Blog
/
/
November 29, 2020

Darktrace Cyber Analyst Investigates Sodinokibi Ransomware

Darktrace’s Cyber AI Analyst uncovers the intricate details of a Sodinokibi ransomware attack on a retail organization. Dive into this real-time incident.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
29
Nov 2020

Sodinokibi is one of the most lucrative ransomware strains of 2020, with its creators, cyber-criminal gang REvil, recently claiming over $100 million in profits this year alone. The prevalent threat is known to wipe backup files, encrypt files on local shares and exfiltrate data.

Exfiltration before encryption is a technique being increasingly adopted by profit-seeking cyber-criminals, who can threaten to leak the stolen data should a target organization not comply with their demands. Sodinobiki also makes heavy use of code obfuscation and encryption techniques to evade detection by signature-based, anti-virus solutions.

Darktrace’s AI recently detected Sodinokibi targeting a retail organization in the US. Prior to this year, the company operated primarily face-to-face in physical stores, but have conducted the majority of their business in the digital realm since the onset of the pandemic.

Cyber AI Analyst automatically launched a full investigation into this incident in real time, as the attack was unfolding. The technology provided summary reports of the entire incident which the security team could immediately action for incident response. This blog explores its findings.

Sodinokibi timeline

Darktrace automatically investigated on the full scope of the Sodinokibi attack, with Cyber AI Analyst clearly identifying and summarising every stage of the attack lifecycle, which played out over the course of three weeks as below:

Figure 1: A timeline of the attack

Darktrace produced a large number of security-relevant anomalies associated with just three credentials, and displayed these along a common timeline shown below:

Figure 2: A timeline view of anomaly detections separated by users. Note the clusters of model breaches for the compromised credentials leading up to October 14.

While a human analyst might have been able to identify these unusual patterns and investigate what caused the clusters of anomalous activity, this process would have taken precious hours during a crisis. Cyber AI Analyst automatically performed the same analysis using supervised machine learning trained on Darktrace’s world-leading analysts, generating meaningful summaries of each stage of the event in real time, as the incident unfolded.

REvil ransomware attack

The following events occurred during a free trial period, and Darktrace was not being actively monitored. Its Autonomous Response technology, Darktrace Antigena, was installed in passive mode, and in the absence of automatic interference at an early stage, this compromise was allowed to unfold without interruption. However, with Darktrace’s AI learning normal ‘patterns of life’ for every device in the background, identifying anomalies, and launching an automated investigation into the attack, we are able to go back into the Threat Visualizer and see how the incident unfolded.

The attack began when the credentials of a highly privileged member of the retail organization’s IT team were compromised. REvil is known to make use of phishing emails, exploit kits, server vulnerabilities, and compromised MSP networks for initial intrusion.

In this case, the attacker used the IT credential to compromise a domain controller and exfiltrate data directly after initial reconnaissance. Darktrace’s AI detected the attacker logging into the domain controller via SMB, writing suspicious files and then deleting batch scripts and log files in the root directory to clear their tracks.

The domain controller then made connections to several rare external endpoints, and Darktrace witnessed a 28MB upload that was likely exfiltration of initial reconnaissance data. Four days later, the attacker connected to the same endpoint (sadstat[.]com) – likely a stager download for C2, which was then initiated via connections on port 443 later that same day.

A week on from the intial C2 connection, a SQL server was detected engaging in network scanning as the attacker sought to move laterally in search of sensitive and valuable data. Over the course of two weeks, Darktrace witnessed unusual internal RDP connections using administrative credentials, before data was uploaded to multiple cloud storage endpoints as well as an SSH server. PsExec was used to deploy the ransomware, resulting in file encryption.

The evasive nature of modern ransomware

REvil started with an inherent advantage in that they were armed with the credentials of a highly privileged IT admin. Nevertheless, they still made several attempts to evade traditional, signature-based tools, such as ‘Living off the Land’ – using common tools such PsExec, WMI, RDP to blend into to legitimate activity.

They leveraged frequently-used cloud storage solutions like Dropbox and pCloud for data transfer, and they conducted SSH on port 443, blending in with SSL connections on the same port. They used a newly-registered domain for C2 communication, meaning Open Source Intelligence Tools (OSINT) were blind to the threat.

Finally, the malware itself was evasive in that it made use of code obfuscation and encryption, and had no need for a system library or API imports. This is the basis for most modern ransomware attacks, and the reality is signature-based tools cannot keep up. Darktrace’s AI not only detected the anomalous activity associated with every stage of the attack, but generated fleshed-out summaries of each stage of the attack with Cyber AI Analyst.

Cyber AI Analyst: Real-time incident reporting

Between September 21 and October 12, Cyber AI Analyst created 15 incidents, investigating dozens of point detections and creating a coherent attack narrative.

Figure 3: Cyber AI Incident log of the first compromised DC. This incident tab details the connections to sadstat[.]com

Figure 4: The DC establishes C2 to the first GHOSTnet GmbH IP

Figure 5: This incident tab highlights the file encryption of files on network shares

Figure 6: Darktrace surfaces the IT admin account takeover

Figure 7: Example of a client type device involved in extensive administrative RDP and SMB activity, as well as data uploads to Dropbox (this upload to Dropbox occurs few seconds before file encryption begins)

REvil vs AI

This Sodinokibi ransomware attack slipped under the radar of a range of traditional tools deployed by the retail organization. However, despite the threat dwelling in the retail organization’s digital environment for over a month, and REvil using local tools to blend in to regular traffic, from Darktrace’s perspective these actions were noisy in comparison to the organization’s normal ‘pattern of life’, setting off a series of alerts and investigations.

Darktrace’s Cyber AI Analyst was able to autonomously investigate nearly every attack phase of the ransomware. The technology works around the clock, without requiring training or time off, and can often reduce hours or days of incident response into just minutes, reducing time to triage by up to 92% and augmenting the capabilities of the human security team.

Thanks to Darktrace analyst Joel Lee for his insights on the above threat find.

Learn more about Cyber AI Analyst

Darktrace model detections:

  • Anomalous Connection / Active Remote Desktop Tunnel
  • Anomalous Connection / Data Sent To New External Device
  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / High Volume of New or Uncommon Service Control
  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Anomalous Connection / Unusual Admin RDP Session
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compliance / SMB Drive Write
  • Compliance / Possible Tor Usage
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Compromise / Ransomware / Suspicious SMB Activity
  • Device / ICMP Address Scan
  • Device / Multiple Lateral Movement Model Breaches
  • Device / Network Scan
  • Device / New or Uncommon WMI Activity
  • Device / New or Unusual Remote Command Execution
  • Device / RDP Scan
  • Device / Suspicious Network Scan Activity
  • Unusual Activity / Enhanced Unusual External Data Transfer
  • Unusual Activity / Unusual Internal Connections
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

AI

/

February 3, 2026

The State of AI Cybersecurity 2026: Unveiling insights from over 1,500 security leaders

The State of AI Cybersecurity 2026Default blog imageDefault blog image

2025 was the year enterprise AI went mainstream. In 2026, it’s made its way into every facet of the organizational structure – transforming workflows, revolutionizing productivity, and creating new value streams. In short, it’s opened up a whole new attack surface.  

At the same time, AI has accelerated the pace of cybersecurity arms race on both sides: adversaries are innovating using the latest AI technologies at their disposal while defenders scramble to outmaneuver them and stay ahead of AI-powered threats.  

That’s why Darktrace publishes this research every year. The State of AI Cybersecurity 2026 provides an annual snapshot of how the AI threat landscape is shifting, where organizations are adopting AI to maximum advantage, and how they are securing AI in the enterprise.

What is the State of AI Cybersecurity 2026?

We surveyed over 1,500 CISOs, IT leaders, administrators, and practitioners from a range of industries and different countries to uncover their attitudes, understanding, and priorities when it comes to AI threats, agents, tools, and operations in 2026. ​

The results show a fast-changing picture, as security leaders race to navigate the challenges and opportunities at play. Since last year, there has been enormous progress towards maturity in areas like AI literacy and confidence in AI-powered defense, while issues around AI governance remain inconclusive.

Let’s look at some of the key findings for 2026.

What’s the impact of AI on the attack surface?

Security leaders are seeing the adoption of AI agents across the workforce, and are increasingly concerned about the security implications.

  • 44% are extremely or very concerned with the security implications of third-party LLMs (like Copilot or ChatGPT)
  • 92% are concerned about the use of AI agents across the workforce and their impact on security

The rapid expansion of generative AI across the enterprise is outpacing the security frameworks designed to govern it. AI systems behave in ways that traditional defenses are not designed to monitor, introducing new risks around data exposure, unauthorized actions, and opaque decision-making as employees embed generative AI and autonomous agents into everyday workflows.  

Their top concerns? Sensitive data exposure ranks top (61%), while regulatory compliance violations are a close second (56%). These risks tend to have the fastest and most material fallout – ranging from fines to reputational harm – and are more likely to materialize in environments where AI governance is still evolving.

What’s the impact of AI on the cyber threat landscape?

AI is now being used to expedite every stage of the attack kill chain – from initial intrusion to privilege escalation and data exfiltration. 

“73% say that AI-powered threats are already having a significant impact on their organization.”

With AI, attackers can launch novel attacks at scale, and this is significantly increasing the number of threats requiring attention by the security team – often to the point of overwhelm.  

Traditional security solutions relying on historical attack data were never designed to handle an environment where attacks continuously evolve, multiply, and optimize at machine speed, so it’s no surprise that 92% agree that AI-powered cyber-threats are forcing them to significantly upgrade their defenses.

How is AI reshaping cybersecurity operations?

Cybersecurity workflows are still in flux as security leaders get used to the integration of AI agents into everyday operations.  

“Generative AI is now playing a role in 77% of security stacks.” But only 35% are using unsupervised machine learning.

AI technologies are diverse, ranging from LLMs to NLP systems, GANs, and unsupervised machine learning, with each type offering specific capabilities and facing particular limitations. The lack of familiarity with the different types of AI used within the security stack may be holding some practitioners back from using these new technologies to their best advantage.  

It also creates a lack of trust between humans and AI systems: only 14% of security professionals allow AI to take independent remediation actions in the SOC with no human in the loop.

Another new trend for this year is a strong preference (85%) for relying on Managed Security Service Providers (MSSPs) for SOC services instead of in-house teams, as organizations aim to secure expert, always-on support without the cost and operational burden of running an internal operation.

What impact is AI having on cybersecurity tools?

“96% of cybersecurity professionals agree that AI can significantly improve the speed and efficiency with which they work.”

The capacity of AI for augmenting security efforts is undisputed. But as vendor AI claims become far-reaching, it falls to security leaders to clarify which AI tools offer true value and can help solve their specific security challenges.  

Security professionals are aligned on the biggest area of impact: 72% agree that AI excels at detecting anomalies thanks to its advanced pattern recognition. This enables it to identify unusual behavior that may signal a threat, even when the specific attack has never been encountered or recorded in existing datasets.  

“When purchasing new security capabilities, 93% prefer ones that are part of a broader platform over individual point products.”

Like last year, the drive towards platform consolidation remains strong. Fewer vendors can mean tighter integrations, less console switching, streamlined management, and stronger cross-domain threat insights. The challenge is finding vendors that perform well across the board.

See the full report for more statistics and insights into how security leaders are responding to the AI landscape in 2026.

Learn more about securing AI in your enterprise.

Continue reading
About the author
The Darktrace Community

Blog

/

Endpoint

/

February 1, 2026

ClearFake: From Fake CAPTCHAs to Blockchain-Driven Payload Retrieval

fake captcha to blockchain driven palyload retrievalDefault blog imageDefault blog image

What is ClearFake?

As threat actors evolve their techniques to exploit victims and breach target networks, the ClearFake campaign has emerged as a significant illustration of this continued adaptation. ClearFake is a campaign observed using a malicious JavaScript framework deployed on compromised websites, impacting sectors such as e‑commerce, travel, and automotive. First identified in mid‑2023, ClearFake is frequently leveraged to socially engineer victims into installing fake web browser updates.

In ClearFake compromises, victims are steered toward compromised WordPress sites, often positioned by attackers through search engine optimization (SEO) poisoning. Once on the site, users are presented with a fake CAPTCHA. This counterfeit challenge is designed to appear legitimate while enabling the execution of malicious code. When a victim interacts with the CAPTCHA, a PowerShell command containing a download string is retrieved and executed.

Attackers commonly abuse the legitimate Microsoft HTML Application Host (MSHTA) in these operations. Recent campaigns have also incorporated Smart Chain endpoints, such as “bsc-dataseed.binance[.]org,” to obtain configuration code. The primary payload delivered through ClearFake is typically an information stealer, such as Lumma Stealer, enabling credential theft, data exfiltration, and persistent access [1].

Darktrace’s Coverage of ClearFake

Darktrace / ENDPOINT first detected activity likely associated with ClearFake on a single device on over the course of one day on November 18, 2025. The system observed the execution of “mshta.exe,” the legitimate Microsoft HTML Application Host utility. It also noted a repeated process command referencing “weiss.neighb0rrol1[.]ru”, indicating suspicious external activity. Subsequent analysis of this endpoint using open‑source intelligence (OSINT) indicated that it was a malicious, domain generation algorithm (DGA) endpoint [2].

The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.
Figure 1: The process line referencing weiss.neighb0rrol1[.]ru, as observed by Darktrace / ENDPOINT.

This activity indicates that mshta.exe was used to contact a remote server, “weiss.neighb0rrol1[.]ru/rpxacc64mshta,” and execute the associated HTA file to initiate the next stage of the attack. OSINT sources have since heavily flagged this server as potentially malicious [3].

The first argument in this process uses the MSHTA utility to execute the HTA file hosted on the remote server. If successful, MSHTA would then run JavaScript or VBScript to launch PowerShell commands used to retrieve malicious payloads, a technique observed in previous ClearFake campaigns. Darktrace also detected unusual activity involving additional Microsoft executables, including “winlogon.exe,” “userinit.exe,” and “explorer.exe.” Although these binaries are legitimate components of the Windows operating system, threat actors can abuse their normal behavior within the Windows login sequence to gain control over user sessions, similar to the misuse of mshta.exe.

EtherHiding cover

Darktrace also identified additional ClearFake‑related activity, specifically a connection to bsc-testnet.drpc[.]org, a legitimate BNB Smart Chain endpoint. This activity was triggered by injected JavaScript on the compromised site www.allstarsuae[.]com, where the script initiated an eth_call POST request to the Smart Chain endpoint.

Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.
Figure 2: Example of a fake CAPTCHA on the compromised site www.allstarsuae[.]com.

EtherHiding is a technique in which threat actors leverage blockchain technology, specifically smart contracts, as part of their malicious infrastructure. Because blockchain is anonymous, decentralized, and highly persistent, it provides threat actors with advantages in evading defensive measures and traditional tracking [4].

In this case, when a user visits a compromised WordPress site, injected base64‑encoded JavaScript retrieved an ABI string, which was then used to load and execute a contract hosted on the BNB Smart Chain.

JavaScript hosted on the compromised site www.allstaruae[.]com.
Figure 3: JavaScript hosted on the compromised site www.allstaruae[.]com.

Conducting malware analysis on this instance, the Base64 decoded into a JavaScript loader. A POST request to bsc-testnet.drpc[.]org was then used to retrieve a hex‑encoded ABI string that loads and executes the contract. The JavaScript also contained hex and Base64‑encoded functions that decoded into additional JavaScript, which attempted to retrieve a payload hosted on GitHub at “github[.]com/PrivateC0de/obf/main/payload.txt.” However, this payload was unavailable at the time of analysis.

Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 4: Darktrace’s detection of the POST request to bsc-testnet.drpc[.]org.
Figure 5: Darktrace’s detection of the executable file and the malicious hostname.

Autonomous Response

As Darktrace’s Autonomous Response capability was enabled on this customer’s network, Darktrace was able to take swift mitigative action to contain the ClearFake‑related activity early, before it could lead to potential payload delivery. The affected device was blocked from making external connections to a number of suspicious endpoints, including 188.114.96[.]6, *.neighb0rrol1[.]ru, and neighb0rrol1[.]ru, ensuring that no further malicious connections could be made and no payloads could be retrieved.

Autonomous Response also acted to prevent the executable mshta.exe from initiating HTA file execution over HTTPS from this endpoint by blocking the attempted connections. Had these files executed successfully, the attack would likely have resulted in the retrieval of an information stealer, such as Lumma Stealer.

Autonomous Response’s intervention against the suspicious connectivity observed.
Figure 6: Autonomous Response’s intervention against the suspicious connectivity observed.

Conclusion

ClearFake continues to be observed across multiple sectors, but Darktrace remains well‑positioned to counter such threats. Because ClearFake’s end goal is often to deliver malware such as information stealers and malware loaders, early disruption is critical to preventing compromise. Users should remain aware of this activity and vigilant regarding fake CAPTCHA pop‑ups. They should also monitor unusual usage of MSHTA and outbound connections to domains that mimic formats such as “bsc-dataseed.binance[.]org” [1].

In this case, Darktrace was able to contain the attack before it could successfully escalate and execute. The attempted execution of HTA files was detected early, allowing Autonomous Response to intervene, stopping the activity from progressing. As soon as the device began communicating with weiss.neighb0rrol1[.]ru, an Autonomous Response inhibitor triggered and interrupted the connections.

As ClearFake continues to rise, users should stay alert to social engineering techniques, including ClickFix, that rely on deceptive security prompts.

Credit to Vivek Rajan (Senior Cyber Analyst) and Tara Gould (Malware Research Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

Process / New Executable Launched

Endpoint / Anomalous Use of Scripting Process

Endpoint / New Suspicious Executable Launched

Endpoint / Process Connection::Unusual Connection from New Process

Autonomous Response Models

Antigena / Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

List of Indicators of Compromise (IoCs)

  • weiss.neighb0rrol1[.]ru – URL - Malicious Domain
  • 188.114.96[.]6 – IP – Suspicious Domain
  • *.neighb0rrol1[.]ru – URL – Malicious Domain

MITRE Tactics

Initial Access, Drive-by Compromise, T1189

User Execution, Execution, T1204

Software Deployment Tools, Execution and Lateral Movement, T1072

Command and Scripting Interpreter, T1059

System Binary Proxy Execution: MSHTA, T1218.005

References

1.        https://www.kroll.com/en/publications/cyber/rapid-evolution-of-clearfake-delivery

2.        https://www.virustotal.com/gui/domain/weiss.neighb0rrol1.ru

3.        https://www.virustotal.com/gui/file/1f1aabe87e5e93a8fff769bf3614dd559c51c80fc045e11868f3843d9a004d1e/community

4.        https://www.packetlabs.net/posts/etherhiding-a-new-tactic-for-hiding-malware-on-the-blockchain/

Continue reading
About the author
Vivek Rajan
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI