Blog
/
/
July 7, 2021

How Cyber-Attacks Take Down Critical Infrastructure

Cyber-attacks can bypass IT/OT security barriers and threaten your organization's infrastructure. Here's how you can stay protected in today's threat landscape.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Jul 2021

Balancing Operational Continuity and Safety in Critical Infrastructure

The recent high-profile attacks against Colonial Pipeline and JBS Foods highlight that operational technology (OT) — the devices that drive gas flows and food processing, along with essentially all other machine-driven physical processes — does not need to be directly targeted in order to be shut down as the result of a cyber-attack.

Indeed, in the Colonial Pipeline incident, the information technology (IT) systems were reportedly compromised, with operations shut down intentionally out of an abundance of caution, that is, so as to not risk the attack spreading to OT and threatening safety. This highlights that threats to both human and environmental safety, along with uncertainty as to the scope of infection, present risk factors for these sensitive industrial environments.

Continuity through availability and integrity

In most countries, critical infrastructure (CI) — ranging from power grids and pipelines to transportation and health care — must maintain continuous activity. The recent ransomware attack against Colonial Pipeline demonstrates why this is the case, where gas shortages due to the compromise led to dangerous panic buys and long lines at the pumps.

Ensuring continuous operation of critical infrastructure requires safeguarding the availability and integrity of machinery. This means that organizations overseeing critical infrastructure must foresee any possible risks and implement systems, procedures, and technologies that mitigate or remove these risks so as to keep their operations running.

Operational demand versus safety

Alongside this requirement for operational continuity, and often in opposition to it, is the requirement for operational safety. These requirements can be in opposition because operational continuity demands that devices remain up and running at all costs, and operational safety demands that humans and the environment be protected at all costs.

Safety measures in critical infrastructure have improved and become increasingly prioritized over the last 50 years following numerous high-profile incidents, such as the Bhopal chemical disaster, the Texas City refinery explosion, and the Deepwater Horizon oil spill. Appropriate safety precautions could have likely prevented these incidents, but at the expense of operational continuity.

Consequently, administrators of critical infrastructure have to balance the very real threat that an incident may pose to both human life and the environment with the demand to remain operational at all times. More often than not, the final decision regarding what constitutes an acceptable risk is determined by budgets and cost-benefit analyses.

Cyber-attack: A rising risk profile for critical infrastructure

In 2010, the discovery of the Stuxnet malware — which resulted in a nuclear facility in Iran having its centrifuges ruined via compromised programmable logic controllers (PLCs) — demonstrated that critical infrastructure could be targeted by a cyber-attack.

At the time of Stuxnet, critical infrastructure industries used computers designed to ensure operational continuity with little regard for cyber security, as at the time the risk of a cyber-attack seemed either non-existent or vanishingly low. Since then, a number of attacks targeting industrial environments that have emerged on the global threat landscape.

Figure 1: An overview of distinctive methods used in attacks against industrial environments

Classic strains of industrial malware, such as Stuxnet, Triton, and Industroyer, have historically been installed via removable media, such as USB. This is because OT networks are traditionally segregated from the Internet in what is known as an ‘air gap.’ And this remains a prevalent vector of attack, with a study recently finding that cyber-threats installed via USB and other external media doubled in 2021, with 79% of these holding the potential to disrupt OT.

In many ways, operational demands in the subsequent 10 years have made critical infrastructure even more vulnerable. These include the convergence of information technology and operational technology (IT/OT convergence), the adoption of devices in the Industrial Internet of Things (IIoT), and the deprecation of manual back-up systems. This means that OT can be disrupted by cyber-attacks that first target IT systems, rather than having to be installed manually via external media.

At the same time, recent government initiatives — such as the Department of Energy’s 100-day ‘cyber sprint’ to protect electricity operations and President Biden’s Executive Order on Improving the Nation’s Cybersecurity — and regulatory frameworks and directives such as the EU’s NIS directive have either encouraged or mandated that critical infrastructure industries start addressing this new risk.

With the severe and persistent threat that cyber-attacks pose to critical infrastructure, including maritime cybersecurity, and the increasing calls to address the issue, the question remains as to how to best achieve robust cyber defense.

Assessing the risk

To claim administrators of critical infrastructure are ignorant or oblivious to the threat posed by cyber-attacks would be unfair. Many organizations have implemented changes to mitigate or remove the risk either as a result of regulation or their own forward thinking.

However, these projects can take years, even decades. High costs and ever-changing operational demand also mean that these projects may never fully remove the risk.

As a result, many operators may understand the threat of a cyber-attack but not be in a position to do anything about it in the short or medium term. Instead, procedures have to be put in place to minimize risk even if this threatens operational continuity.

For example, a risk assessment may decide it is best to shut down all OT operations in the event of a cyber-attack in order to avoid a major accident. This abundance of caution is forced upon operators, who do not have the ability to immediately confirm the boundaries of a compromise. The prevalence of cyber insurance provides this option with further appeal. Any losses incurred by stopping operations can theoretically be recouped and the risk is therefore transferred.

While the full details of the Colonial Pipeline ransomware incident are still to be determined, the sequence of events outlined below provides a plausible explanation for how a cyber-attack could take down critical infrastructure, even when that cyber-attack does not reach or even target OT systems. Indeed, the CEO of Colonial Pipeline, in a testimony to congress, confirmed “the imperative to isolate and contain the attack to help ensure the malware did not spread to the operational technology network, which controls our pipeline operations, if it had not already.”

Figure 2: A sequence of events which may lead to critical infrastructure being shut down by a cyber-attack, even when that cyber-attack doesn’t directly impact OT networks

The limits of securing IT or OT in isolation

The emergence of OT cyber security solutions in the last five years demonstrates that critical infrastructure industries are trying to find a way to address the risks posed by cyber-attacks. But these solutions have limited scope, as they assume IT and OT are separated and use legacy security techniques such as malware signatures and patch management.

The 2021 SANS ICS Security Summit highlighted how the OT security community suffers from a lack of visibility in knowing and understanding their networks. For many organizations, simply determining whether an unusual incident is an attack or the result of a software error is a challenge.

Given that most OT cyber-attacks actually start in IT networks before pivoting into OT, investing in an IT security solution rather than an OT-specific solution may at first seem like a better business decision. But IT solutions fall short if an attacker successfully pivots into the OT network, or if the attacker is a rogue insider who already has direct access to the OT network. A siloed approach to securing either IT or OT in isolation will thus fall short of the full scope needed to safeguard industrial systems.

It is clear that a mature security posture for critical infrastructure would include security solutions for both IT and OT. Even then, using separate solutions to protect the IT and OT networks is limited, as it presents challenges when defending network boundaries and detecting incidents when an attacker pivots from IT to OT. Under time pressure, a security team does not want changes in visibility, detection, language or interface while trying to determine whether a threat crossed the ‘boundary’ between IT and OT.

Separate solutions can also make detecting an attacker abusing traditional IT attack TTPs within an OT network much harder if the security team is relying on a purely OT solution to defend the OT environment. Examples of this include the abuse of IT remote management tools to affect industrial environments, such as in the suspected cyber-attack at the Florida water facility earlier this year. Cybersecurity for utilities is becoming increasingly important as these sectors face growing cyber threats that can disrupt essential services.

Using AI to minimize cyber risk and maximize cyber safety

In contrast, Darktrace AI is able to defend an entire cyber ecosystem estate, building a ‘pattern of life’ across IT and OT, as well as the points at which they converge. Consequently, cyber security teams can use a single pane of glass to detect and respond to cyber-attacks as they emerge and develop, regardless of where they are in the environment.

Use cases for Darktrace’s Self-Learning AI include containing pre-existing threats to maintain continuous operations. This was seen when Darktrace’s AI detected pre-existing infections and acted autonomously to contain the threat, allowing the operator to leave infected IIoT devices active while waiting for replacements. Darktrace can also thwart ransomware in IT before it can spread into OT, as when Darktrace detected a ransomware attack targeting a supplier for critical infrastructure in North America at its earliest stages.

Darktrace’s unified protection, including visibility and early detection of zero-days, empowers security teams to overcome uncertainty and make a confident decision not to shut down operations. Darktrace has already demonstrated this ability in the wild, and allows organizations to understand normal machine and human behavior in order to enforce this behavior, even in the face of an emerging cyber-attack.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Oakley Cox
Director of Product

More in this series

No items found.

Blog

/

Cloud

/

November 20, 2025

Securing Generative AI: Managing Risk in Amazon Bedrock with Darktrace / CLOUD

securing generative aiDefault blog imageDefault blog image

Security risks and challenges of generative AI in the enterprise

Generative AI and managed foundation model platforms like Amazon Bedrock are transforming how organizations build and deploy intelligent applications. From chatbots to summarization tools, Bedrock enables rapid agent development by connecting foundation models to enterprise data and services. But with this flexibility comes a new set of security challenges, especially around visibility, access control, and unintended data exposure.

As organizations move quickly to operationalize generative AI, traditional security controls are struggling to keep up. Bedrock’s multi-layered architecture, spanning agents, models, guardrails, and underlying AWS services, creates new blind spots that standard posture management tools weren’t designed to handle. Visibility gaps make it difficult to know which datasets agents can access, or how model outputs might expose sensitive information. Meanwhile, developers often move faster than security teams can review IAM permissions or validate guardrails, leading to misconfigurations that expand risk. In shared-responsibility environments like AWS, this complexity can blur the lines of ownership, making it critical for security teams to have continuous, automated insight into how AI systems interact with enterprise data.

Darktrace / CLOUD provides comprehensive visibility and posture management for Bedrock environments, automatically detecting and proactively scanning agents and knowledge bases, helping teams secure their AI infrastructure without slowing down expansion and innovation.

A real-world scenario: When access goes too far

Consider a scenario where an organization deploys a Bedrock agent to help internal staff quickly answer business questions using company knowledge. The agent was connected to a knowledge base pointing at documents stored in Amazon S3 and given access to internal services via APIs.

To get the system running quickly, developers assigned the agent a broad execution role. This role granted access to multiple S3 buckets, including one containing sensitive customer records. The over-permissioning wasn’t malicious; it stemmed from the complexity of IAM policy creation and the difficulty of identifying which buckets held sensitive data.

The team assumed the agent would only use the intended documents. However, they did not fully consider how employees might interact with the agent or how it might act on the data it processed.  

When an employee asked a routine question about quarterly customer activity, the agent surfaced insights that included regulated data, revealing it to someone without the appropriate access.

This wasn’t a case of prompt injection or model manipulation. The agent simply followed instructions and used the resources it was allowed to access. The exposure was valid under IAM policy, but entirely unintended.

How Darktrace / CLOUD prevents these risks

Darktrace / CLOUD helps organizations avoid scenarios like unintended data exposure by providing layered visibility and intelligent analysis across Bedrock and SageMaker environments. Here’s how each capability works in practice:

Configuration-level visibility

Bedrock deployments often involve multiple components: agents, guardrails, and foundation models, each with its own configuration. Darktrace / CLOUD indexes these configurations so teams can:

  1. Inspect deployed agents and confirm they are connected only to approved data sources.
  2. Track evaluation job setups and their links to Amazon S3 datasets, uncovering hidden data flows that could expose sensitive information.
  3. Maintain full awareness of all AI components, reducing the chance of overlooked assets introducing risk.

By unifying configuration data across Bedrock, SageMaker, and other AWS services, Darktrace / CLOUD provides a single source of truth for AI asset visibility. Teams can instantly see how each component is configured and whether it aligns with corporate security policies. This eliminates guesswork, accelerates audits, and helps prevent misaligned settings from creating data exposure risks.

 Agents for bedrock relationship views.
Figure 1: Agents for bedrock relationship views

Architectural awareness

Complex AI environments can make it difficult to understand how components interact. Darktrace / CLOUD generates real-time architectural diagrams that:

  1. Visualize relationships between agents, models, and datasets.
  1. Highlight unintended data access paths or risk propagation across interconnected services.

This clarity helps security teams spot vulnerabilities before they lead to exposure. By surfacing these relationships dynamically, Darktrace / CLOUD enables proactive risk management, helping teams identify architectural drift, redundant data connections, or unmonitored agents before attackers or accidental misuse can exploit them. This reduces investigation time and strengthens compliance confidence across AI workloads.

Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping
Figure 2: Full Bedrock agent architecture including lambda and IAM permission mapping

Access & privilege analysis

IAM permissions apply to every AWS service, including Bedrock. When Bedrock agents assume IAM roles that were broadly defined for other workloads, they often inherit excessive privileges. Without strict least-privilege controls, the agent may have access to far more data and services than required, creating avoidable security exposure. Darktrace / CLOUD:

  1. Reviews execution roles and user permissions to identify excessive privileges.
  2. Flags anomalies that could enable privilege escalation or unauthorized API actions.

This ensures agents operate within the principle of least privilege, reducing attack surface. Beyond flagging risky roles, Darktrace / CLOUD continuously learns normal patterns of access to identify when permissions are abused or expanded in real time. Security teams gain context into why an action is anomalous and how it could affect connected assets, allowing them to take targeted remediation steps that preserve productivity while minimizing exposure.

Misconfiguration detection

Misconfigurations are a leading cause of cloud security incidents. Darktrace / CLOUD automatically detects:

  1. Publicly accessible S3 buckets that may contain sensitive training data.
  2. Missing guardrails in Bedrock deployments, which can allow inappropriate or sensitive outputs.
  3. Other issues such as lack of encryption, direct internet access, and root access to models.  

By surfacing these risks early, teams can remediate before they become exploitable. Darktrace / CLOUD turns what would otherwise be manual reviews into automated, continuous checks, reducing time to discovery and preventing small oversights from escalating into full-scale incidents. This automated assurance allows organizations to innovate confidently while keeping their AI systems compliant and secure by design.

Configuration data for Anthropic foundation model
Figure 3: Configuration data for Anthropic foundation model

Behavioral anomaly detection

Even with correct configurations, behavior can signal emerging threats. Using AWS CloudTrail, Darktrace / CLOUD:

  1. Monitors for unusual data access patterns, such as agents querying unexpected datasets.
  2. Detects anomalous training job invocations that could indicate attempts to pollute models.

This real-time behavioral insight helps organizations respond quickly to suspicious activity. Because it learns the “normal” behavior of each Bedrock component over time, Darktrace / CLOUD can detect subtle shifts that indicate emerging risks, before formal indicators of compromise appear. The result is faster detection, reduced investigation effort, and continuous assurance that AI-driven workloads behave as intended.

Conclusion

Generative AI introduces transformative capabilities but also complex risks that evolve alongside innovation. The flexibility of services like Amazon Bedrock enables new efficiencies and insights, yet even legitimate use can inadvertently expose sensitive data or bypass security controls. As organizations embrace AI at scale, the ability to monitor and secure these environments holistically, without slowing development, is becoming essential.

By combining deep configuration visibility, architectural insight, privilege and behavior analysis, and real-time threat detection, Darktrace gives security teams continuous assurance across AI tools like Bedrock and SageMaker. Organizations can innovate with confidence, knowing their AI systems are governed by adaptive, intelligent protection.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

November 20, 2025

Unmasking Vo1d: Inside Darktrace’s Botnet Detection

Unmasking Vo1d: Inside Darktrace’s Botnet DetectionDefault blog imageDefault blog image

What is Vo1d APK malware?

Vo1d malware first appeared in the wild in September 2024 and has since evolved into one of the most widespread Android botnets ever observed. This large-scale Android malware primarily targets smart TVs and low-cost Android TV boxes. Initially, Vo1d was identified as a malicious backdoor capable of installing additional third-party software [1]. Its functionality soon expanded beyond the initial infection to include deploying further malicious payloads, running proxy services, and conducting ad fraud operations. By early 2025, it was estimated that Vo1d had infected 1.3 to 1.6 million devices worldwide [2].

From a technical perspective, Vo1d embeds components into system storage to enable itself to download and execute new modules at any time. External researchers further discovered that Vo1d uses Domain Generation Algorithms (DGAs) to create new command-and-control (C2) domains, ensuring that regardless of existing servers being taken down, the malware can quickly reconnect to new ones. Previous published analysis identified dozens of C2 domains and hundreds of DGA seeds, along with new downloader families. Over time, Vo1d has grown increasingly sophisticated with clear signs of stronger obfuscation and encryption methods designed to evade detection [2].

Darktrace’s coverage

Earlier this year, Darktrace observed a surge in Vo1d-related activity across customer environments, with the majority of affected customers based in South Africa. Devices that had been quietly operating as expected began exhibiting unusual network behavior, including excessive DNS lookups. Open-source intelligence (OSINT) has long highlighted South Africa as one of the countries most impacted by Vo1d infections [2].

What makes the recent activity particularly interesting is that the surge observed by Darktrace appears to be concentrated specifically in South African environments. This localized spike suggests that a significant number of devices may have been compromised, potentially due to vulnerable software, outdated firmware, or even preloaded malware. Regions with high prevalence of low-cost, often unpatched devices are especially susceptible, as these everyday consumer electronics can be quietly recruited into the botnet’s network. This specifically appears to be the case with South Africa, where public reporting has documented widespread use of low-cost boxes, such as non-Google-certified Android TV sticks, that frequently ship with outdated firmware [3].

The initial triage highlighted the core mechanism Vo1d uses to remain resilient: its use of DGA. A DGA deterministically creates a large list of pseudo-random domain names on a predictable schedule. This enables the malware to compute hundreds of candidate domains using the same algorithm, instead of using a hard-coded single C2 hostname that defenders could easily block or take down. To ensure reproducible from the infected device’s perspective, Vo1d utilizes DGA seeds. These seeds might be a static string, a numeric value, or a combination of underlying techniques that enable infected devices to generate the same list of candidate domains for a time window, provided the same DGA code, seed, and date are used.

Interestingly, Vo1d’s DGA seeds do not appear to be entirely unpredictable, and the generated domains lack fully random-looking endings. As observed in Figure 1, there is a clear pattern in the names generated. In this case, researchers identified that while the first five characters would change to create the desired list of domain names, the trailing portion remained consistent as part of the seed: 60b33d7929a, which OSINT sources have linked to the Vo1d botnet. [2]. Darktrace’s Threat Research team also identified a potential second DGA seed, with devices in some cases also engaging in activity involving hostnames matching the regular expression /[a-z]{5}fc975904fc9\.(com|top|net). This second seed has not been reported by any OSINT vendors at the time of writing.

Another recurring characteristic observed across multiple cases was the choice of top-level domains (TLDs), which included .com, .net, and .top.

Figure 1: Advanced Search results showing DNS lookups, providing a glimpse on the DGA seed utilized.

The activity was detected by multiple models in Darktrace / NETWORK™, which triggered on devices making an unusually large volume of DNS requests for domains uncommon across the network.

During the network investigation, Darktrace analysts traced Vo1d’s infrastructure and uncovered an interesting pattern related to responder ASNs. A significant number of connections pointed to AS16509 (AMAZON-02). By hosting redirectors or C2 nodes inside major cloud environments, Vo1d is able to gain access to highly available and geographically diverse infrastructure. When one node is taken down or reported, operators can quickly enable a new node under a different IP within the same ASN. Another feature of cloud infrastructure that hardens Vo1d’s resilience is the fact that many organizations allow outbound connections to cloud IP ranges by default, assuming they are legitimate. Despite this, Darktrace was able to identify the rarity of these endpoints, identifying the unusualness of the activity.

Analysts further observed that once a generated domain successfully resolved, infected devices consistently began establishing outbound connections to ephemeral port ranges like TCP ports 55520 and 55521. These destination ports are atypical for standard web or DNS traffic. Even though the choice of high-numbered ports appears random, it is likely far from not accidental. Commonly used ports such as port 80 (HTTP) or 443 (HTTPS) are often subject to more scrutiny and deeper inspection or content filtering, making them riskier for attackers. On the other hand, unregistered ports like 55520 and 55521 are less likely to be blocked, providing a more covert channel that blends with outbound TCP traffic. This tactic helps evade firewall rules that focus on common service ports. Regardless, Darktrace was able to identify external connections on uncommon ports to locations that the network does not normally visit.

The continuation of the described activity was identified by Darktrace’s Cyber AI Analyst, which correlated individual events into a broader interconnected incident. It began with the multiple DNS requests for the algorithmically generated domains, followed by repeated connections to rare endpoints later confirmed as attacker-controlled infrastructure. Cyber AI Analyst’s investigation further enabled it to categorize the events as part of the “established foothold” phase of the attack.

Figure 2: Cyber AI Analyst incident illustrating the transition from DNS requests for DGA domains to connections with resolved attacker-controlled infrastructure.

Conclusion

The observations highlighted in this blog highlight the precision and scale of Vo1d’s operations, ranging from its DGA-generated domains to its covert use of high-numbered ports. The surge in affected South African environments illustrate how regions with many low-cost, often unpatched devices can become major hubs for botnet activity. This serves as a reminder that even everyday consumer electronics can play a role in cybercrime, emphasizing the need for vigilance and proactive security measures.

Credit to Christina Kreza (Cyber Analyst & Team Lead) and Eugene Chua (Principal Cyber Analyst & Team Lead)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Devices Beaconing to New Rare IP
  • Anomalous Connection / Multiple Connections to New External TCP Port
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Compromise / DGA Beacon
  • Compromise / Domain Fluxing
  • Compromise / Fast Beaconing to DGA
  • Unusual Activity / Unusual External Activity

List of Indicators of Compromise (IoCs)

  • 3.132.75[.]97 – IP address – Likely Vo1d C2 infrastructure
  • g[.]sxim[.]me – Hostname – Likely Vo1d C2 infrastructure
  • snakeers[.]com – Hostname – Likely Vo1d C2 infrastructure

Selected DGA IoCs

  • semhz60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • ggqrb60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • eusji60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • uacfc60b33d7929a[.]com – Hostname – Possible Vo1d C2 DGA endpoint
  • qilqxfc975904fc9[.]top – Hostname – Possible Vo1d C2 DGA endpoint

MITRE ATT&CK Mapping

  • T1071.004 – Command and Control – DNS
  • T1568.002 – Command and Control – Domain Generation Algorithms
  • T1568.001 – Command and Control – Fast Flux DNS
  • T1571 – Command and Control – Non-Standard Port

[1] https://news.drweb.com/show/?lng=en&i=14900

[2] https://blog.xlab.qianxin.com/long-live-the-vo1d_botnet/

[3] https://mybroadband.co.za/news/broadcasting/596007-warning-for-south-africans-using-specific-types-of-tv-sticks.html

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content.

Continue reading
About the author
Christina Kreza
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI