Blog
/
Email
/
July 18, 2023

Understanding Email Security & the Psychology of Trust

We explore how psychological research into the nature of trust relates to our relationship with technology - and what that means for AI solutions.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Hanah Darley
Director of Threat Research
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Jul 2023

When security teams discuss the possibility of phishing attacks targeting their organization, often the first reaction is to assume it is inevitable because of the users. Users are typically referenced in cyber security conversations as organizations’ greatest weaknesses, cited as the causes of many grave cyber-attacks because they click links, open attachments, or allow multi-factor authentication bypass without verifying the purpose.

While for many, the weakness of the user may feel like a fact rather than a theory, there is significant evidence to suggest that users are psychologically incapable of protecting themselves from exploitation by phishing attacks, with or without regular cyber awareness trainings. The psychology of trust and the nature of human reliance on technology make the preparation of users for the exploitation of that trust in technology very difficult – if not impossible.

This Darktrace long read will highlight principles of psychological and sociological research regarding the nature of trust, elements of the trust that relate to technology, and how the human brain is wired to rely on implicit trust. These principles all point to the outcome that humans cannot be relied upon to identify phishing. Email security driven by machine augmentation, such as AI anomaly detection, is the clearest solution to tackle that challenge.

What is the psychology of trust?

Psychological and sociological theories on trust largely centre around the importance of dependence and a two-party system: the trustor and the trustee. Most research has studied the impacts of trust decisions on interpersonal relationships, and the characteristics which make those relationships more or less likely to succeed. In behavioural terms, the elements most frequently referenced in trust decisions are emotional characteristics such as benevolence, integrity, competence, and predictability.1

Most of the behavioural evaluations of trust decisions survey why someone chooses to trust another person, how they made that decision, and how quickly they arrived at their choice. However, these micro-choices about trust require the context that trust is essential to human survival. Trust decisions are rooted in many of the same survival instincts which require the brain to categorize information and determine possible dangers. More broadly, successful trust relationships are essential in maintaining the fabric of human society, critical to every element of human life.

Trust can be compared to dark matter (Rotenberg, 2018), which is the extensive but often difficult to observe material that binds planets and earthly matter. In the same way, trust is an integral but often a silent component of human life, connecting people and enabling social functioning.2

Defining implicit and routine trust

As briefly mentioned earlier, dependence is an essential element of the trusting relationship. Being able to build a routine of trust, based on the maintenance rather than establishment of trust, becomes implicit within everyday life. For example, speaking to a friend about personal issues and life developments is often a subconscious reaction to the events occurring, rather than an explicit choice to trust said friend each time one has new experiences.

Active and passive levels of cognition are important to recognize in decision-making, such as trust choices. Decision-making is often an active cognitive process requiring a lot of resource from the brain. However, many decisions occur passively, especially if they are not new choices e.g. habits or routines. The brain’s focus turns to immediate tasks while relegating habitual choices to subconscious thought processes, passive cognition. Passive cognition leaves the brain open to impacts from inattentional blindness, wherein the individual may be abstractly aware of the choice but it is not the focus of their thought processes or actively acknowledged as a decision. These levels of cognition are mostly referenced as “attention” within the brain’s cognition and processing.3

This idea is essentially a concept of implicit trust, meaning trust which is occurring as background thought processes rather than active decision-making. This implicit trust extends to multiple areas of human life, including interpersonal relationships, but also habitual choice and lifestyle. When combined with the dependence on people and services, this implicit trust creates a haze of cognition where trust is implied and assumed, rather than actively chosen across a myriad of scenarios.

Trust and technology

As researchers at the University of Cambridge highlight in their research into trust and technology, ‘In a fundamental sense, all technology depends on trust.’  The same implicit trust systems which allow us to navigate social interactions by subconsciously choosing to trust, are also true of interactions with technology. The implied trust in technology and services is perhaps most easily explained by a metaphor.

Most people have a favourite brand of soda. People will routinely purchase that soda and drink it without testing it for chemicals or bacteria and without reading reviews to ensure the companies that produce it have not changed their quality standards. This is a helpful, representative example of routine trust, wherein the trust choice is implicit through habitual action and does not mean the person is actively thinking about the ramifications of continuing to use a product and trust it.

The principle of dependence is especially important in trust and technology discussions, because the modern human is entirely reliant on technology and so has no way to avoid trusting it.5   Specifically important in workplace scenarios, employees are given a mandatory set of technologies, from programs to devices and services, which they must interact with on a daily basis. Over time, the same implicit trust that would form between two people forms between the user and the technology. The key difference between interpersonal trust and technological trust is that deception is often much more difficult to identify.

The implicit trust in workplace technology

To provide a bit of workplace-specific context, organizations rely on technology providers for the operation (and often the security) of their devices. The organizations also rely on the employees (users) to use those technologies within the accepted policies and operational guidelines. The employees rely on the organization to determine which products and services are safe or unsafe.

Within this context, implicit trust is occurring at every layer of the organization and its technological holdings, but often the trust choice is only made annually by a small security team rather than continually evaluated. Systems and programs remain in place for years and are used because “that’s the way it’s always been done. Within that context, the exploitation of that trust by threat actors impersonating or compromising those technologies or services is extremely difficult to identify as a human.

For example, many organizations utilize email communications to promote software updates for employees. Typically, it would consist of email prompting employees to update versions from the vendors directly or from public marketplaces, such as App Store on Mac or Microsoft Store for Windows. If that kind of email were to be impersonated, spoofing an update and including a malicious link or attachment, there would be no reason for the employee to question that email, given the explicit trust enforced through habitual use of that service and program.

Inattentional blindness: How the brain ignores change

Users are psychologically predisposed to trust routinely used technologies and services, with most of those trust choices continuing subconsciously. Changes to these technologies would often be subject to inattentional blindness, a psychological phenomenon wherein the brain either overwrites sensory information with what the brain expects to see rather than what is actually perceived.

A great example of inattentional blindness6 is the following experiment, which asks individuals to count the number of times a ball is passed between multiple people. While that is occurring, something else is going on in the background, which, statistically, those tested will not see. The shocking part of this experiment comes after, when the researcher reveals that the event occurring in the background not seen by participants was a person in a gorilla suit moving back and forth between the group. This highlights how significant details can be overlooked by the brain and “overwritten” with other sensory information. When applied to technology, inattentional blindness and implicit trust makes spotting changes in behaviour, or indicators that a trusted technology or service has been compromised, nearly impossible for most humans to detect.

With all this in mind, how can you prepare users to correctly anticipate or identify a violation of that trust when their brains subconsciously make trust decisions and unintentionally ignore cues to suggest a change in behaviour? The short answer is, it’s difficult, if not impossible.

How threats exploit our implicit trust in technology

Most cyber threats are built around the idea of exploiting the implicit trust humans place in technology. Whether it’s techniques like “living off the land”, wherein programs normally associated with expected activities are leveraged to execute an attack, or through more overt psychological manipulation like phishing campaigns or scams, many cyber threats are predicated on the exploitation of human trust, rather than simply avoiding technological safeguards and building backdoors into programs.

In the case of phishing, it is easy to identify the attempts to leverage the trust of users in technology and services. The most common example of this would be spoofing, which is one of the most common tactics observed by Darktrace/Email. Spoofing is mimicking a trusted user or service, and can be accomplished through a variety of mechanisms, be it the creation of a fake domain meant to mirror a trusted link type, or the creation of an email account which appears to be a Human Resources, Internal Technology or Security service.

In the case of a falsified internal service, often dubbed a “Fake Support Spoof”, the user is exploited by following instructions from an accepted organizational authority figure and service provider, whose actions should normally be adhered to. These cases are often difficult to spot when studying the sender’s address or text of the email alone, but are made even more difficult to detect if an account from one of those services is compromised and the sender’s address is legitimate and expected for correspondence. Especially given the context of implicit trust, detecting deception in these cases would be extremely difficult.

How email security solutions can solve the problem of implicit trust

How can an organization prepare for this exploitation? How can it mitigate threats which are designed to exploit implicit trust? The answer is by using email security solutions that leverage behavioural analysis via anomaly detection, rather than traditional email gateways.

Expecting humans to identify the exploitation of their own trust is a high-risk low-reward endeavour, especially when it takes different forms, affects different users or portions of the organization differently, and doesn’t always have obvious red flags to identify it as suspicious. Cue email security using anomaly detection as the key answer to this evolving problem.

Anomaly detection enabled by machine learning and artificial intelligence (AI) removes the inattentional blindness that plagues human users and security teams and enables the identification of departures from the norm, even those designed to mimic expected activity. Using anomaly detection mitigates multiple human cognitive biases which might prevent teams from identifying evolving threats, and also guarantees that all malicious behaviour will be detected. Of course, anomaly detection means that security teams may be alerted to benign anomalous activity, but still guarantees that no threat, no matter how novel or cleverly packaged, won’t be identified and raised to the human security team.

Utilizing machine learning, especially unsupervised machine learning, mimics the benefits of human decision making and enables the identification of patterns and categorization of information without the framing and biases which allow trust to be leveraged and exploited.

For example, say a cleverly written email is sent from an address which appears to be a Microsoft affiliate, suggesting to the user that they need to patch their software due to the discovery of a new vulnerability. The sender’s address appears legitimate and there are news stories circulating on major media providers that a new Microsoft vulnerability is causing organizations a lot of problems. The link, if clicked, forwards the user to a login page to verify their Microsoft credentials before downloading the new version of the software. After logging in, the program is available for download, and only requires a few minutes to install. Whether this email was created by a service like ChatGPT (generative AI) or written by a person, if acted upon it would give the threat actor(s) access to the user’s credential and password as well as activate malware on the device and possibly broader network if the software is downloaded.

If we are relying on users to identify this as unusual, there are a lot of evidence points that enforce their implicit trust in Microsoft services that make them want to comply with the email rather than question it. Comparatively, anomaly detection-driven email security would flag the unusualness of the source, as it would likely not be coming from a Microsoft-owned IP address and the sender would be unusual for the organization, which does not normally receive mail from the sender. The language might indicate solicitation, an attempt to entice the user to act, and the link could be flagged as it contains a hidden redirect or tailored information which the user cannot see, whether it is hidden beneath text like “Click Here” or due to link shortening. All of this information is present and discoverable in the phishing email, but often invisible to human users due to the trust decisions made months or even years ago for known products and services.

AI-driven Email Security: The Way Forward

Email security solutions employing anomaly detection are critical weapons for security teams in the fight to stay ahead of evolving threats and varied kill chains, which are growing more complex year on year. The intertwining nature of technology, coupled with massive social reliance on technology, guarantees that implicit trust will be exploited more and more, giving threat actors a variety of avenues to penetrate an organization. The changing nature of phishing and social engineering made possible by generative AI is just a drop in the ocean of the possible threats organizations face, and most will involve a trusted product or service being leveraged as an access point or attack vector. Anomaly detection and AI-driven email security are the most practical solution for security teams aiming to prevent, detect, and mitigate user and technology targeting using the exploitation of trust.

References

1https://www.kellogg.northwestern.edu/trust-project/videos/waytz-ep-1.aspx

2Rotenberg, K.J. (2018). The Psychology of Trust. Routledge.

3https://www.cognifit.com/gb/attention

4https://www.trusttech.cam.ac.uk/perspectives/technology-humanity-society-democracy/what-trust-technology-conceptual-bases-common

5Tyler, T.R. and Kramer, R.M. (2001). Trust in organizations : frontiers of theory and research. Thousand Oaks U.A.: Sage Publ, pp.39–49.

6https://link.springer.com/article/10.1007/s00426-006-0072-4

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Hanah Darley
Director of Threat Research

More in this series

No items found.

Blog

/

/

August 12, 2025

ISO/IEC 42001: 2023: A milestone in AI standards at Darktrace  

Default blog imageDefault blog image

Darktrace announces ISO/IEC 42001 accreditation

Darktrace is thrilled to announce that we are one of the first cybersecurity companies to achieve ISO/IEC 42001 accreditation for the responsible management of AI systems. This isn’t just a milestone for us, it’s a sign of where the AI industry is headed. ISO/IEC 42001 is quickly emerging as the global benchmark for separating vendors who truly innovate with AI from those who simply market it.

For customers, it’s more than a badge, it’s assurance that a vendor’s AI is built responsibly, governed with rigor, and backed by the expertise of real AI teams, keeping your data secure while driving meaningful innovation.

This is a critical milestone for Darktrace as we continue to strengthen our offering, mature our governance and compliance frameworks for AI management, expand our research and development capabilities, and further our commitment to the development of responsible AI.  

It cements our commitment to providing secure, trustworthy and proactive cybersecurity solutions that our customers can rely on and complements our existing compliance framework, consisting of certifications for:

  • ISO/IEC 27001:2022 – Information Security Management System
  • ISO/IEC 27018:2019 – Protection of Personally Identifiable Information in Public Cloud Environments
  • Cyber Essentials – A UK Government-backed certification scheme for cybersecurity baselines

What is ISO/IEC 42001:2023?

In response to the unique challenges that AI poses, the International Organization for Standardization (ISO) introduced the ISO/IEC 42001:2023 framework in December 2023 to help organizations providing or utilizing AI-based products or services to demonstrate responsible development and use of AI systems. To achieve the accreditation, organizations are required to establish, implement, maintain, and continually improve their Artificial Intelligence Management System (AIMS).

ISO/IEC 42001:2023 is the first of its kind, providing valuable guidance for this rapidly changing field of technology. It addresses the unique ethical and technical challenges AI poses by setting out a structured way to manage risks such as transparency, accuracy and misuse without losing opportunities. By design, it balances the benefits of innovation against the necessity of a proper governance structure.

Being certified means the organization has met the requirements of the ISO/IEC 42001 standard, is conforming to all applicable regulatory and legislative requirements, and has implemented thorough processes to address AI risks and opportunities.

What is the  ISO/IEC 42001:2023 accreditation process?

Darktrace partnered with BSI over an 11-month period to undertake the accreditation. The process involved developing and implementing a comprehensive AI management system that builds on our existing certified frameworks, addresses the risks and opportunities of using and developing cutting-edge AI systems, underpins our AI objectives and policies, and meets our regulatory and legal compliance requirements.

The AI Management System, which takes in our people, processes, and products, was extensively audited by BSI against the requirements of the standard, covering all aspects spanning the design of our AI, use of AI within the organization, and our competencies, resources and HR processes. It is an in-depth process that we’re thrilled to have undertaken, making us one of the first in our industry to achieve certification for a globally recognized AI system.

The scope of Darktrace’s certification is particularly wide due to our unique Self-Learning approach to AI for cybersecurity, which uses multi-layered AI systems consisting of varied AI techniques to address distinct cybersecurity tasks. The certification encompasses production and provision of AI systems based on anomaly detection, clustering, classifiers, regressors, neural networks, proprietary and third-party large language models for proactive, detection, response and recovery cybersecurity applications. Darktrace additionally elected to adopt all Annex A controls present in the ISO/IEC 42001 standard.

What are the benefits of an AI Management System?

While AI is not a new or novel concept, the AI industry has accelerated at an unprecedented rate in the past few years, increasing operational efficiency, driving innovation, and automating cumbersome processes in the workplace.

At the same time, the data privacy, security and bias risks created by rapid innovation in AI have been well documented.

Thus, an AI Management System enables organizations to confidently establish and adhere to governance in a way that conforms to best practice, promotes adherence, and is in line with current and emerging regulatory standards.

Not only is this vital in a unique and rapidly evolving field like AI, it additionally helps organization’s balance the drive for innovation with the risks the technology can present, helping to get the best out of their AI development and usage.

What are the key components of ISO/IEC 42001?

The Standard puts an emphasis on responsible AI development and use, requiring organizations to:

  • Establish and implement an AI Management System
  • Commit to the responsible development of AI against established, measurable objectives
  • Have in place a process to manage, monitor and adapt to risks in an effective manner
  • Commit to continuous improvement of their AI Management System

The AI Standard is similar in composition to other ISO standards, such as ISO/IEC 27001:2022, which many organizations may already be familiar with. Further information as to the structure of ISO/IEC 42001 can be found in Annex A.

What it means for Darktrace’s customers

Our certification against ISO/IEC 42001 demonstrates Darktrace’s commitment to delivering industry-leading Self-Learning AI in the name of cybersecurity resilience. Our stakeholders, customers and partners can be confident that Darktrace is responsibly, ethically and securely developing its AI systems, and is managing the use of AI in our day-to-day operations in a compliant, secure and ethical manner. It means:

  • You can trust our AI: We can demonstrate our AI is developed responsibly, in a transparent manner and in accordance with ethical rules. For more information and to learn about Darktrace's responsible AI in cybersecurity approach, please see here.
  • Our products are backed by innovation and integrity: Darktrace drives cutting edge AI innovation with ethical governance and customer trust at its core.
  • You are partnering with an organization which stays ahead of regulatory changes: In an evolving AI landscape, partnering with Darktrace helps you to stay prepared for emerging compliance and regulatory demands in your supply chain.

Achieving ISO/IEC 42001:2023 certification is not just a checkpoint for us. It represents our unwavering commitment to setting a higher standard for AI in cybersecurity. It reaffirms our leadership in building and implementing responsible AI and underscores our mission to continuously innovate and lead the way in the industry.

Why ISO/IEC 42001 matters for every AI vendor you trust

In a market where “AI” can mean anything from a true, production-grade system to a thin marketing layer, ISO/IEC 42001 acts as a critical differentiator. Vendors who have earned this certification aren’t just claiming they build responsible AI, they’ve proven it through an independent, rigorous audit of how they design, deploy, and manage their systems.

For you as a customer, that means:

You know their AI is real: Certified vendors have dedicated, skilled AI teams building and maintaining systems that meet measurable standards, not just repackaging off-the-shelf tools with an “AI” label.

Your data is safeguarded: Compliance with ISO/IEC 42001 includes stringent governance over data use, bias, transparency, and risk management.

You’re partnering with innovators: The certification process encourages continuous improvement, meaning your vendor is actively advancing AI capabilities while keeping ethics and security in focus.

In short, ISO/IEC 42001 is quickly becoming the global badge of credible AI development. If your vendor can’t show it, it’s worth asking how they manage AI risk, whether their governance is mature enough, and how they ensure innovation doesn’t outpace accountability.

Annex A: The Structure of ISO/IEC 42001

ISO/IEC 42001 has requirements for which seven adherence is required for an organization seeking to obtain or maintain its certification:

  • Context of the organization – organizations need to demonstrate an understanding of the internal and external factors influencing the organization’s AI Management System.
  • Leadership – senior leadership teams need to be committed to implementing AI governance within their organizations, providing direction and support across all aspects AI Management System lifecycle.
  • Planning – organizations need to put meaningful and manageable processes in place to identify risks and opportunities related to the AI Management System to achieve responsible AI objectives and mitigate identified risks.
  • Support – demonstrating a commitment to provisioning of adequate resources, information, competencies, awareness and communication for the AI Management System is a must to ensure that proper oversight and management of the system and its risks can be achieved.
  • Operation – establishing processes necessary to support the organization’s AI system development and usage, in conformance with the organization’s AI policy, objectives and requirements of the standard. Correcting the course of any deviations within good time is paramount.
  • Performance evaluation – the organization must be able to demonstrate that it has the capability and willingness to regularly monitor and evaluate the performance of the AI Management System effectively, including actioning any corrections and introducing new processes where relevant.
  • Improvement – relying on an existing process will not be sufficient to ensure compliance with the AI Standard. Organizations must commit to monitoring of existing systems and processes to ensure that the AI Management System is continually enhanced and improved.

To assist organizations in seeking the above, four annexes are included within the AI Standard’s rubric, which outline the objectives and measures an organization may wish to implement to address risks related to the design and operation of their AI Management System through the introduction of normative controls. Whilst they are not prescriptive, Darktrace has implemented the requirements of these Annexes to enable it to appropriately demonstrate the effectiveness of its AI Management System. We have placed a heavy emphasis on Annex A which contains these normative controls which we, and other organizations seeking to achieve certification, can align with to address the objectives and measures, such as:

  • Enforcement of policies related to AI.
  • Setting responsibilities within the organization, and expectation of roles and responsibilities.
  • Creating processes and guidelines for escalating and handling AI concerns.
  • Making resources for AI systems available to users.
  • Assessing impacts of AI systems internally and externally.
  • Implementing processes across the entire AI system life cycle.
  • Understanding treatment of Data for AI systems.
  • Defining what information is, and should be available, for AI systems.
  • Considering and defining use cases for the AI systems.
  • Considering the impact of the AI System on third-party and customer relationships.

The remaining annexes provide guidance on implementing Annex A’s controls, objectives and primary risk sources of AI implementation, and considering how the AI Management System can be used across domains or sectors responsibly.

[related-resource]

Continue reading
About the author

Blog

/

/

August 12, 2025

Minimizing Permissions for Cloud Forensics: A Practical Guide to Tightening Access in the Cloud

Default blog imageDefault blog image

Most cloud environments are over-permissioned and under-prepared for incident response.

Security teams need access to logs, snapshots, and configuration data to understand how an attack unfolded, but giving blanket access opens the door to insider threats, misconfigurations, and lateral movement.

So, how do you enable forensics without compromising your security posture?

The dilemma: balancing access and security

There is a tension between two crucial aspects of cloud security that create a challenge for cloud forensics.

One aspect is the need for Security Operations Center (SOC) and Incident Response (IR) teams to access comprehensive data for investigating and resolving security incidents.

The other conflicting aspect is the principle of least privilege and minimal manual access advocated by cloud security best practices.

This conflict is particularly pronounced in modern cloud environments, where traditional physical access controls no longer apply, and infrastructure-as-code and containerization have transformed the landscape.

There are several common but less-than-ideal approaches to this challenge:

  • Accepting limited data access, potentially leaving incidents unresolved
  • Granting root-level access during major incidents, risking further compromise

Relying on cloud or DevOps teams to retrieve data, causing delays and potential miscommunication

[related-resource]

Challenges in container forensics

Containers present unique challenges for forensic investigations due to their ephemeral and dynamic nature. The orchestration and management of containers, whether on private clusters or using services like AWS Elastic Kubernetes Service (EKS), introduce complexities in capturing and analyzing forensic data.

To effectively investigate containers, it's often necessary to acquire the underlying volume of a node or perform memory captures. However, these actions require specific Identity and Access Management (IAM) and network access to the node, as well as familiarity with the container environment, which may not always be straightforward.

An alternative method of collection in containerized environments is to utilize automated tools to collect this evidence. Since they can detect malicious activity and collect relevant data without needing human input, they can act immediately, securing evidence that might be lost by the time a human analyst is available to collect it manually.

Additionally, automation can help significantly with access and permissions. Instead of analysts needing the correct permissions for the account, service, and node, as well as deep knowledge of the container service itself, for any container from which they wish to collect logs. They can instead collect them, and have them all presented in one place, at the click of a button.

A better approach: practical strategies for cloud forensics

It's crucial to implement strategies that strike a balance between necessary access and stringent security controls.

Here are several key approaches:

1. Dedicated cloud forensics accounts

Establishing a separate cloud account or subscription specifically for forensic activities is foundational. This approach isolates forensic activities from regular operations, preventing potential contamination from compromised environments. Dedicated accounts also enable tighter control over access policies, ensuring that forensic operations do not inadvertently expose sensitive data to unauthorized users.

A separate account allows for:

  • Isolation: The forensic investigation environment is isolated from potentially compromised environments, reducing the risk of cross-contamination.
  • Tighter access controls: Policies and controls can be more strictly enforced in a dedicated account, reducing the likelihood of unauthorized access.
  • Simplified governance: A clear and simplified chain of custody for digital evidence is easier to maintain, ensuring that forensic activities meet legal and regulatory requirements.

For more specifics:

2. Cross-account roles with least privilege

Using cross-account IAM roles, the forensics account can access other accounts, but only with permissions that are strictly necessary for the investigation. This ensures that the principle of least privilege is upheld, reducing the risk of unauthorized access or data exposure during the forensic process.

3. Temporary credentials for just-in-time access

Leveraging temporary credentials, such as AWS STS tokens, allows for just-in-time access during an investigation. These credentials are short-lived and scoped to specific resources, ensuring that access is granted only when absolutely necessary and is automatically revoked after the investigation is completed. This reduces the window of opportunity for potential attackers to exploit elevated permissions.

For AWS, you can use commands such as:

aws sts get-session-token --duration-seconds 43200

aws sts assume-role --role-arn role-to-assume --role-session-name "sts-session-1" --duration-seconds 43200

For Azure, you can use commands such as:

az ad app credential reset --id <appId> --password <sp_password> --end-date 2024-01-01

For more details for Google Cloud environments, see “Create short-lived credentials for a service account” and the request.time parameter.

4. Tag-based access control

Pre-deploying access control based on resource tags is another effective strategy. By tagging resources with identifiers like "Forensics," access can be dynamically granted only to those resources that are relevant to the investigation. This targeted approach minimizes the risk of overexposure and ensures that forensic teams can quickly and efficiently access the data they need.

For example, in AWS:

Condition: StringLike: aws:ResourceTag/Name: ForensicsEnabled

Condition: StringLike: ssm:resourceTag/SSMEnabled: True

For example, in Azure:

"Condition": "StringLike(Resource[Microsoft.Resources/tags.example_key], '*')"

For example, in Google Cloud:

expression: > resource.matchTag('tagKeys/ForensicsEnabled', '*')

Tighten access, enhance security

The shift to cloud environments demands a rethinking of how we approach forensic investigations. By implementing strategies like dedicated cloud forensic accounts, cross-account roles, temporary credentials, and tag-based access control, organizations can strike the right balance between access and security. These practices not only enhance the effectiveness of forensic investigations but also ensure that access is tightly controlled, reducing the risk of exacerbating an incident or compromising the investigation.

Find the right tools for your cloud security

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

In addition to having these forensics capabilities, Darktrace / CLOUD is a real-time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI