Blog
/
Email
/
July 18, 2023

Understanding Email Security & the Psychology of Trust

We explore how psychological research into the nature of trust relates to our relationship with technology - and what that means for AI solutions.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Hanah Darley
Director of Threat Research
Photo showing woman logging into her laptop with username and passwordDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Jul 2023

When security teams discuss the possibility of phishing attacks targeting their organization, often the first reaction is to assume it is inevitable because of the users. Users are typically referenced in cyber security conversations as organizations’ greatest weaknesses, cited as the causes of many grave cyber-attacks because they click links, open attachments, or allow multi-factor authentication bypass without verifying the purpose.

While for many, the weakness of the user may feel like a fact rather than a theory, there is significant evidence to suggest that users are psychologically incapable of protecting themselves from exploitation by phishing attacks, with or without regular cyber awareness trainings. The psychology of trust and the nature of human reliance on technology make the preparation of users for the exploitation of that trust in technology very difficult – if not impossible.

This Darktrace long read will highlight principles of psychological and sociological research regarding the nature of trust, elements of the trust that relate to technology, and how the human brain is wired to rely on implicit trust. These principles all point to the outcome that humans cannot be relied upon to identify phishing. Email security driven by machine augmentation, such as AI anomaly detection, is the clearest solution to tackle that challenge.

What is the psychology of trust?

Psychological and sociological theories on trust largely centre around the importance of dependence and a two-party system: the trustor and the trustee. Most research has studied the impacts of trust decisions on interpersonal relationships, and the characteristics which make those relationships more or less likely to succeed. In behavioural terms, the elements most frequently referenced in trust decisions are emotional characteristics such as benevolence, integrity, competence, and predictability.1

Most of the behavioural evaluations of trust decisions survey why someone chooses to trust another person, how they made that decision, and how quickly they arrived at their choice. However, these micro-choices about trust require the context that trust is essential to human survival. Trust decisions are rooted in many of the same survival instincts which require the brain to categorize information and determine possible dangers. More broadly, successful trust relationships are essential in maintaining the fabric of human society, critical to every element of human life.

Trust can be compared to dark matter (Rotenberg, 2018), which is the extensive but often difficult to observe material that binds planets and earthly matter. In the same way, trust is an integral but often a silent component of human life, connecting people and enabling social functioning.2

Defining implicit and routine trust

As briefly mentioned earlier, dependence is an essential element of the trusting relationship. Being able to build a routine of trust, based on the maintenance rather than establishment of trust, becomes implicit within everyday life. For example, speaking to a friend about personal issues and life developments is often a subconscious reaction to the events occurring, rather than an explicit choice to trust said friend each time one has new experiences.

Active and passive levels of cognition are important to recognize in decision-making, such as trust choices. Decision-making is often an active cognitive process requiring a lot of resource from the brain. However, many decisions occur passively, especially if they are not new choices e.g. habits or routines. The brain’s focus turns to immediate tasks while relegating habitual choices to subconscious thought processes, passive cognition. Passive cognition leaves the brain open to impacts from inattentional blindness, wherein the individual may be abstractly aware of the choice but it is not the focus of their thought processes or actively acknowledged as a decision. These levels of cognition are mostly referenced as “attention” within the brain’s cognition and processing.3

This idea is essentially a concept of implicit trust, meaning trust which is occurring as background thought processes rather than active decision-making. This implicit trust extends to multiple areas of human life, including interpersonal relationships, but also habitual choice and lifestyle. When combined with the dependence on people and services, this implicit trust creates a haze of cognition where trust is implied and assumed, rather than actively chosen across a myriad of scenarios.

Trust and technology

As researchers at the University of Cambridge highlight in their research into trust and technology, ‘In a fundamental sense, all technology depends on trust.’  The same implicit trust systems which allow us to navigate social interactions by subconsciously choosing to trust, are also true of interactions with technology. The implied trust in technology and services is perhaps most easily explained by a metaphor.

Most people have a favourite brand of soda. People will routinely purchase that soda and drink it without testing it for chemicals or bacteria and without reading reviews to ensure the companies that produce it have not changed their quality standards. This is a helpful, representative example of routine trust, wherein the trust choice is implicit through habitual action and does not mean the person is actively thinking about the ramifications of continuing to use a product and trust it.

The principle of dependence is especially important in trust and technology discussions, because the modern human is entirely reliant on technology and so has no way to avoid trusting it.5   Specifically important in workplace scenarios, employees are given a mandatory set of technologies, from programs to devices and services, which they must interact with on a daily basis. Over time, the same implicit trust that would form between two people forms between the user and the technology. The key difference between interpersonal trust and technological trust is that deception is often much more difficult to identify.

The implicit trust in workplace technology

To provide a bit of workplace-specific context, organizations rely on technology providers for the operation (and often the security) of their devices. The organizations also rely on the employees (users) to use those technologies within the accepted policies and operational guidelines. The employees rely on the organization to determine which products and services are safe or unsafe.

Within this context, implicit trust is occurring at every layer of the organization and its technological holdings, but often the trust choice is only made annually by a small security team rather than continually evaluated. Systems and programs remain in place for years and are used because “that’s the way it’s always been done. Within that context, the exploitation of that trust by threat actors impersonating or compromising those technologies or services is extremely difficult to identify as a human.

For example, many organizations utilize email communications to promote software updates for employees. Typically, it would consist of email prompting employees to update versions from the vendors directly or from public marketplaces, such as App Store on Mac or Microsoft Store for Windows. If that kind of email were to be impersonated, spoofing an update and including a malicious link or attachment, there would be no reason for the employee to question that email, given the explicit trust enforced through habitual use of that service and program.

Inattentional blindness: How the brain ignores change

Users are psychologically predisposed to trust routinely used technologies and services, with most of those trust choices continuing subconsciously. Changes to these technologies would often be subject to inattentional blindness, a psychological phenomenon wherein the brain either overwrites sensory information with what the brain expects to see rather than what is actually perceived.

A great example of inattentional blindness6 is the following experiment, which asks individuals to count the number of times a ball is passed between multiple people. While that is occurring, something else is going on in the background, which, statistically, those tested will not see. The shocking part of this experiment comes after, when the researcher reveals that the event occurring in the background not seen by participants was a person in a gorilla suit moving back and forth between the group. This highlights how significant details can be overlooked by the brain and “overwritten” with other sensory information. When applied to technology, inattentional blindness and implicit trust makes spotting changes in behaviour, or indicators that a trusted technology or service has been compromised, nearly impossible for most humans to detect.

With all this in mind, how can you prepare users to correctly anticipate or identify a violation of that trust when their brains subconsciously make trust decisions and unintentionally ignore cues to suggest a change in behaviour? The short answer is, it’s difficult, if not impossible.

How threats exploit our implicit trust in technology

Most cyber threats are built around the idea of exploiting the implicit trust humans place in technology. Whether it’s techniques like “living off the land”, wherein programs normally associated with expected activities are leveraged to execute an attack, or through more overt psychological manipulation like phishing campaigns or scams, many cyber threats are predicated on the exploitation of human trust, rather than simply avoiding technological safeguards and building backdoors into programs.

In the case of phishing, it is easy to identify the attempts to leverage the trust of users in technology and services. The most common example of this would be spoofing, which is one of the most common tactics observed by Darktrace/Email. Spoofing is mimicking a trusted user or service, and can be accomplished through a variety of mechanisms, be it the creation of a fake domain meant to mirror a trusted link type, or the creation of an email account which appears to be a Human Resources, Internal Technology or Security service.

In the case of a falsified internal service, often dubbed a “Fake Support Spoof”, the user is exploited by following instructions from an accepted organizational authority figure and service provider, whose actions should normally be adhered to. These cases are often difficult to spot when studying the sender’s address or text of the email alone, but are made even more difficult to detect if an account from one of those services is compromised and the sender’s address is legitimate and expected for correspondence. Especially given the context of implicit trust, detecting deception in these cases would be extremely difficult.

How email security solutions can solve the problem of implicit trust

How can an organization prepare for this exploitation? How can it mitigate threats which are designed to exploit implicit trust? The answer is by using email security solutions that leverage behavioural analysis via anomaly detection, rather than traditional email gateways.

Expecting humans to identify the exploitation of their own trust is a high-risk low-reward endeavour, especially when it takes different forms, affects different users or portions of the organization differently, and doesn’t always have obvious red flags to identify it as suspicious. Cue email security using anomaly detection as the key answer to this evolving problem.

Anomaly detection enabled by machine learning and artificial intelligence (AI) removes the inattentional blindness that plagues human users and security teams and enables the identification of departures from the norm, even those designed to mimic expected activity. Using anomaly detection mitigates multiple human cognitive biases which might prevent teams from identifying evolving threats, and also guarantees that all malicious behaviour will be detected. Of course, anomaly detection means that security teams may be alerted to benign anomalous activity, but still guarantees that no threat, no matter how novel or cleverly packaged, won’t be identified and raised to the human security team.

Utilizing machine learning, especially unsupervised machine learning, mimics the benefits of human decision making and enables the identification of patterns and categorization of information without the framing and biases which allow trust to be leveraged and exploited.

For example, say a cleverly written email is sent from an address which appears to be a Microsoft affiliate, suggesting to the user that they need to patch their software due to the discovery of a new vulnerability. The sender’s address appears legitimate and there are news stories circulating on major media providers that a new Microsoft vulnerability is causing organizations a lot of problems. The link, if clicked, forwards the user to a login page to verify their Microsoft credentials before downloading the new version of the software. After logging in, the program is available for download, and only requires a few minutes to install. Whether this email was created by a service like ChatGPT (generative AI) or written by a person, if acted upon it would give the threat actor(s) access to the user’s credential and password as well as activate malware on the device and possibly broader network if the software is downloaded.

If we are relying on users to identify this as unusual, there are a lot of evidence points that enforce their implicit trust in Microsoft services that make them want to comply with the email rather than question it. Comparatively, anomaly detection-driven email security would flag the unusualness of the source, as it would likely not be coming from a Microsoft-owned IP address and the sender would be unusual for the organization, which does not normally receive mail from the sender. The language might indicate solicitation, an attempt to entice the user to act, and the link could be flagged as it contains a hidden redirect or tailored information which the user cannot see, whether it is hidden beneath text like “Click Here” or due to link shortening. All of this information is present and discoverable in the phishing email, but often invisible to human users due to the trust decisions made months or even years ago for known products and services.

AI-driven Email Security: The Way Forward

Email security solutions employing anomaly detection are critical weapons for security teams in the fight to stay ahead of evolving threats and varied kill chains, which are growing more complex year on year. The intertwining nature of technology, coupled with massive social reliance on technology, guarantees that implicit trust will be exploited more and more, giving threat actors a variety of avenues to penetrate an organization. The changing nature of phishing and social engineering made possible by generative AI is just a drop in the ocean of the possible threats organizations face, and most will involve a trusted product or service being leveraged as an access point or attack vector. Anomaly detection and AI-driven email security are the most practical solution for security teams aiming to prevent, detect, and mitigate user and technology targeting using the exploitation of trust.

References

1https://www.kellogg.northwestern.edu/trust-project/videos/waytz-ep-1.aspx

2Rotenberg, K.J. (2018). The Psychology of Trust. Routledge.

3https://www.cognifit.com/gb/attention

4https://www.trusttech.cam.ac.uk/perspectives/technology-humanity-society-democracy/what-trust-technology-conceptual-bases-common

5Tyler, T.R. and Kramer, R.M. (2001). Trust in organizations : frontiers of theory and research. Thousand Oaks U.A.: Sage Publ, pp.39–49.

6https://link.springer.com/article/10.1007/s00426-006-0072-4

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Hanah Darley
Director of Threat Research

More in this series

No items found.

Blog

/

/

April 29, 2025

MFA Under Attack: AiTM Phishing Kits Abusing Legitimate Services

fingerprintDefault blog imageDefault blog image

In late 2024 and early 2025, the Darktrace Security Operations Center (SOC) investigated alerts regarding separate cases of Software-as-a-Service (SaaS) account compromises on two customer environments that presented several similarities, suggesting they were part of a wider phishing campaign.

This campaign was found to leverage the project collaboration and note-taking application, Milanote, and the Tycoon 2FA phishing kit.

Legitimate services abused

As highlighted in Darktrace's 2024 Annual Threat Report [1], threat actors are abusing legitimate services, like Milanote, in their phishing campaigns. By leveraging these trusted platforms and domains, malicious actors can bypass traditional security measures, making their phishing emails appear benign and increasing the likelihood of successful attacks.

Darktrace categorizes these senders and platforms as free content senders. These services allow users to send emails containing custom content (e.g., files) from fully validated, fixed service address belonging to legitimate corporations. Although some of these services permit full body and subject customization by attackers, the structure of these emails is generally consistent, making it challenging to differentiate between legitimate and malicious emails.

What is Tycoon 2FA?

Tycoon 2FA is an Adversary-in-the-Middle (AitM) phishing kit, first seen in August 2023 and distributed via the Phishing-as-a-Service (PhaaS) model [2]. It targets multi-factor authentication (MFA) by intercepting credentials and MFA tokens during authentication on fake Microsoft or Google login pages. The attacker captures session cookies after MFA is completed, allowing them to replay the session and access the user account, even if credentials are reset. The rise in MFA use has increased the popularity of AitM phishing kits like Tycoon 2FA and Mamba 2FA, another AiTM phishing kit investigated by Darktrace.

Initial access via phishing email

At the beginning of 2025, Darktrace observed phishing emails leveraging Milanote being sent to multiple internal recipients in an organization. In this attack, the same email was sent to 19 different users, all of which were held by Darktrace.

The subject line of the emails mentioned both a legitimate internal user of the company, the company name, as well as a Milanote board regarding a “new agreement” in German. It is a common social engineering technique to mention urgent matters, such as unpaid invoices, expired passwords, or awaiting voicemails, in the subject line to prompt immediate action from the user. However, this tactic is now widely covered in phishing awareness training, making users more suspicious of such emails. In this case, while the subject mentioned a “new agreement,” likely raising the recipient’s curiosity, the tone remained professional and not overly alarming. Additionally, the mention of a colleague and the standardized language typical of free content sender emails further helped dispel concerns regarding the email.

These emails were sent by the legitimate address support@milanote[.]com and referenced "Milanote" in the personal field of the header but originated from the freemail address “ahnermatternk.ef.od.13@gmail[.]com”. Darktrace / EMAIL recognized that none of the recipients had previously received a file share email from Milanote, making this sender unfamiliar in the customer's email environment

The emails contained several benign links to legitimate Milanote endpoints (including an unsubscribe link) which were not flagged by Darktrace. However, they also included a malicious link designed to direct recipients to a pre-filled credential harvesting page hosted on Milanote, prompting them to register for an account. Despite not blocking the legitimate Milanote links in the same email, Darktrace locked the malicious link, preventing users from visiting the credential harvester.

Credential harvesting page sent to recipients, as seen in. sandbox environment.
Figure 1: Credential harvesting page sent to recipients, as seen in. sandbox environment.

Around one minute later, one recipient received a legitimate email from Milanote confirming their successful account registration, indicating they had accessed the phishing page. This email had a lower anomaly score and was not flagged by Darktrace / EMAIL because, unlike the first email, it did not contain any suspicious links and was a genuine account registration notification. Similarly, in the malicious Milanote email, only the link leading to the phishing page was blocked, while the benign and legitimate Milanote links remained accessible, demonstrating Darktrace’s precise and targeted actioning.

A legitimate and a malicious Milanote email received by one recipient.
Figure 2: A legitimate and a malicious Milanote email received by one recipient.

Around the same time, Darktrace / NETWORK observed the same user’s device making DNS query for the domain name “lrn.ialeahed[.]com” , which has been flagged as a Tycoon 2FA domain [2], suggesting the use of this phishing platform.

Once the user had entered their details in the credential harvester, it is likely that they were presented a document hosted on Milanote that contained the final payload link – likely hidden behind text instructing users to access a “new agreement” document.

External research indicates that the user was likely directed to a Cloudflare Turnstile challenge meant to reroute unwanted traffic, such as automated security scripts and penetration testing tools [2] [3]. After these checks and other background processes are completed, the user is directed to the final landing page. In this case, it was likely a fake login prompt hosted on the attacker’s server, where the user is asked to authenticate to their account using MFA. By burrowing malicious links and files in this manner, threat actors can evade analysis by traditional security email gateways, effectively bypassing their protection.

Darktrace’s analysis of the structure and word content of the phishing emails resulted in an 82% probability score that the email was malicious, and the email further received a 67% phishing inducement score, representing how closely the structure and word content of the emails compared to typical phishing emails.

All these unusual elements triggered multiple alerts in Darktrace / EMAIL, focusing on two main suspicious aspects: a new, unknown sender with no prior correspondence with the recipients or the environment, and the inclusion of a link to a previously unseen file storage solution.

Milanote phishing email as seen within Darktrace / EMAIL.
Figure 3: Milanote phishing email as seen within Darktrace / EMAIL.

After detecting the fifth email, the “Sender Surge” model alert was triggered in Darktrace / EMAIL due to a significant number of recipients being emailed by this new suspicious sender in a short period. These recipients were from various departments across the customer’s organization, including sales, marketing, purchasing, and production. Darktrace / EMAIL determined that the emails were sent to a highly unusual group of internal recipients, further raising doubts about the business legitimacy.

Darktrace / EMAIL suggested actions to contain the attack by holding all Milanote phishing emails back from recipient’s inboxes, except for the detailed email with locked links. However, autonomous actions were not enabled at the time, allowing the initial email to reach recipients' inboxes, providing a brief window for interaction. Unfortunately, during this window, one recipient clicked on the Milanote payload link, leading to the compromise of their account.

SaaS account takeover

About three minutes after the malicious Milanote email was received, Darktrace / IDENTITY detected an unusual login to the email recipient’s SaaS account. The SaaS actor was observed accessing files from their usual location in Germany, while simultaneously, a 100% rare login occurred from a location in the US that had never been seen in the customer’s environment before. This login was also flagged as suspicious by Microsoft 365, triggering a 'Conditional Access Policy' that required MFA authentication, which was successfully completed.

Tycoon 2FA adnimistration panel login page dated from October 2023 [3].
Figure 4: Tycoon 2FA adnimistration panel login page dated from October 2023 [3].

Despite the successful authentication, Darktrace / IDENTITY recognized that the login from this unusual location, coupled with simultaneous activity in another geographically distant location, were highly suspicious. Darktrace went on to observe MFA-validated logins from three separate US-based IP addresses: 89.185.80[.]19, 5.181.3[.]68, and 38.242.7[.]252. Most of the malicious activity was performed from the latter, which is associated with the Hide My Ass (HMA) VPN network [5].

Darktrace’s detection of the suspicious login from the US while the legitimate user was logged in from Germany.
Figure 5: Darktrace’s detection of the suspicious login from the US while the legitimate user was logged in from Germany.
Darktrace’s detection of the suspicious login following successful MFA authentication.
Figure 6: Darktrace’s detection of the suspicious login following successful MFA authentication.

Following this, the malicious actor accessed the user’s inbox and created a new mailbox rule named “GTH” that deleted any incoming email containing the string “milanote” in the subject line or body. Rules like this are a common technique used by attackers to leverage compromised accounts for launching phishing campaigns and concealing replies to phishing emails that might raise suspicions among legitimate account holders. Using legitimate, albeit compromised, accounts to send additional phishing emails enhances the apparent legitimacy of the malicious emails. This tactic has been reported as being used by Tycoon 2FA attackers [4].

The attacker accessed over 140 emails within the legitimate user’s inbox, including both the inbox and the “Sent Items” folder. Notably, the attacker accessed five emails in the “Sent Items” folder and modified their attachments. These emails were mainly related to invoices, suggesting the threat actor may have been looking to hijack those email threads to send fake invoices or replicate previous invoice emails.

Darktrace’s Cyber AI AnalystTM launched autonomous investigations into the individual events surrounding this suspicious activity. It connected these separate events into a single, broad account takeover incident, providing the customer with a clearer view of the ongoing compromise.

Cyber AI Analyst’s detection of unusual SaaS account activities in a single incident.
Figure 7: Cyber AI Analyst’s detection of unusual SaaS account activities in a single incident.
Cyber AI Analyst investigation of suspicious activities performed by the attacker.
Figure 8: Cyber AI Analyst investigation of suspicious activities performed by the attacker.

Darktrace's response

Within three minutes of the first unusual login alert, Darktrace’s Autonomous Response intervened, disabling the compromised user account for two hours.

As the impacted customer was subscribed to the Managed Threat Detection Service, Darktrace’s SOC team investigated the activity further and promptly alerted the customer’s security team. With the user’s account still disabled by Autonomous Response, the attack was contained, allowing the customer’s security team valuable time to investigate and remediate. Within ten minutes of receiving the alert from Darktrace’s SOC, they reset the user’s password, closed all active SaaS sessions, and deleted the malicious email rule. Darktrace’s SOC further supported the customer through the Security Operations Service Support service by providing information about the data accessed and identifying any other affected users.

Autonomous Response actions carried out by Darktrace / IDENTITY to contain the malicious activity
Figure 9: Autonomous Response actions carried out by Darktrace / IDENTITY to contain the malicious activity.

A wider Milanote phishing campaign?

Around a month before this compromise activity, Darktrace alerted another customer to similar activities involving two compromised user accounts. These accounts created new inbox rules named “GFH” and “GVB” to delete all incoming emails containing the string “milanote” in their subject line and/or body.

The phishing emails that led to the compromise of these user accounts were similar to the ones discussed above. Specifically, these emails were sent via the Milanote platform and referenced a “new agreement” (in Spanish) being shared by a colleague. Additionally, the payload link included in the phishing emails showed the same UserPrincipalName (UPN) attribute (i.e., click?upn=u001.qLX9yCzR), which has been seen in other Milanote phishing emails leveraging Tycoon 2FA reported by OSINT sources [6]. Interestingly, in some cases, the email also referenced a “new agreement” in Portuguese, indicating a global campaign.

Based on the similarities in the rule’s naming convention and action, as well as the similarities in the phishing email subjects, it is likely that these were part of the same campaign leveraging Milanote and Tycoon 2FA to compromise user accounts. Since its introduction, the Tycoon 2FA phishing kit has undergone several enhancements to increase its stealth and obfuscation methods, making it harder for security tools to detect. For example, the latest versions contain special source code to obstruct web page analysis by defenders, prevent users from copying meaningful text from the phishing webpages, and disable the right-click menu to prevent offline analysis [4].

Conclusion

Threat actors are continually employing new methods to bypass security detection tools and measures. As highlighted in this blog, even robust security mechanisms like MFA can be compromised using AitM phishing kits. The misuse of legitimate services such as Milanote for malicious purposes can help attackers evade traditional email security solutions by blurring the distinction between legitimate and malicious content.

This is why security tools based on anomaly detection are crucial for defending against such attacks. However, user awareness is equally important. Delays in processing can impact the speed of response, making it essential for users to be informed about these threats.

Appendices

References

[1] https://www.darktrace.com/resources/annual-threat-report-2024

[2] https://www.validin.com/blog/tycoon_2fa_analyzing_and_hunting_phishing-as-a-service_domains

[3] https://blog.sekoia.io/tycoon-2fa-an-in-depth-analysis-of-the-latest-version-of-the-aitm-phishing-kit/#h-iocs-amp-technical-details

[4] https://blog.barracuda.com/2025/01/22/threat-spotlight-tycoon-2fa-phishing-kit

[5] https://spur.us/context/38.242.7.252    

[6] https://any.run/report/5ef1ac94e4c6c1dc35579321c206453aea80d414108f9f77abd2e2b03ffbd658/be5351d9-53c0-470b-8708-ee2e29300e70

Indicators of Compromise (IoCs)

IoC         Type      Description + Probability

89.185.80[.]19 - IP Address - Malicious login

5.181.3[.]68 - IP Address -Malicious login

38.242.7[.]252 - IP Address - Malicious login and new email inbox rule creation -  Hide My Ass VPN

lrn.ialeahed[.]com – Hostname - Likely Tycoon 2FA domain

Darktrace Model Detections

Email alerts

Platforms / Free Content Sender + High Sender Surge

Platforms / Free Content Sender + Sender Surge

Platforms / Free Content Sender + Unknown Initiator

Platforms / Free Content Sender

Platforms / Free Content Sender + First Time Recipient

Unusual / New Sender Surge

Unusual / Sender Surge

Antigena Anomaly / High Antigena Anomaly

Association / Unknown Sender

History / New Sender

Link / High Rarity Link to File Storage

Link/ Link To File Storage

Link / Link to File Storage + Unknown Sender

Link / Low Link Association

Platforms / Free Content Sender + First Time Initiator

Platforms / Free Content Sender + Unknown Initiator + Freemail

Platforms / Free Content Sender Link

Unusual / Anomalous Association

Unusual / Unlikely Recipient Association

IDENTITY

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compromise / Login from Rare High Risk Endpoint

SaaS / Access / M365 High Risk Level Login

SaaS / Compromise / Login From Rare Endpoint While User Is Active

SaaS / Access / MailItemsAccessed from Rare Endpoint

SaaS / Unusual Activity / Multiple Unusual SaaS Activities

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Compliance / Anomalous New Email Rule

SaaS / Compromise / Unusual Login and New Email Rule

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Antigena / SaaS / Antigena Enhanced Monitoring from SaaS User Block

Antigena / SaaS / Antigena Unusual Activity Block

Antigena / SaaS / Antigena Suspicious SaaS and Email Activity Block

Cyber AI Analyst Incident

Possible Hijack of Office365 Account

MITRE ATT&CK Mapping

Tactic – Technique

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - Cloud Accounts

INITIAL ACCESS - Phishing

CREDENTIAL ACCESS - Steal Web Session Cookie

PERSISTENCE - Account Manipulation

PERSISTENCE - Outlook Rules

RESOURCE DEVELOPMENT - Email Accounts

RESOURCE DEVELOPMENT - Compromise Accounts

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst

Blog

/

/

April 29, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI