Blog
/
AI
/
April 16, 2025

Introducing Version 2 of Darktrace’s Embedding Model for Investigation of Security Threats (DEMIST-2)

Learn how Darktrace’s DEMIST-2 embedding model delivers high-accuracy threat classification and detection across any environment, outperforming larger models with efficiency and precision.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Margaret Cunningham, PhD
VP, Security & AI Strategy, Field CISO
woman looking at laptop at deskDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Apr 2025

DEMIST-2 is Darktrace’s latest embedding model, built to interpret and classify security data with precision. It performs highly specialized tasks and can be deployed in any environment. Unlike generative language models, DEMIST-2 focuses on providing reliable, high-accuracy detections for critical security use cases.

DEMIST-2 Core Capabilities:  

  • Enhances Cyber AI Analyst’s ability to triage and reason about security incidents by providing expert representation and classification of security data, and as a part of our broader multi-layered AI system
  • Classifies and interprets security data, in contrast to language models that generate unpredictable open-ended text responses  
  • Incorporates new innovations in language model development and architecture, optimized specifically for cybersecurity applications
  • Deployable across cloud, on-prem, and edge environments, DEMIST-2 delivers low-latency, high-accuracy results wherever it runs. It enables inference anywhere.

Cybersecurity is constantly evolving, but the need to build precise and reliable detections remains constant in the face of new and emerging threats. Darktrace’s Embedding Model for Investigation of Security Threats (DEMIST-2) addresses these critical needs and is designed to create stable, high-fidelity representations of security data while also serving as a powerful classifier. For security teams, this means faster, more accurate threat detection with reduced manual investigation. DEMIST-2's efficiency also reduces the need to invest in massive computational resources, enabling effective protection at scale without added complexity.  

As an embedding language model, DEMIST-2 classifies and creates meaning out of complex security data. This equips our Self-Learning AI with the insights to compare, correlate, and reason with consistency and precision. Classifications and embeddings power core capabilities across our products where accuracy is not optional, as a part of our multi-layered approach to AI architecture.

Perhaps most importantly, DEMIST-2 features a compact architecture that delivers analyst-level insights while meeting diverse deployment needs across cloud, on-prem, and edge environments. Trained on a mixture of general and domain-specific data and designed to support task specialization, DEMIST-2 provides privacy-preserving inference anywhere, while outperforming larger general-purpose models in key cybersecurity tasks.

This proprietary language model reflects Darktrace's ongoing commitment to continually innovate our AI solutions to meet the unique challenges of the security industry. We approach AI differently, integrating diverse insights to solve complex cybersecurity problems. DEMIST-2 shows that a refined, optimized, domain-specific language model can deliver outsized results in an efficient package. We are redefining possibilities for cybersecurity, but our methods transfer readily to other domains. We are eager to share our findings to accelerate innovation in the field.  

The evolution of DEMIST-2

Key concepts:  

  • Tokens: The smallest units processed by language models. Text is split into fragments based on frequency patterns allowing models to handle unfamiliar words efficiently
  • Low-Rank Adaptors (LoRA): Small, trainable components added to a model that allow it to specialize in new tasks without retraining the full system. These components learn task-specific behavior while the original foundation model remains unchanged. This approach enables multiple specializations to coexist, and work simultaneously, without drastically increasing processing and memory requirements.

Darktrace began using large language models in our products in 2022. DEMIST-2 reflects significant advancements in our continuous experimentation and adoption of innovations in the field to address the unique needs of the security industry.  

It is important to note that Darktrace uses a range of language models throughout its products, but each one is chosen for the task at hand. Many others in the artificial intelligence (AI) industry are focused on broad application of large language models (LLMs) for open-ended text generation tasks. Our research shows that using LLMs for classification and embedding offers better, more reliable, results for core security use cases. We’ve found that using LLMs for open-ended outputs can introduce uncertainty through inaccurate and unreliable responses, which is detrimental for environments where precision matters. Generative AI should not be applied to use cases, such as investigation and threat detection, where the results can deeply matter. Thoughtful application of generative AI capabilities, such as drafting decoy phishing emails or crafting non-consequential summaries are helpful but still require careful oversight.

Data is perhaps the most important factor for building language models. The data used to train DEMIST-2 balanced the need for general language understanding with security expertise. We used both publicly available and proprietary datasets.  Our proprietary dataset included privacy-preserving data such as URIs observed in customer alerts, anonymized at source to remove PII and gathered via the Call Home and aianalyst.darktrace.com services. For additional details, read our Technical Paper.  

DEMIST-2 is our way of addressing the unique challenges posed by security data. It recognizes that security data follows its own patterns that are distinct from natural language. For example, hostnames, HTTP headers, and certificate fields often appear in predictable ways, but not necessarily in a way that mirrors natural language. General-purpose LLMs tend to break down when used in these types of highly specialized domains. They struggle to interpret structure and context, fragmenting important patterns during tokenization in ways that can have a negative impact on performance.  

DEMIST-2 was built to understand the language and structure of security data using a custom tokenizer built around a security-specific vocabulary of over 16,000 words. This tokenizer allows the model to process inputs more accurately like encoded payloads, file paths, subdomain chains, and command-line arguments. These types of data are often misinterpreted by general-purpose models.  

When the tokenizer encounters unfamiliar or irregular input, it breaks the data into smaller pieces so it can still be processed. The ability to fall back to individual bytes is critical in cybersecurity contexts where novel or obfuscated content is common. This approach combines precision with flexibility, supporting specialized understanding with resilience in the face of unpredictable data.  

Along with our custom tokenizer, we made changes to support task specialization without increasing model size. To do this, DEMIST-2 uses LoRA . LoRA is a technique that integrates lightweight components with the base model to allow it to perform specific tasks while keeping memory requirements low. By using LoRA, our proprietary representation of security knowledge can be shared and reused as a starting point for more highly specialized models, for example, it takes a different type of specialization to understand hostnames versus to understand sensitive filenames. DEMIST-2 dynamically adapts to these needs and performs them with purpose.  

The result is that DEMIST-2 is like having a room of specialists working on difficult problems together, while sharing a basic core set of knowledge that does not need to be repeated or reintroduced to every situation. Sharing a consistent base model also improves its maintainability and allows efficient deployment across diverse environments without compromising speed or accuracy.  

Tokenization and task specialization represent only a portion of the updates we have made to our embedding model. In conjunction with the changes described above, DEMIST-2 integrates several updated modeling techniques that reduce latency and improve detections. To learn more about these details, our training data and methods, and a full write-up of our results, please read our scientific whitepaper.

DEMIST-2 in action

In this section, we highlight DEMIST-2's embeddings and performance. First, we show a visualization of how DEMIST-2 classifies and interprets hostnames, and second, we present its performance in a hostname classification task in comparison to other language models.  

Embeddings can often feel abstract, so let’s make them real. Figure 1 below is a 2D visualization of how DEMIST-2 classifies and understands hostnames. In reality, these hostnames exist across many more dimensions, capturing details like their relationships with other hostnames, usage patterns, and contextual data. The colors and positions in the diagram represent a simplified view of how DEMIST-2 organizes and interprets these hostnames, providing insights into their meaning and connections. Just like an experienced human analyst can quickly identify and group hostnames based on patterns and context, DEMIST-2 does the same at scale.  

DEMIST-2 visualization of hostname relationships from a large web dataset.
Figure 1: DEMIST-2 visualization of hostname relationships from a large web dataset.

Next, let’s zoom in on two distinct clusters that DEMIST-2 recognizes. One cluster represents small businesses (Figure 2) and the other, Russian and Polish sites with similar numerical formats (Figure 3). These clusters demonstrate how DEMIST-2 can identify specific groupings based on real-world attributes such as regional patterns in website structures, common formats used by small businesses, and other properties such as its understanding of how websites relate to each other on the internet.

Cluster of small businesses
Figure 2: Cluster of small businesses
Figure 3: Cluster of Russian and Polish sites with a similar numerical format

The previous figures provided a view of how DEMIST-2 works. Figure 4 highlights DEMIST-2’s performance in a security-related classification task. The chart shows how DEMIST-2, with just 95 million parameters, achieves nearly 94% accuracy—making it the highest-performing model in the chart, despite being the smallest. In comparison, the larger model with 278 million parameters achieves only about 89% accuracy, showing that size doesn’t always mean better performance. Small models don’t mean poor performance. For many security-related tasks, DEMIST-2 outperforms much larger models.

Hostname classification task performance comparison against comparable open source foundation models
Figure 4: Hostname classification task performance comparison against comparable open source foundation models

With these examples of DEMIST-2 in action, we’ve shown how it excels in embedding and classifying security data while delivering high performance on specialized security tasks.  

The DEMIST-2 advantage

DEMIST-2 was built for precision and reliability. Our primary goal was to create a high-performance model capable of tackling complex cybersecurity tasks. Optimizing for efficiency and scalability came second, but it is a natural outcome of our commitment to building a strong, effective solution that is available to security teams working across diverse environments. It is an enormous benefit that DEMIST-2 is orders of magnitude smaller than many general-purpose models. However, and much more importantly, it significantly outperforms models in its capabilities and accuracy on security tasks.  

Finding a product that fits into an environment’s unique constraints used to mean that some teams had to settle for less powerful or less performant products. With DEMIST-2, data can remain local to the environment, is entirely separate from the data of other customers, and can even operate in environments without network connectivity. The size of our model allows for flexible deployment options while at the same time providing measurable performance advantages for security-related tasks.  

As security threats continue to evolve, we believe that purpose-built AI systems like DEMIST-2 will be essential tools for defenders, combining the power of modern language modeling with the specificity and reliability that builds trust and partnership between security practitioners and AI systems.

Conclusion

DEMIST-2 has additional architectural and deployment updates that improve performance and stability. These innovations contribute to our ability to minimize model size and memory constraints and reflect our dedication to meeting the data handling and privacy needs of security environments. In addition, these choices reflect our dedication to responsible AI practices.

DEMIST-2 is available in Darktrace 6.3, along with a new DIGEST model that uses GNNs and RNNs to score and prioritize threats with expert-level precision.

[related-resource]

Want more details?

Read the full research paper to explore how DEMIST-2 was built, trained, and optimized to meet the unique challenges of cybersecurity

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Margaret Cunningham, PhD
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

Compliance

/

November 25, 2025

UK Cyber Security & Resilience Bill: What Organizations Need to Know

Default blog imageDefault blog image

Why the Bill has been introduced

The UK’s cyber threat landscape has evolved dramatically since the 2018 NIS regime was introduced. Incidents such as the Synnovis attack against hospitals and the British Library ransomware attack show how quickly operational risk can become public harm. In this context, the UK Department for Science, Innovation and Technology estimates that cyber-attacks cost UK businesses around £14.7 billion each year.

At the same time, the widespread adoption of AI has expanded organisations’ attack surfaces and empowered threat actors to launch more effective and sophisticated activities, including crafting convincing phishing campaigns, exploiting vulnerabilities and initiating ransomware attacks at unprecedented speed and scale.  

The CSRB responds to these challenges by widening who is regulated, accelerating incident reporting and tightening supply chain accountability, while enabling rapid updates that keep pace with technology and emerging risks.

Key provisions of the Cyber Security and Resilience Bill

A wider set of organisations in scope

The Bill significantly broadens the range of organisations regulated under the NIS framework.

  • Managed service providers (MSPs) - medium and large MSPs, including MSSPs, managed SOCs, SIEM providers and similar services,will now fall under NIS obligations due to their systemic importance and privileged access to client systems. The Information Commissioner’s Office (ICO) will act as the regulator. Government analysis anticipates that a further 900 to 1,100 MSPs will be in scope.
  • Data infrastructure is now recognised as essential to the functioning of the economy and public services. Medium and large data centres, as well as enterprise facilities meeting specified thresholds, will be required to implement appropriate and proportionate measures to manage cyber risk. Oversight will be shared between DSIT and Ofcom, with Ofcom serving as the operational regulator.
  • Organisations that manage electrical loads for smart appliances, such as those supporting EV charging during peak times, are now within scope.

These additions sit alongside existing NIS-regulated sectors such as transport, energy, water, health, digital infrastructure, and certain digital services (including online marketplaces, search engines, and cloud computing).

Stronger supply chain requirements

Under the CSRB, regulators can now designate third-party suppliers as ‘designated critical suppliers’ (DCS) when certain threshold criteria are met and where disruption could have significant knock-on effects. Designated suppliers will be subject to the same security and incident-reporting obligations as Operators of Essential Services (OES) and Relevant Digital Service Providers (RDSPs).

Government will scope the supply chain duties for OES and RDSPs via secondary legislation, following consultation. infrastructure incidents where a single supplier’s compromise caused widespread disruption.

Faster incident reporting

Sector-specific regulators, 12 in total, will be responsible for implementing the CSRB, allowing for more effective and consistent reporting. In addition, the CSRB introduces a two-stage reporting process and expands incident reporting criteria. Regulated entities must submit an initial notification within 24 hours of becoming aware of a significant incident, followed by an incident report within 72 hours. Incident reporting criteria are also broadened to capture incidents beyond those which actually resulted in an interruption, ensuring earlier visibility for regulators and the National Cyber Security Centre (NCSC). The importance of information sharing across agencies, law enforcement and regulators is also facilitated by the CSRB.

The reforms also require data centres and managed service providers to notify affected customers where they are likely to have been impacted by a cyber incident.

An agile regulatory framework

To keep pace with technological change, the CSRB will enable the Secretary of State to update elements of the framework via secondary legislation. Supporting materials such as the NCSC Cyber Assessment Framework (CAF) are to be "put on a stronger footing” allowing for requirements to be more easily followed, managed and updated. Regulators will also now be able to recover full costs associated with NIS duties meaning they are better resourced to carry out their associated responsibilities.

Relevant Managed Service Providers must identify and take appropriate and proportionate measures to manage risks to the systems they rely on for providing services within the UK. Importantly, these measures must, having regard to the state of the art, ensure a level of security appropriate to the risk posed, and prevent or minimise the impact of incidents.

The Secretary of State will also be empowered to issue a Statement of Strategic Priorities, setting cross-regime outcomes to drive consistency across the 12 competent authorities responsible for implementation.

Penalties

The enforcement framework will be strengthened, with maximum fines aligned with comparable regimes such as the GDPR, which incorporate maximums tied to turnover. Under the CSRB, maximum penalties for more serious breaches could be up to £17 million or 4% of global turnover, whichever is higher.

Next steps

The Bill is expected to progress through Parliament over the course of 2025 and early 2026, with Royal Assent anticipated in 2026. Once enacted, most operational measures will not take immediate effect. Instead, Government will bring key components into force through secondary legislation following further consultation, providing regulators and industry with time to adjust practices and prepare for compliance.

Anticipated timeline

  • 2025-2026: Parliamentary scrutiny and passage;
  • 2026: Royal Assent;  
  • 2026 consultation: DSIT intends to consult on detailed implementation;
  • From 2026 onwards: Phased implementation via secondary legislation, following further consultation led by DSIT.

How Darktrace can help

The CSRB represents a step change in how the UK approaches digital risk, shifting the focus from compliance to resilience.

Darktrace can help organisations operationalise this shift by using AI to detect, investigate and respond to emerging threats at machine speed, before they escalate into incidents requiring regulatory notification. Proactive tools which can be included in the Darktrace platform allow security teams to stress-test defences, map supply chain exposure and rehearse recovery scenarios, directly supporting the CSRB’s focus on resilience, transparency and rapid response. If an incident does occur, Darktrace’s autonomous agent, Cyber AI Analyst, can accelerate investigations and provide a view of every stage of the attack chain, supporting timely reporting.  

Darktrace’s AI can provide organisations with a vital lens into both internal and external cyber risk. By continuously learning patterns of behaviour across interconnected systems, Darktrace can flag potential compromise or disruption to detect supply chain risk before it impacts your organisation.

In a landscape where compliance and resilience go hand in hand, Darktrace can equip organisations to stay ahead of both evolving threats and evolving regulatory requirements.

[related-resource]

Continue reading
About the author
The Darktrace Community

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI