Blog
/
Email
/
February 24, 2025

Detecting and Containing Account Takeover with Darktrace

Account takeovers are rising with SaaS adoption. Learn how Darktrace detects deviations in user behavior and autonomously stops threats before they escalate.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Min Kim
Cyber Security Analyst
women on laptop in officeDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
24
Feb 2025

Thanks to its accessibility from anywhere with an internet connection and a web browser, Software-as-a-Service (SaaS) platforms have become nearly universal across organizations worldwide. However, with this growing popularity comes greater responsibility. Increased attention attracts a larger audience, including those who may seek to exploit these widely used services. One crucial factor to be vigilant about in the SaaS landscape is safeguarding internal credentials. Minimal protection on accounts can lead to SaaS hijacking, which could allow further escalations within the network.

How does SaaS account takeover work?

SaaS hijacking occurs when a malicious actor takes control of a user’s active session with a SaaS application. Attackers can achieve this through various methods, including employees using company credentials on compromised or spoofed external websites, brute-force attacks, social engineering, and exploiting outdated software or applications.

After the hijack, attackers may escalate their actions by changing email rules and using internal addresses for additional social engineering attacks. The larger goal of these actions is often to steal internal data, damage reputations, and disrupt operations.

Account takeover protection

It has become essential to have security tools capable of outsmarting potential malicious actors. Traditional tools that rely on rules and signatures may not be able to identify new events, such as logins or activities from a rare endpoint, unless they come from a known malicious source.

Darktrace relies on analysis of user and network behavior, tailored to each customer, allowing it to identify anomalous events that the user typically does not engage in. In this way, unusual SaaS activities can be detected, and unwanted actions can be halted to allow time for remediation before further escalations.

The following cases, drawn from the global customer base, illustrate how Darktrace detects potential SaaS hijack attempts and further escalations, and applies appropriate actions when necessary.

Case 1: Unusual login after a phishing email

A customer in the US received a suspicious email that seemed to be from the legitimate file storage service, Dropbox. However, Darktrace identified that the reply-to email address, hremployeepyaroll@mail[.]com, was masquerading as one associated with the customer’s Human Resources (HR) department.

Further inspection of this sender address revealed that the attacker had intentionally misspelled ‘payroll’ to trick recipients into believing it was legitimate

Furthermore, the subject of the email indicated that the attackers were attempting a social engineering attack by sharing a file related to pay raises and benefits to capture the recipients' attention and increase the likelihood of their targets engaging with the email and its attachment.

Figure 1: Subject of the phishing email.
Figure 1: Subject of the phishing email.

Unknowingly, the recipient, who believed the email to be a legitimate HR communication, acted on it, allowing malicious attackers to gain access to the account. Following this, the recipient’s account was observed logging in from a rare location using multi-factor authentication (MFA) while also being active from another more commonly observed location, indicating that the SaaS account had been compromised.

Darktrace’s Autonomous Response action triggered by an anomalous email received by an internal user, followed by a failed login attempt from a rare external source.
Figure 2: Darktrace’s Autonomous Response action triggered by an anomalous email received by an internal user, followed by a failed login attempt from a rare external source.

Darktrace subsequently observed the SaaS actor creating new inbox rules on the account. These rules were intended to mark as read and move any emails mentioning the file storage company, whether in the subject or body, to the ‘Conversation History’ folder. This was likely an attempt by the threat actor to hide any outgoing phishing emails or related correspondence from the legitimate account user, as the ‘Conversation History’ folder typically goes unread by most users.

Typically, Darktrace / EMAIL would have instantly placed the phishing email in the junk folder before they reached user’s inbox, while also locking the links identified in the suspicious email, preventing them from being accessed. Due to specific configurations within the customer’s deployment, this did not happen, and the email remained accessible to the user.

Case 2: Login using unusual credentials followed by password change

In the latter half of 2024, Darktrace detected an unusual use of credentials when a SaaS actor attempted to sign into a customer’s Microsoft 365 application from an unfamiliar IP address in the US. Darktrace recognized that since the customer was located within the Europe, Middle East, and Africa (EMEA) region, a login from the US was unexpected and suspicious. Around the same time, the legitimate account owner logged into the customer’s SaaS environment from another location – this time from a South African IP, which was commonly seen within the environment and used by other internal SaaS accounts.

Darktrace understood that this activity was highly suspicious and unlikely to be legitimate, given one of the IPs was known and expected, while the other had never been seen before in the environment, and the simultaneous logins from two distant locations were geographically impossible.

Model alert in Darktrace / IDENTITY: Detecting a login from a different source while the user is already active from another source.
Figure 3: Model alert in Darktrace / IDENTITY: Detecting a login from a different source while the user is already active from another source.

Darktrace detected several unusual login attempts, including a successful login from an uncommon US source. Subsequently, Darktrace / NETWORK identified the device associated with this user making external connections to rare endpoints, some of which were only two weeks old. As this customer had integrated Darktrace with Microsoft Defender, the Darktrace detection was enriched by Defender, adding the additional context that the user had likely been compromised in an Adversary-in-the-Middle (AiTM) phishing attack. AiTM phishing attacks occur when a malicious attacker intercepts communications between a user and a legitimate authentication service, potentially leading to account hijacking. These attacks are harder to identify as they can bypass security measures like MFA.

Following this, Darktrace observed the attacker using the now compromised credentials to access password management and change the account's password. Such behavior is common in account takeover incidents, as attackers seek to maintain persistence within the SaaS environment.

While Darktrace’s Autonomous Response was not fully configured on the customer’s SaaS environment, they were subscribed to the Managed Threat Detection service offered by Darktrace’s Security Operations Center (SOC). This 24/7 service ensures that Darktrace’s analysts monitor and investigate emerging suspicious activity, informing customers in real-time. As such, the customer received notification of the compromise and were able to quickly take action to prevent further escalation.

Case 3: Unusual logins, new email rules and outbound spam

Recently, Darktrace has observed a trend in SaaS compromises involving unusual logins, followed by the creation of new email rules, and then outbound spam or phishing campaigns being launched from these accounts.

In October, Darktrace identified a SaaS user receiving an email with the subject line "Re: COMPANY NAME Request for Documents" from an unknown sender using a freemail  account. As freemail addresses require very little personal information to create, threat actors can easily create multiple accounts for malicious purposes while retaining their anonymity.

Within the identified email, Darktrace found file storage links that were likely intended to divert recipients to fraudulent or malicious websites upon interaction. A few minutes after the email was received, the recipient was seen logging in from three different sources located in the US, UK, and the Philippines, all around a similar time. As the customer was based in the Philippines, a login from there was expected and not unusual. However, Darktrace understood that the logins from the UK and US were highly unusual, and no other SaaS accounts had connected from these locations within the same week.

After successfully logging in from the UK, the actor was observed updating a mailbox rule, renaming it to ‘.’ and changing its parameters to move any inbound emails to the deleted items folder and mark them as read.

Figure 4: The updated email rule intended to move any inbound emails to the deleted items folder.

Malicious actors often use ambiguous names like punctuation marks, repetitive letters, and unreadable words to name resources, disguising their rules to avoid detection by legitimate users or administrators. Similarly, attackers have been known to adjust existing rule parameters rather than creating new rules to keep their footprints untracked. In this case, the rule was updated to override an existing email rule and delete all incoming emails. This ensured that any inbound emails, including responses to potential phishing emails sent by the account, would be deleted, allowing the attacker to remain undetected.

Over the next two days, additional login attempts, both successful and failed, were observed from locations in the UK and the Philippines. Darktrace noted multiple logins from the Philippines where the legitimate user was attempting to access their account using a password that had recently expired or been changed, indicating that the attacker had altered the user’s original password as well.

Following this chain of events, over 500 emails titled “Reminder For Document Signed Agreement.10/28/2024” were sent from the SaaS actor’s account to external recipients, all belonging to a different organization within the Philippines.

These emails contained rare attachments with a ‘.htm’ extension, which included programming language that could initiate harmful processes on devices. While inherently not malicious, if used inappropriately, these files could perform unwanted actions such as code execution, malware downloads, redirects to malicious webpages, or phishing upon opening.

Outbound spam seen from the hijacked SaaS account containing a ‘.htm’ attachment.
Figure 5: Outbound spam seen from the hijacked SaaS account containing a ‘.htm’ attachment.

As this customer did not have Autonomous Response enabled for Darktrace / IDENTITY, the unusual activity went unattended, and the compromise was able to escalate to the point of a spam email campaign being launched from the account.

In a similar example on a customer network in EMEA, Darktrace detected unusual logins and the creation of new email rules from a foreign location through a SaaS account. However, in this instance, Autonomous Response was enabled and automatically disabled the compromised account, preventing further malicious activity and giving the customer valuable time to implement their own remediation measures.

Conclusion

Whether it is an unexpected login or an unusual sequence of events – such as a login followed by a phishing email being sent – unauthorized or unexpected activities can pose a significant risk to an organization’s SaaS environment. The threat becomes even greater when these activities escalate to account hijacking, with the compromised account potentially providing attackers access to sensitive corporate data. Organizations, therefore, must have robust SaaS security measures in place to prevent data theft, ensure compliance and maintain continuity and trust.

The Darktrace suite of products is well placed to detect and contain SaaS hijack attempts at multiple stages of an attack. Darktrace / EMAIL identifies initial phishing emails that attackers use to gain access to customer SaaS environments, while Darktrace / IDENTITY detects anomalous SaaS behavior on user accounts which could indicate they have been taken over by a malicious actor.

By identifying these threats in a timely manner and taking proactive mitigative measures, such as logging or disabling compromised accounts, Darktrace prevents escalation and ensures customers have sufficient time to response effectively.

Credit to Min Kim (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

[related-resource]

Appendices

Darktrace Model Detections Case 1

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

SaaS / Compromise / Unusual Login and New Email Rule

SaaS / Compliance / Anomalous New Email Rule

SaaS / Unusual Activity / Multiple Unusual SaaS Activities

SaaS / Access / Unusual External Source for SaaS Credential Us

SaaS / Compromise / Login From Rare Endpoint While User is Active

SaaS / Email Nexus / Unusual Login Location Following Link to File Storage

Antigena / SaaS / Antigena Email Rule Block (Autonomous Response)

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (Autonomous Response)

Antigena / SaaS / Antigena Enhanced Monitoring from SaaS User Block (Autonomous Response)

List of Indicators of Compromise (IoCs)

176.105.224[.]132 – IP address – Unusual SaaS Activity Source

hremployeepyaroll@mail[.]com – Email address – Reply-to email address

MITRE ATT&CK Mapping

Cloud Accounts – DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS – T1078

Outlook Rules – PERSISTENCE – T1137

Cloud Service Dashboard – DISCOVERY – T1538

Compromise Accounts – RESOURCE DEVELOPMENT – T1586

Steal Web Session Cookie – CREDENTIAL ACCESS – T1539

Darktrace Model Detections Case 2

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

SaaS / Compromise / Unusual Login and Account Update

Security Integration / High Severity Integration Detection

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compromise / Login From Rare Endpoint While User Is Active

SaaS / Compromise / Login from Rare High Risk Endpoint

SaaS / Access / M365 High Risk Level Login

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (Autonomous Response)

Antigena / SaaS / Antigena Enhanced Monitoring from SaaS user Block (Autonomous Response)

List of IoCs

74.207.252[.]129 – IP Address – Suspicious SaaS Activity Source

MITRE ATT&CK Mapping

Cloud Accounts – DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS – T1078

Cloud Service Dashboard – DISCOVERY – T1538

Compromise Accounts – RESOURCE DEVELOPMENT – T1586

Steal Web Session Cookie – CREDENTIAL ACCESS – T1539

Darktrace Model Detections Case 3

SaaS / Compromise / Unusual Login and Outbound Email Spam

SaaS / Compromise / New Email Rule and Unusual Email Activity

SaaS / Compromise / Unusual Login and New Email Rule

SaaS / Email Nexus / Unusual Login Location Following Sender Spoof

SaaS / Email Nexus / Unusual Login Location Following Link to File Storage

SaaS / Email Nexus / Possible Outbound Email Spam

SaaS / Unusual Activity / Multiple Unusual SaaS Activities

SaaS / Email Nexus / Suspicious Internal Exchange Activity

SaaS / Compliance / Anomalous New Email Rule

List of IoCs

95.142.116[.]1 – IP Address – Suspicious SaaS Activity Source

154.12.242[.]58 – IP Address – Unusual Source

MITRE ATT&CK Mapping

Cloud Accounts – DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS – T1078

Compromise Accounts – RESOURCE DEVELOPMENT – T1586

Email Accounts – RESOURCE DEVELOPMENT – T1585

Phishing – INITIAL ACCESS – T1566

Outlook Rules – PERSISTENCE – T1137

Internal Spear phishing – LATERAL MOVEMENT - T1534

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Min Kim
Cyber Security Analyst

More in this series

No items found.

Blog

/

AI

/

December 5, 2025

Simplifying Cross Domain Investigations

simplifying cross domain thraetsDefault blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor

Blog

/

Network

/

December 5, 2025

Atomic Stealer: Darktrace’s Investigation of a Growing macOS Threat

Atomic Stealer: Darktrace’s Investigation of a Growing macOS ThreatDefault blog imageDefault blog image

The Rise of Infostealers Targeting Apple Users

In a threat landscape historically dominated by Windows-based threats, the growing prevalence of macOS information stealers targeting Apple users is becoming an increasing concern for organizations. Infostealers are a type of malware designed to steal sensitive data from target devices, often enabling attackers to extract credentials and financial data for resale or further exploitation. Recent research identified infostealers as the largest category of new macOS malware, with an alarming 101% increase in the last two quarters of 2024 [1].

What is Atomic Stealer?

Among the most notorious is Atomic macOS Stealer (or AMOS), first observed in 2023. Known for its sophisticated build, Atomic Stealer can exfiltrate a wide range of sensitive information including keychain passwords, cookies, browser data and cryptocurrency wallets.

Originally marketed on Telegram as a Malware-as-a-Service (MaaS), Atomic Stealer has become a popular malware due to its ability to target macOS. Like other MaaS offerings, it includes services like a web panel for managing victims, with reports indicating a monthly subscription cost between $1,000 and $3,000 [2]. Although Atomic Stealer’s original intent was as a standalone MaaS product, its unique capability to target macOS has led to new variants emerging at an unprecedented rate

Even more concerning, the most recent variant has now added a backdoor for persistent access [3]. This backdoor presents a significant threat, as Atomic Stealer campaigns are believed to have reached an around 120 countries. The addition of a backdoor elevates Atomic Stealer to the rare category of backdoor deployments potentially at a global scale, something only previously attributed to nation-state threat actors [4].

This level of sophistication is also evident in the wide range of distribution methods observed since its first appearance; including fake application installers, malvertising and terminal command execution via the ClickFix technique. The ClickFix technique is particularly noteworthy: once the malware is downloaded onto the device, users are presented with what appears to be a legitimate macOS installation prompt. In reality, however, the user unknowingly initiates the execution of the Atomic Stealer malware.

This blog will focus on activity observed across multiple Darktrace customer environments where Atomic Stealer was detected, along with several indicators of compromise (IoCs). These included devices that successfully connected to endpoints associated with Atomic Stealer, those that attempted but failed to establish connections, and instances suggesting potential data exfiltration activity.

Darktrace’s Coverage of Atomic Stealer

As this evolving threat began to spread across the internet in June 2025, Darktrace observed a surge in Atomic Stealer activity, impacting numerous customers in 24 different countries worldwide. Initially, most of the cases detected in 2025 affected Darktrace customers within the Europe, Middle East, and Africa (EMEA) region. However, later in the year, Darktrace began to observe a more even distribution of cases across EMEA, the Americas (AMS), and Asia Pacific (APAC). While multiple sectors were impacted by Atomic Stealer, Darktrace customers in the education sector were the most affected, particularly during September and October, coinciding with the return to school and universities after summer closures. This spike likely reflects increased device usage as students returned and reconnected potentially compromised devices to school and campus environments.

Starting from June, Darktrace detected multiple events of suspicious HTTP activity to external connections to IPs in the range 45.94.47.0/24. Investigation by Darktrace’s Threat Research team revealed several distinct patterns ; HTTP POST requests to the URI “/contact”, identical cURL User Agents and HTTP requests to “/api/tasks/[base64 string]” URIs.

Within one observed customer’s environment in July, Darktrace detected two devices making repeated initiated HTTP connections over port 80 to IPs within the same range. The first, Device A, was observed making GET requests to the IP 45.94.47[.]158 (AS60781 LeaseWeb Netherlands B.V.), targeting the URI “/api/tasks/[base64string]” using the “curl/8.7.2” user agent. This pattern suggested beaconing activity and triggered the ‘Beaconing Activity to External Rare' model alert in Darktrace / NETWORK, with Device A’s Model Event Log showing repeated connections. The IP associated with this endpoint has since been flagged by multiple open-source intelligence (OSINT) vendors as being associated with Atomic Stealer [5].

Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.
Figure 1: Darktrace’s detection of Device A showing repeated connections to the suspicious IP address over port 80, indicative of beaconing behavior.

Darktrace’s Cyber AI Analyst subsequently launched an investigation into the activity, uncovering that the GET requests resulted in a ‘503 Service Unavailable’ response, likely indicating that the server was temporarily unable to process the requests.

Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.
Figure 2: Cyber AI Analyst Incident showing the 503 Status Code, indicating that the server was temporarily unavailable.

This unusual activity prompted Darktrace’s Autonomous Response capability to recommend several blocking actions for the device in an attempt to stop the malicious activity. However, as the customer’s Autonomous Response configuration was set to Human Confirmation Mode, Darktrace was unable to automatically apply these actions. Had Autonomous Response been fully enabled, these connections would have been blocked, likely rendering the malware ineffective at reaching its malicious command-and-control (C2) infrastructure.

Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.
Figure 3: Autonomous Response’s suggested actions to block suspicious connectivity on Device A in the first customer environment.

In another customer environment in August, Darktrace detected similar IoCs, noting a device establishing a connection to the external endpoint 45.94.47[.]149 (ASN: AS57043 Hostkey B.V.). Shortly after the initial connections, the device was observed making repeated requests to the same destination IP, targeting the URI /api/tasks/[base64string] with the user agent curl/8.7.1, again suggesting beaconing activity. Further analysis of this endpoint after the fact revealed links to Atomic Stealer in OSINT reporting [6].

Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.
Figure 4:  Cyber AI Analyst investigation finding a suspicious URI and user agent for the offending device within the second customer environment.

As with the customer in the first case, had Darktrace’s Autonomous Response been properly configured on the customer’s network, it would have been able to block connectivity with 45.94.47[.]149. Instead, Darktrace suggested recommended actions that the customer’s security team could manually apply to help contain the attack.

Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.
Figure 5: Autonomous Response’s suggested actions to block suspicious connectivity to IP 45.94.47[.]149 for the device within the second customer environment.

In the most recent case observed by Darktrace in October, multiple instances of Atomic Stealer activity were seen across one customer’s environment, with two devices communicating with Atomic Stealer C2 infrastructure. During this incident, one device was observed making an HTTP GET request to the IP 45.94.47[.]149 (ASN: AS60781 LeaseWeb Netherlands B.V.). These connections targeted the URI /api/tasks/[base64string, using the user agent curl/8.7.1.  

Shortly afterward, the device began making repeated connections over port 80 to the same external IP, 45.94.47[.]149. This activity continued for several days until Darktrace detected the device making an HTTP POST request to a new IP, 45.94.47[.]211 (ASN: AS57043 Hostkey B.V.), this time targeting the URI /contact, again using the curl/8.7.1 user agent. Similar to the other IPs observed in beaconing activity, OSINT reporting later linked this one to information stealer C2 infrastructure [7].

Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.
Figure 6: Darktrace’s detection of suspicious beaconing connectivity with the suspicious IP 45.94.47.211.

Further investigation into this customer’s network revealed that similar activity had been occurring as far back as August, when Darktrace detected data exfiltration on a second device. Cyber AI Analyst identified this device making a single HTTP POST connection to the external IP 45.94.47[.]144, another IP with malicious links [8], using the user agent curl/8.7.1 and targeting the URI /contact.

Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.
Figure 7:  Cyber AI Analyst investigation finding a successful POST request to 45.94.47[.]144 for the device within the third customer environment.

A deeper investigation into the technical details within the POST request revealed the presence of a file named “out.zip”, suggesting potential data exfiltration.

Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.
Figure 8: Advanced Search log in Darktrace / NETWORK showing “out.zip”, indicating potential data exfiltration for a device within the third customer environment.

Similarly, in another environment, Darktrace was able to collect a packet capture (PCAP) of suspected Atomic Stealer activity, which revealed potential indicators of data exfiltration. This included the presence of the “out.zip” file being exfiltrated via an HTTP POST request, along with data that appeared to contain details of an Electrum cryptocurrency wallet and possible passwords.

Read more about Darktrace’s full deep dive into a similar case where this tactic was leveraged by malware as part of an elaborate cryptocurrency scam.

PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.
Figure 9: PCAP of an HTTP POST request showing the file “out.zip” and details of Electrum Cryptocurrency wallet.

Although recent research attributes the “out.zip” file to a new variant named SHAMOS [9], it has also been linked more broadly to Atomic Stealer [10]. Indeed, this is not the first instance where Darktrace has seen the “out.zip” file in cases involving Atomic Stealer either. In a previous blog detailing a social engineering campaign that targeted cryptocurrency users with the Realst Stealer, the macOS version of Realst contained a binary that was found to be Atomic Stealer, and similar IoCs were identified, including artifacts of data exfiltration such as the “out.zip” file.

Conclusion

The rapid rise of Atomic Stealer and its ability to target macOS marks a significant shift in the threat landscape and should serve as a clear warning to Apple users who were traditionally perceived as more secure in a malware ecosystem historically dominated by Windows-based threats.

Atomic Stealer’s growing popularity is now challenging that perception, expanding its reach and accessibility to a broader range of victims. Even more concerning is the emergence of a variant embedded with a backdoor, which is likely to increase its appeal among a diverse range of threat actors. Darktrace’s ability to adapt and detect new tactics and IoCs in real time delivers the proactive defense organizations need to protect themselves against emerging threats before they can gain momentum.

Credit to Isabel Evans (Cyber Analyst), Dylan Hinz (Associate Principal Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.     https://www.scworld.com/news/infostealers-targeting-macos-jumped-by-101-in-second-half-of-2024

2.     https://www.kandji.io/blog/amos-macos-stealer-analysis

3.     https://www.broadcom.com/support/security-center/protection-bulletin/amos-stealer-adds-backdoor

4.     https://moonlock.com/amos-backdoor-persistent-access

5.     https://www.virustotal.com/gui/ip-address/45.94.47.158/detection

6.     https://www.trendmicro.com/en_us/research/25/i/an-mdr-analysis-of-the-amos-stealer-campaign.html

7.     https://www.virustotal.com/gui/ip-address/45.94.47.211/detection

8.     https://www.virustotal.com/gui/ip-address/45.94.47.144/detection

9.     https://securityaffairs.com/181441/malware/over-300-entities-hit-by-a-variant-of-atomic-macos-stealer-in-recent-campaign.html

10.   https://binhex.ninja/malware-analysis-blogs/amos-stealer-atomic-stealer-malware.html

Darktrace Model Detections

Darktrace / NETWORK

  • Compromise / Beaconing Activity To External Rare
  • Compromise / HTTP Beaconing to New IP
  • Compromise / HTTP Beaconing to Rare Destination
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / New User Agent
  • Compromise / Sustained TCP Beaconing Activity To Rare Endpoint
  • Compromise / Slow Beaconing Activity To External Rare
  • Anomalous Connection / Posting HTTP to IP Without Hostname
  • Compromise / Quick and Regular Windows HTTP Beaconing

Autonomous Response

  • Antigena / Network / Significant Anomaly::Antigena Alerts Over Time Block
  • Antigena / Network / Significant Anomaly::Antigena Significant Anomaly from Client Block
  • Antigena / Network / External Threat::Antigena Suspicious Activity Block

List of IoCs

  • 45.94.47[.]149 – IP – Atomic C2 Endpoint
  • 45.94.47[.]144 – IP – Atomic C2 Endpoint
  • 45.94.47[.]158 – IP – Atomic C2 Endpoint
  • 45.94.47[.]211 – IP – Atomic C2 Endpoint
  • out.zip - File Output – Possible ZIP file for Data Exfiltration

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique

Execution - T1204.002 - User Execution: Malicious File

Credential Access - T1555.001 - Credentials from Password Stores: Keychain

Credential Access - T1555.003 - Credentials from Web Browsers

Command & Control - T1071 - Application Layer Protocol

Exfiltration - T1041 - Exfiltration Over C2 Channel

Continue reading
About the author
Isabel Evans
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI