ICS communication channel in order to confuse the target device, causing it to fail or reboot.

Darktrace’s Industrial Immune System detected every stage of the sophisticated attack, using AI-powered anomaly detection to identify ICS attack vectors without a list of known exploits, company assets, or firmware versions. The attacker leveraged tools at every stage of the ICS kill chain, including ICS-specific attack techniques.

Any unusual attempts to read or reprogram single coils, objects, or other data blocks were detected by Cyber AI, and Darktrace’s Cyber AI Analyst also automatically identified the activity and created summary reports detailing the key actions taken.

The attack spanned multiple days and targeted the Building Management System (BMS) and the Baggage Reclaim network, with attackers utilizing two common ICS protocols (BacNet and S7Comm) and leveraging legitimate tools (such as ICS reprogramming commands and connections through SMB service pipes) to evade traditional, signature-based security tools.

Attack details

Figure 1: Timeline of the attack

In the first stage of the attack, a new device was introduced to the network, using ARP spoofing to evade detection from traditional security tools. At 11.40am, the attacker scanned a target device and attempted to bruteforce open services. Once the target device had been hijacked, the attacker then sought to establish an external connection to the Internet. External connections should not be possible in ICS networks, but attackers often seek to bypass firewalls and network segregation rules in order to create a command and control (C2) channel.

Figure 2: Darktrace Threat Tray 15 minutes after the pentest commenced. High level model breaches have already alerted the analyst team to the attack device.

The hijacked device then began performing ICS reconnaissance using Discover and Read commands. Darktrace identified new objects and data blocks being targeted as part of this reconnaissance, and detected ICS devices targeted with unusual BacNet and Siemens S7Comm protocol commands.

Figure 3: Model alerts associated with ICS reconnaissance over BacNet. Machine learning at the ICS command level detected new and unusual BacNet objects being targeted by the attacker.

The attacker enumerated through multiple ICS devices in order to perform lateral movement throughout the ICS system. Once they had learned device settings and configurations, they used ICS Reprogram and Write commands to reconfigure machines. The attacker attempted to use known vulnerabilities to exploit the target devices, such as the use of SMB, SMBv1, HTTP, RDP, and ICS protocol fuzzing.

Figure 4: Visualization of the device enumeration performed by the attacker against multiple ICS controllers. The attacker used ICS Discover commands as part of the initial reconnaissance.

The attacker took deliberate actions to evade the airport’s cyber security stack, including making connections using ICS protocols commonly used on the network to devices which commonly use those protocols. While legacy security tools failed to pick up on this activity, Darktrace’s deep packet inspection was able to identify unusual commands used by the attacker within those ‘normal’ connections.

The attacker used ARP spoofing to slow any investigation using asset management-based security tools – including two other solutions being trialed by the airport at the time of the attack. They also used multiple devices throughout the intrusion to throw defense teams off the scent.

Darktrace’s AI technology also launched an automated investigation into the incident. The Cyber AI Analyst identified all of the attack devices and produced summary reports for each, showcasing its ability to not only save crucial time for security teams, but bridge the skills gap between IT teams and ICS engineers.

Figure 5: The Cyber AI Analyst threat tray at the end of day 1. Both devices used by the attacker have been identified.

The Cyber AI Analyst immediately began investigating after the first model breach, and continued to stitch together disparate events across the network to produce a natural language summary of the incident, including recommendations for action.

Figure 6: AIA incident summary at the end of day 2, detailing the use of SMB exploits as part of the attack chain against one of the ICS devices.

Potential ramifications

Had the attack been allowed to continue, the attackers – potentially activist groups, terrorist organizations, and organized criminals – could have caused significant operational disruption to the airport. For example, the BMS is likely to manage temperature settings, the sprinkler system, fire alarms and fire exits, lighting, and doors in and out of secure access areas. Meddling with any one of these could cause severe disruption at an airport, with significant financial and reputational effects. Similarly, access to baggage reclaim networks could be used by criminals seeking to smuggle illegal goods or steal valuable cargo.

This simulation showcases the possibilities for an advanced cyber-criminal looking to compromise integrated IT and OT networks. The majority of leading ICS ‘security’ vendors are signature-based, and fail to pick up on novel techniques and utilization of common protocols to pursue malicious ends – this is why ICS attacks have continued to hit the headlines this year.

The incident showcases the extent of Cyber AI’s detections in a real-world ICS environment, and the level of detail Darktrace can provide following an attack. As Industrial Control Systems become increasingly integrated with the wider IT network, the importance of securing these critical systems is paramount. Darktrace provides a unified security umbrella with visibility and detection across the entire digital environment.

Thanks to Darktrace analyst Oakley Cox for his insights on the above investigation.

Learn more about the Industrial Immune System

Darktrace model detections:

  • ICS / Unusual ICS Commands
  • ICS / Multiple New Reprograms
  • ICS / Multiple New Discover Commands
  • ICS / Rare External from OT Device
  • ICS / Uncommon ICS Protocol Warning
  • ICS / Multiple Failed Connections to ICS Device
  • ICS / Anomalous IT to ICS Connection
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

Network

/

November 13, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Default blog imageDefault blog image

What is vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

November 6, 2025

Darktrace Named the Only 2025 Gartner® Peer Insights™ Customers’ Choice for Network Detection and Response

Default blog imageDefault blog image

Darktrace: The only Customers’ Choice for NDR in 2025

In a year defined by rapid change across the threat landscape, recognition from those who use and rely on security technology every day means the most.

That’s why we’re proud to share that Darktrace has been named the only Customers’ Choice in the 2025 Gartner® Peer Insights™ Voice of the Customer for Network Detection and Response (NDR).

Out of 11 leading NDR vendors evaluated, Darktrace stood alone as the sole Customers’ Choice, a recognition that we feel reflects not just our innovation, but the trust and satisfaction of the customers who secure their networks with Darktrace every day.

What the Gartner® Peer Insights™ Voice of the Customer means

“Voice of the Customer” is a document that synthesizes Gartner Peer Insights reviews into insights for buyers of technology and services. This aggregated peer perspective, along with the individual detailed reviews, is complementary to Gartner expert research and can play a key role in your buying process. Peers are verified reviewers of a technology product or service, who not only rate the offering, but also provide valuable feedback to consider before making a purchase decision. Vendors placed in the upper-right “Customers’ Choice” quadrant of the “Voice of the Customer” have scores that meet or exceed the market average for both axes (User Interest and Adoption, and Overall Experience).It’s not just a rating. We feel it’s a reflection of genuine customer sentiment and success in the field.

In our view, Customers consistently highlight Darktrace’s ability to:

  • Detect and respond to unknown threats in real time
  • Deliver unmatched visibility across IT, OT, and cloud environments
  • Automate investigations and responses through AI-driven insights

We believe this recognition reinforces what our customers already know: that Darktrace helps them see, understand, and stop attacks others miss.

A rare double: recognized by customers and analysts alike

This distinction follows another major recogniton. Darktrace’s placement as a Leader in the Gartner® Magic Quadrant™ for Network Detection and Response earlier this year.

That makes Darktrace the only vendor to achieve both:

  • A Leader status in the Gartner Magic Quadrant for NDR, and
  • A Customers’ Choice in Gartner Peer Insights 2025

It’s a rare double that we feel reflects both industry leadership and customer trust, two perspectives that, together, define what great cybersecurity looks like.

A Customers’ Choice across the network and the inbox

To us, this recognition also builds on Darktrace’s momentum across multiple domains. Earlier this year, Darktrace was also named a Customers’ Choice for Email Security Platforms in the Gartner® Peer Insights™ report.

With more than 1,000 verified reviews across Network Detection and Response, Email Security Platforms, and Cyber Physical Systems (CPS), we at Darktrace are proud to be trusted across the full attack surface, from the inbox to the industrial network.

Thank you to our customers

We’re deeply grateful to every customer who shared their experience with Darktrace on Gartner Peer Insights. Your insights drive our innovation and continue to shape how we protect complex, dynamic environments across the world.

Discover why customers choose Darktrace for network and email security.

Gartner® Peer Insights™ content consists of the opinions of individual end users based on their own experiences, and should not be construed as statements of fact, nor do they represent the views of Gartner or its affiliates. Gartner does not endorse any vendor, product or service depicted in this content nor makes any warranties, expressed or implied, with respect to this content, about its accuracy or completeness, including any warranties of merchantability or fitness for a particular purpose.

GARTNER is a registered trademark and service mark of Gartner, Inc. and/or its affiliates in the U.S. and internationally and is used herein with permission. All rights reserved.

Magic Quadrant and Peer Insights are registered trademarks of Gartner, Inc. and/or its affiliates and is used herein with permission. All rights reserved.

Gartner, Voice of the Customer for Network Detection and Response, By Peer Community Contributor, 30 October 2025

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI