Blog
/
AI
/
April 16, 2025

AI Uncovered: Introducing Darktrace Incident Graph Evaluation for Security Threats (DIGEST)

Discover how Darktrace’s new DIGEST model enhances Cyber AI Analyst by using GNNs and RNNs to score and prioritize threats with expert-level precision before damage is done.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Margaret Cunningham, PhD
VP, Security & AI Strategy, Field CISO
man looking at computer screenDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Apr 2025

DIGEST advances how Cyber AI Analyst scores and prioritizes incidents. Trained on over a million anonymized incident graphs, our model brings deeper context to severity scoring by analyzing how threats are structured and how they evolve. DIGEST assesses threats as an expert, before damage is done. For more details beyond this overview, please read our Technical Research Paper.

Darktrace combines machine learning (ML) and artificial intelligence (AI) approaches using a multi-layered, multi-method approach. The result is an AI system that continuously ingests data from across an organization’s environment, learns from it, and adapts in real time. DIGEST adds a new layer to this system, specifically to our Cyber AI Analyst, the first and most experienced AI Analyst in cybersecurity, dedicated to refining how incidents are scored and prioritized. DIGEST improves what your team uses to focus on what matters the most first.

To build DIGEST, we combined Graph Neural Networks (GNNs) to interpret incident structure with Recurrent Neural Networks (RNNs) to analyze how incidents evolve over time. This pairing allows DIGEST to reliably determine the potential severity of an incident even at an early stage to give the Cyber AI Analyst a critical edge in identifying high-risk threats early and recognizing when activity is unlikely to escalate.

DIGEST works locally in real-time regardless of whether your Darktrace deployment is on prem or in the cloud, without requiring data to be sent externally for decisions to be made. It was built to support teams in all environments, including those with strict data controls and limited connectivity.

Our approach to AI is unique, drawing inspiration from multiple disciplines to tackle the toughest cybersecurity challenges. DIGEST demonstrates how a novel application of GNNs and RNNs improves the prioritization and triage of security incidents. By blending interdisciplinary expertise with innovative AI techniques, we are able to push the boundaries of what’s possible and deliver it where it is needed most. We are eager to share our findings to accelerate progress throughout the broader field of AI development.

DIGEST: Pattern, progression, and prioritization

Most security incidents start quietly. A device contacting an unusual domain. Credentials are used at unexpected hours. File access patterns shift. The fundamental challenge is not always detecting these anomalies but knowing what to address first. DIGEST gives us this capability.

To understand DIGEST, it helps to start with Cyber AI Analyst, a critical component of our Self-Learning AI system and a front-line triage partner in security investigations. It combines supervised and unsupervised machine learning (ML) techniques, natural language processing (NLP), and graph-based reasoning to investigate and summarize security incidents.

DIGEST was built as an additional layer of analysis within Cyber AI Analyst. It enhances its capabilities by refining how incidents are scored and prioritized, helping teams focus on what matters most more quickly. For a general view of the ML and AI methods that power Darktrace products, read our AI Arsenal whitepaper. This paper provides insights regarding the various approaches we use to detect, investigate, and prioritize threats.

Cyber AI Analyst is constantly investigating alerts and produces millions of critical incidents every year. The dynamic graphs produced by Cyber AI Analyst investigations represent an abstract understanding of security incidents that is fully anonymized and privacy preserving. This allowed us to use the Call Home and aianalyst.darktrace.com services to produce a dataset comprising the broad structure of millions of incidents that Cyber AI analyst detected on customer deployments, without containing any sensitive data. (Read our technical research paper for more details about our dataset).

The dynamic graphs from Cyber AI Analyst capture the structure of security incidents where nodes represent entities like users, devices or resources, and edges represent the multitude of relationships between them. As new activity is observed, the graph expands, capturing the progression of incidents over time. Our dataset contained everything from benign administrative behavior to full-scale ransomware attacks.

Unique data, unmatched insights

Key terms

Graph Neural Networks (GNNs): A type of neural network designed to analyze and interpret data structured as graphs, capturing relationships between nodes.

Recurrent Neural Networks (RNNs): A type of neural network designed to model sequences where the order of events matters, like how activity unfolds in a security incident.

The Cyber AI Analyst dataset used to train DIGEST reflects over a decade of work in AI paired with unmatched expertise in cybersecurity. Prior to training DIGEST on our incident graph data set, we performed rigorous data preprocessing to ensure to remove issues such as duplicate or ill-formed incidents. Additionally, to validate DIGEST’s outputs, expert security analysts assessed and verified the model’s scoring.

Transforming data into insights requires using the right strategies and techniques. Given the graphical nature of Cyber AI Analyst incident data, we used GNNs and RNNs to train DIGEST to understand incidents and how they are likely to change over time. Change does not always mean escalation. DIGEST’s enhanced scoring also keeps potentially legitimate or low-severity activity from being prioritized over threats that are more likely to get worse. At the beginning, all incidents might look the same to a person. To DIGEST, it looks like the beginning of a pattern.

As a result, DIGEST enhances our understanding of security incidents by evaluating the structure of the incident, probable next steps in an incident’s trajectory, and how likely it is to grow into a larger event.

To illustrate these capabilities in action, we are sharing two examples of DIGEST’s scoring adjustments from use cases within our customers’ environments.

First, Figure 1 shows the graphical representation of a ransomware attack, and Figure 2 shows how DIGEST scored incident progression of that ransomware attack. At hour two, DIGEST’s score escalated to 95% well before observation of data encryption. This means that prior to seeing malicious encryption behaviors, DIGEST understood the structure of the incident and flagged these early activities as high-likelihood precursors to a severe event. Early detection, especially when flagged prior to malicious encryption behaviors, gives security teams a valuable head start and can minimize the overall impact of the threat, Darktrace Autonomous Response can also be enabled by Cyber AI Analyst to initiate an immediate action to stop the progression, allowing the human security team time to investigate and implement next steps.

Graph representation of a ransomware attack
Figure 1: Graph representation of a ransomware attack
Timeline of DIGEST incident score escalation. Note that timestep does not equate to hours, the spike in score to 95% occurred approximately 2 hours into the attack, prior to data encryption.
Figure 2:  Timeline of DIGEST incident score escalation. Note that timestep does not equate to hours, the spike in score to 95% occurred approximately 2 hours into the attack, prior to data encryption.

In contrast, our second example shown in Figure 3 and Figure 4 illustrates how DIGEST’s analysis of an incident can help teams avoid wasting time on lower risk scenarios. In this instance, Figure 3 illustrates a graph of unusual administrative activity, where we observed connection to a large group of devices. However, the incident score remained low because DIGEST determined that high risk malicious activity was unlikely. This determination was based on what DIGEST observed in the incident's structure, what it assessed as the probable next steps in the incident lifecycle and how likely it was to grow into a larger adverse event.

Graph representation of unusual admin activity connecting to a large group of devices.
Figure 3: Graph representation of unusual admin activity connecting to a large group of devices.
Timeline of DIGEST incident scoring, where the score remained low as the unusual event was determined to be low risk.
Figure 4: Timeline of DIGEST incident scoring, where the score remained low as the unusual event was determined to be low risk.

These examples show the value of enhanced scoring. DIGEST helps teams act sooner on the threats that count and spend less time chasing the ones that do not.

The next phase of advanced detection is here

Darktrace understands what incidents look like. We have seen, investigated, and learned from them at scale, including over 90 million investigations in 2024. With DIGEST, we can share our deep understanding of incidents and their behaviors with you and triage these incidents using Cyber AI Analyst.

Our ability to innovate in this space is grounded in the maturity of our team and the experiences we have built upon in over a decade of building AI solutions for cybersecurity. This experience, along with our depth of understanding of our data, techniques, and strategic layering of AI/ML components has shaped every one of our steps forward.

With DIGEST, we are entering a new phase, with another line of defense that helps teams prioritize and reason over incidents and threats far earlier in an incident’s lifecycle. DIGEST understands your incidents when they start, making it easier for your team to act quickly and confidently.

DIGEST is available in Darktrace 6.3, along with a new embedding model – DEMIST-2 – designed to provide reliable, high-accuracy detections for critical security use cases.

[related-resource]

Want to learn more?

If you are curious about the details of DIGEST’s dataset, model design, training, experiments, and model deployment, read our technical brief.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Margaret Cunningham, PhD
VP, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

AI

/

December 23, 2025

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI & Attack Surface

Blog

/

AI

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

2026 cyber threat trendsDefault blog imageDefault blog image

Introduction: 2026 cyber trends

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk

In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy

Prompt Injection moves from theory to front-page breach

We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken

When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact

One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target

Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy

Increased commercialization of generative AI and AI assistants in cyber attacks

One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

-- Toby Lewis, Global Head of Threat Analysis

Conclusion

Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI