Blog
/
AI
/
April 16, 2025

Introducing Version 2 of Darktrace’s Embedding Model for Investigation of Security Threats (DEMIST-2)

Learn how Darktrace’s DEMIST-2 embedding model delivers high-accuracy threat classification and detection across any environment, outperforming larger models with efficiency and precision.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Margaret Cunningham, PhD
Director, Security & AI Strategy, Field CISO
woman looking at laptop at deskDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Apr 2025

DEMIST-2 is Darktrace’s latest embedding model, built to interpret and classify security data with precision. It performs highly specialized tasks and can be deployed in any environment. Unlike generative language models, DEMIST-2 focuses on providing reliable, high-accuracy detections for critical security use cases.

DEMIST-2 Core Capabilities:  

  • Enhances Cyber AI Analyst’s ability to triage and reason about security incidents by providing expert representation and classification of security data, and as a part of our broader multi-layered AI system
  • Classifies and interprets security data, in contrast to language models that generate unpredictable open-ended text responses  
  • Incorporates new innovations in language model development and architecture, optimized specifically for cybersecurity applications
  • Deployable across cloud, on-prem, and edge environments, DEMIST-2 delivers low-latency, high-accuracy results wherever it runs. It enables inference anywhere.

Cybersecurity is constantly evolving, but the need to build precise and reliable detections remains constant in the face of new and emerging threats. Darktrace’s Embedding Model for Investigation of Security Threats (DEMIST-2) addresses these critical needs and is designed to create stable, high-fidelity representations of security data while also serving as a powerful classifier. For security teams, this means faster, more accurate threat detection with reduced manual investigation. DEMIST-2's efficiency also reduces the need to invest in massive computational resources, enabling effective protection at scale without added complexity.  

As an embedding language model, DEMIST-2 classifies and creates meaning out of complex security data. This equips our Self-Learning AI with the insights to compare, correlate, and reason with consistency and precision. Classifications and embeddings power core capabilities across our products where accuracy is not optional, as a part of our multi-layered approach to AI architecture.

Perhaps most importantly, DEMIST-2 features a compact architecture that delivers analyst-level insights while meeting diverse deployment needs across cloud, on-prem, and edge environments. Trained on a mixture of general and domain-specific data and designed to support task specialization, DEMIST-2 provides privacy-preserving inference anywhere, while outperforming larger general-purpose models in key cybersecurity tasks.

This proprietary language model reflects Darktrace's ongoing commitment to continually innovate our AI solutions to meet the unique challenges of the security industry. We approach AI differently, integrating diverse insights to solve complex cybersecurity problems. DEMIST-2 shows that a refined, optimized, domain-specific language model can deliver outsized results in an efficient package. We are redefining possibilities for cybersecurity, but our methods transfer readily to other domains. We are eager to share our findings to accelerate innovation in the field.  

The evolution of DEMIST-2

Key concepts:  

  • Tokens: The smallest units processed by language models. Text is split into fragments based on frequency patterns allowing models to handle unfamiliar words efficiently
  • Low-Rank Adaptors (LoRA): Small, trainable components added to a model that allow it to specialize in new tasks without retraining the full system. These components learn task-specific behavior while the original foundation model remains unchanged. This approach enables multiple specializations to coexist, and work simultaneously, without drastically increasing processing and memory requirements.

Darktrace began using large language models in our products in 2022. DEMIST-2 reflects significant advancements in our continuous experimentation and adoption of innovations in the field to address the unique needs of the security industry.  

It is important to note that Darktrace uses a range of language models throughout its products, but each one is chosen for the task at hand. Many others in the artificial intelligence (AI) industry are focused on broad application of large language models (LLMs) for open-ended text generation tasks. Our research shows that using LLMs for classification and embedding offers better, more reliable, results for core security use cases. We’ve found that using LLMs for open-ended outputs can introduce uncertainty through inaccurate and unreliable responses, which is detrimental for environments where precision matters. Generative AI should not be applied to use cases, such as investigation and threat detection, where the results can deeply matter. Thoughtful application of generative AI capabilities, such as drafting decoy phishing emails or crafting non-consequential summaries are helpful but still require careful oversight.

Data is perhaps the most important factor for building language models. The data used to train DEMIST-2 balanced the need for general language understanding with security expertise. We used both publicly available and proprietary datasets.  Our proprietary dataset included privacy-preserving data such as URIs observed in customer alerts, anonymized at source to remove PII and gathered via the Call Home and aianalyst.darktrace.com services. For additional details, read our Technical Paper.  

DEMIST-2 is our way of addressing the unique challenges posed by security data. It recognizes that security data follows its own patterns that are distinct from natural language. For example, hostnames, HTTP headers, and certificate fields often appear in predictable ways, but not necessarily in a way that mirrors natural language. General-purpose LLMs tend to break down when used in these types of highly specialized domains. They struggle to interpret structure and context, fragmenting important patterns during tokenization in ways that can have a negative impact on performance.  

DEMIST-2 was built to understand the language and structure of security data using a custom tokenizer built around a security-specific vocabulary of over 16,000 words. This tokenizer allows the model to process inputs more accurately like encoded payloads, file paths, subdomain chains, and command-line arguments. These types of data are often misinterpreted by general-purpose models.  

When the tokenizer encounters unfamiliar or irregular input, it breaks the data into smaller pieces so it can still be processed. The ability to fall back to individual bytes is critical in cybersecurity contexts where novel or obfuscated content is common. This approach combines precision with flexibility, supporting specialized understanding with resilience in the face of unpredictable data.  

Along with our custom tokenizer, we made changes to support task specialization without increasing model size. To do this, DEMIST-2 uses LoRA . LoRA is a technique that integrates lightweight components with the base model to allow it to perform specific tasks while keeping memory requirements low. By using LoRA, our proprietary representation of security knowledge can be shared and reused as a starting point for more highly specialized models, for example, it takes a different type of specialization to understand hostnames versus to understand sensitive filenames. DEMIST-2 dynamically adapts to these needs and performs them with purpose.  

The result is that DEMIST-2 is like having a room of specialists working on difficult problems together, while sharing a basic core set of knowledge that does not need to be repeated or reintroduced to every situation. Sharing a consistent base model also improves its maintainability and allows efficient deployment across diverse environments without compromising speed or accuracy.  

Tokenization and task specialization represent only a portion of the updates we have made to our embedding model. In conjunction with the changes described above, DEMIST-2 integrates several updated modeling techniques that reduce latency and improve detections. To learn more about these details, our training data and methods, and a full write-up of our results, please read our scientific whitepaper.

DEMIST-2 in action

In this section, we highlight DEMIST-2's embeddings and performance. First, we show a visualization of how DEMIST-2 classifies and interprets hostnames, and second, we present its performance in a hostname classification task in comparison to other language models.  

Embeddings can often feel abstract, so let’s make them real. Figure 1 below is a 2D visualization of how DEMIST-2 classifies and understands hostnames. In reality, these hostnames exist across many more dimensions, capturing details like their relationships with other hostnames, usage patterns, and contextual data. The colors and positions in the diagram represent a simplified view of how DEMIST-2 organizes and interprets these hostnames, providing insights into their meaning and connections. Just like an experienced human analyst can quickly identify and group hostnames based on patterns and context, DEMIST-2 does the same at scale.  

DEMIST-2 visualization of hostname relationships from a large web dataset.
Figure 1: DEMIST-2 visualization of hostname relationships from a large web dataset.

Next, let’s zoom in on two distinct clusters that DEMIST-2 recognizes. One cluster represents small businesses (Figure 2) and the other, Russian and Polish sites with similar numerical formats (Figure 3). These clusters demonstrate how DEMIST-2 can identify specific groupings based on real-world attributes such as regional patterns in website structures, common formats used by small businesses, and other properties such as its understanding of how websites relate to each other on the internet.

Cluster of small businesses
Figure 2: Cluster of small businesses
Figure 3: Cluster of Russian and Polish sites with a similar numerical format

The previous figures provided a view of how DEMIST-2 works. Figure 4 highlights DEMIST-2’s performance in a security-related classification task. The chart shows how DEMIST-2, with just 95 million parameters, achieves nearly 94% accuracy—making it the highest-performing model in the chart, despite being the smallest. In comparison, the larger model with 278 million parameters achieves only about 89% accuracy, showing that size doesn’t always mean better performance. Small models don’t mean poor performance. For many security-related tasks, DEMIST-2 outperforms much larger models.

Hostname classification task performance comparison against comparable open source foundation models
Figure 4: Hostname classification task performance comparison against comparable open source foundation models

With these examples of DEMIST-2 in action, we’ve shown how it excels in embedding and classifying security data while delivering high performance on specialized security tasks.  

The DEMIST-2 advantage

DEMIST-2 was built for precision and reliability. Our primary goal was to create a high-performance model capable of tackling complex cybersecurity tasks. Optimizing for efficiency and scalability came second, but it is a natural outcome of our commitment to building a strong, effective solution that is available to security teams working across diverse environments. It is an enormous benefit that DEMIST-2 is orders of magnitude smaller than many general-purpose models. However, and much more importantly, it significantly outperforms models in its capabilities and accuracy on security tasks.  

Finding a product that fits into an environment’s unique constraints used to mean that some teams had to settle for less powerful or less performant products. With DEMIST-2, data can remain local to the environment, is entirely separate from the data of other customers, and can even operate in environments without network connectivity. The size of our model allows for flexible deployment options while at the same time providing measurable performance advantages for security-related tasks.  

As security threats continue to evolve, we believe that purpose-built AI systems like DEMIST-2 will be essential tools for defenders, combining the power of modern language modeling with the specificity and reliability that builds trust and partnership between security practitioners and AI systems.

Conclusion

DEMIST-2 has additional architectural and deployment updates that improve performance and stability. These innovations contribute to our ability to minimize model size and memory constraints and reflect our dedication to meeting the data handling and privacy needs of security environments. In addition, these choices reflect our dedication to responsible AI practices.

DEMIST-2 is available in Darktrace 6.3, along with a new DIGEST model that uses GNNs and RNNs to score and prioritize threats with expert-level precision.

[related-resource]

Want more details?

Read the full research paper to explore how DEMIST-2 was built, trained, and optimized to meet the unique challenges of cybersecurity

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Margaret Cunningham, PhD
Director, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

Network

/

June 27, 2025

Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)

login on laptop dual factor authenticationDefault blog imageDefault blog image

What is Blind Eagle?

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombian organizations.

Blind Eagle characteristically targets government institutions, financial organizations, and critical infrastructure [1][2].

Attacks carried out by Blind Eagle actors typically start with a phishing email and the group have been observed utilizing various Remote Access Trojans (RAT) variants, which often have in-built methods for hiding command-and-control (C2) traffic from detection [3].

What we know about Blind Eagle from a recent campaign

Since November 2024, Blind Eagle actors have been conducting an ongoing campaign targeting Colombian organizations [1].

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

Despite Microsoft patching this vulnerability in November 2024 [1][4], Blind Eagle actors have continued to exploit the minimal interaction mechanism, though no longer with the intent of harvesting NTLMv2 password hashes. Instead, phishing emails are sent to targets containing a malicious URL which, when clicked, initiates the download of a malicious file. This file is then triggered by minimal user interaction.

Clicking on the file triggers a WebDAV request, with a connection being made over HTTP port 80 using the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19044’. WebDAV is a transmission protocol which allows files or complete directories to be made available through the internet, and to be transmitted to devices [5]. The next stage payload is then downloaded via another WebDAV request and malware is executed on the target device.

Attackers are notified when a recipient downloads the malicious files they send, providing an insight into potential targets [1].

Darktrace’s coverage of Blind Eagle

In late February 2025, Darktrace observed activity assessed with medium confidence to be  associated with Blind Eagle on the network of a customer in Colombia.

Within a period of just five hours, Darktrace / NETWORK detected a device being redirected through a rare external location, downloading multiple executable files, and ultimately exfiltrating data from the customer’s environment.

Since the customer did not have Darktrace’s Autonomous Response capability enabled on their network, no actions were taken to contain the compromise, allowing it to escalate until the customer’s security team responded to the alerts provided by Darktrace.

Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany. Multiple open-source intelligence (OSINT) providers have since linked this endpoint with phishing and malware campaigns [9].

The device then proceeded to download the executable file hxxp://62[.]60[.]226[.]112/file/3601_2042.exe.

Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Figure 1: Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.
Figure 2: Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.

The device was then observed making unusual connections to the rare endpoint 21ene.ip-ddns[.]com and performing unusual external data activity.

This dynamic DNS endpoint allows a device to access an endpoint using a domain name in place of a changing IP address. Dynamic DNS services ensure the DNS record of a domain name is automatically updated when the IP address changes. As such, malicious actors can use these services and endpoints to dynamically establish connections to C2 infrastructure [6].

Further investigation into this dynamic endpoint using OSINT revealed multiple associations with previous likely Blind Eagle compromises, as well as Remcos malware, a RAT commonly deployed via phishing campaigns [7][8][10].

Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.
Figure 3: Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.

Shortly after this, Darktrace observed the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19045’, indicating usage of the aforementioned transmission protocol WebDAV. The device was subsequently observed connected to an endpoint associated with Github and downloading data, suggesting that the device was retrieving a malicious tool or payload. The device then began to communicate to the malicious endpoint diciembrenotasenclub[.]longmusic[.]com over the new TCP port 1512 [11].

Around this time, the device was also observed uploading data to the endpoints 21ene.ip-ddns[.]com and diciembrenotasenclub[.]longmusic[.]com, with transfers of 60 MiB and 5.6 MiB observed respectively.

Figure 4: UI graph showing external data transfer activity.

This chain of activity triggered an Enhanced Monitoring model alert in Darktrace / NETWORK. These high-priority model alerts are designed to trigger in response to higher fidelity indicators of compromise (IoCs), suggesting that a device is performing activity consistent with a compromise.

 Darktrace’s detection of initial attack chain activity.
Figure 5: Darktrace’s detection of initial attack chain activity.

A second Enhanced Monitoring model was also triggered by this device following the download of the aforementioned executable file (hxxp://62[.]60[.]226[.]112/file/3601_2042.exe) and the observed increase in C2 activity.

Following this activity, Darktrace continued to observe the device beaconing to the 21ene.ip-ddns[.]com endpoint.

Darktrace’s Cyber AI Analyst was able to correlate each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 6: Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 7: Cyber AI Analyst’s detection of the affected device’s broader connectivity throughout the course of the attack.

As the affected customer did not have Darktrace’s Autonomous Response configured at the time, the attack was able to progress unabated. Had Darktrace been properly enabled, it would have been able to take a number of actions to halt the escalation of the attack.

For example, the unusual beaconing connections and the download of an unexpected file from an uncommon location would have been shut down by blocking the device from making external connections to the relevant destinations.

Conclusion

The persistence of Blind Eagle and ability to adapt its tactics, even after patches were released, and the speed at which the group were able to continue using pre-established TTPs highlights that timely vulnerability management and patch application, while essential, is not a standalone defense.

Organizations must adopt security solutions that use anomaly-based detection to identify emerging and adapting threats by recognizing deviations in user or device behavior that may indicate malicious activity. Complementing this with an autonomous decision maker that can identify, connect, and contain compromise-like activity is crucial for safeguarding organizational networks against constantly evolving and sophisticated threat actors.

Credit to Charlotte Thompson (Senior Cyber Analyst), Eugene Chua (Principal Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

IoCs

IoC – Type - Confidence
Microsoft-WebDAV-MiniRedir/10.0.19045 – User Agent

62[.]60[.]226[.]112 – IP – Medium Confidence

hxxp://62[.]60[.]226[.]112/file/3601_2042.exe – Payload Download – Medium Confidence

21ene.ip-ddns[.]com – Dynamic DNS Endpoint – Medium Confidence

diciembrenotasenclub[.]longmusic[.]com  - Hostname – Medium Confidence

Darktrace’s model alert coverage

Anomalous File / Suspicious HTTP Redirect
Anomalous File / EXE from Rare External Location
Anomalous File / Multiple EXE from Rare External Location
Anomalous Server Activity / Outgoing from Server
Unusual Activity / Unusual External Data to New Endpoint
Device / Anomalous Github Download
Anomalous Connection / Multiple Connections to New External TCP Port
Device / Initial Attack Chain Activity
Anomalous Server Activity / Rare External from Server
Compromise / Suspicious File and C2
Compromise / Fast Beaconing to DGA
Compromise / Large Number of Suspicious Failed Connections
Device / Large Number of Model Alert

Mitre Attack Mapping:

Tactic – Technique – Technique Name

Initial Access - T1189 – Drive-by Compromise
Initial Access - T1190 – Exploit Public-Facing Application
Initial Access ICS - T0862 – Supply Chain Compromise
Initial Access ICS - T0865 – Spearphishing Attachment
Initial Access ICS - T0817 - Drive-by Compromise
Resource Development - T1588.001 – Malware
Lateral Movement ICS - T0843 – Program Download
Command and Control - T1105 - Ingress Tool Transfer
Command and Control - T1095 – Non-Application Layer Protocol
Command and Control - T1571 – Non-Standard Port
Command and Control - T1568.002 – Domain Generation Algorithms
Command and Control ICS - T0869 – Standard Application Layer Protocol
Evasion ICS - T0849 – Masquerading
Exfiltration - T1041 – Exfiltration Over C2 Channel
Exfiltration - T1567.002 – Exfiltration to Cloud Storage

References

1)    https://research.checkpoint.com/2025/blind-eagle-and-justice-for-all/

2)    https://assets.kpmg.com/content/dam/kpmgsites/in/pdf/2025/04/kpmg-ctip-blind-eagle-01-apr-2025.pdf.coredownload.inline.pdf

3)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-remote-access-trojan/#:~:text=They%20might%20be%20attached%20to,remote%20access%20or%20system%20administration

4)    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-43451

5)    https://www.ionos.co.uk/digitalguide/server/know-how/webdav/

6)    https://vercara.digicert.com/resources/dynamic-dns-resolution-as-an-obfuscation-technique

7)    https://threatfox.abuse.ch/ioc/1437795

8)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/remcos-malware/

9)    https://www.virustotal.com/gui/url/b3189db6ddc578005cb6986f86e9680e7f71fe69f87f9498fa77ed7b1285e268

10) https://www.virustotal.com/gui/domain/21ene.ip-ddns.com

11) https://www.virustotal.com/gui/domain/diciembrenotasenclub.longmusic.com/community

Continue reading
About the author
Charlotte Thompson
Cyber Analyst

Blog

/

Email

/

June 18, 2025

Darktrace Collaborates with Microsoft: Unifying Email Security with a Shared Vision

Default blog imageDefault blog image

In today’s threat landscape, email remains the most targeted vector for cyberattacks. Organizations require not only multi-layered defenses but also advanced, integrated systems that work collaboratively to proactively mitigate threats before they cause damage

That’s why we’re proud to announce a new integration between Darktrace / EMAIL and Microsoft Defender for Office 365, delivering a Unified Quarantine experience that empowers security teams with seamless visibility, control, and response across both platforms.

This announcement builds on a strong and growing collaboration. In 2024, Darktrace was honored as Microsoft UK Partner of the Year and recognized as a Security Trailblazer at the annual Microsoft Security 20/20 Awards, a testament to our shared commitment to innovation and customer-centric security.

A Shared Mission: Stopping Threats at Machine Speed

This integration is more than a technical milestone,as it’s a reflection of a shared mission: to protect organizations from both known and unknown threats, with efficiency, accuracy, and transparency.

  • Microsoft Defender for Office 365 delivers a comprehensive security framework that safeguards Microsoft 365 email and collaboration workloads leveraging advanced AI, global threat intelligence and information on known attack infrastructure.
  • Darktrace / EMAIL complements this with Self-Learning AI that understands the unique communication patterns within each organization, detecting subtle anomalies that evade traditional detection methods.

Together, we’re delivering multi-layered, adaptive protection that’s greater than the sum of its parts.

“Our integration with Microsoft gives security teams the tools they need to act faster and more precisely to detect and respond to threats,” said Jill Popelka, CEO of Darktrace. “Together, we’re strengthening defenses where it matters most to our customers: at the inbox.”

Unified Quarantine: One View, Total Clarity

The new Unified Quarantine experience gives customers a single pane of glass to view and manage email threatsregardless of which product took action. This means:

  • Faster investigations with consolidated visibility
  • Clear attribution of actions and outcomes across both platforms
  • Streamlined workflows for security teams managing complex environments

“This integration is a testament to the power of combining Microsoft’s global threat intelligence with Darktrace’s unique ability to understand the ‘self’ of an organization,” said Jack Stockdale, CTO of Darktrace. “Together, we’re delivering a new standard in proactive, adaptive email security.”

A New Era of Collaborative Cyber Defense

This collaboration represents a broader shift in cybersecurity: from siloed tools to integrated ecosystems. As attackers become more sophisticated, defenders must move faster, smarter, and in unison.

Through this integration, Darktrace and Microsoft establish a new standard for collaboration between native and third-party security solutions, enhancing not only threat detection but also comprehensive understanding and proactive measures against threats.

We’re excited to bring this innovation to our customers and continue building a future where AI and human expertise collaborate to secure the enterprise.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI