Blog
/
AI
/
April 16, 2025

AI Uncovered: Introducing Darktrace Incident Graph Evaluation for Security Threats (DIGEST)

Discover how Darktrace’s new DIGEST model enhances Cyber AI Analyst by using GNNs and RNNs to score and prioritize threats with expert-level precision before damage is done.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Margaret Cunningham, PhD
Director, Security & AI Strategy, Field CISO
man looking at computer screenDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Apr 2025

DIGEST advances how Cyber AI Analyst scores and prioritizes incidents. Trained on over a million anonymized incident graphs, our model brings deeper context to severity scoring by analyzing how threats are structured and how they evolve. DIGEST assesses threats as an expert, before damage is done. For more details beyond this overview, please read our Technical Research Paper.

Darktrace combines machine learning (ML) and artificial intelligence (AI) approaches using a multi-layered, multi-method approach. The result is an AI system that continuously ingests data from across an organization’s environment, learns from it, and adapts in real time. DIGEST adds a new layer to this system, specifically to our Cyber AI Analyst, the first and most experienced AI Analyst in cybersecurity, dedicated to refining how incidents are scored and prioritized. DIGEST improves what your team uses to focus on what matters the most first.

To build DIGEST, we combined Graph Neural Networks (GNNs) to interpret incident structure with Recurrent Neural Networks (RNNs) to analyze how incidents evolve over time. This pairing allows DIGEST to reliably determine the potential severity of an incident even at an early stage to give the Cyber AI Analyst a critical edge in identifying high-risk threats early and recognizing when activity is unlikely to escalate.

DIGEST works locally in real-time regardless of whether your Darktrace deployment is on prem or in the cloud, without requiring data to be sent externally for decisions to be made. It was built to support teams in all environments, including those with strict data controls and limited connectivity.

Our approach to AI is unique, drawing inspiration from multiple disciplines to tackle the toughest cybersecurity challenges. DIGEST demonstrates how a novel application of GNNs and RNNs improves the prioritization and triage of security incidents. By blending interdisciplinary expertise with innovative AI techniques, we are able to push the boundaries of what’s possible and deliver it where it is needed most. We are eager to share our findings to accelerate progress throughout the broader field of AI development.

DIGEST: Pattern, progression, and prioritization

Most security incidents start quietly. A device contacting an unusual domain. Credentials are used at unexpected hours. File access patterns shift. The fundamental challenge is not always detecting these anomalies but knowing what to address first. DIGEST gives us this capability.

To understand DIGEST, it helps to start with Cyber AI Analyst, a critical component of our Self-Learning AI system and a front-line triage partner in security investigations. It combines supervised and unsupervised machine learning (ML) techniques, natural language processing (NLP), and graph-based reasoning to investigate and summarize security incidents.

DIGEST was built as an additional layer of analysis within Cyber AI Analyst. It enhances its capabilities by refining how incidents are scored and prioritized, helping teams focus on what matters most more quickly. For a general view of the ML and AI methods that power Darktrace products, read our AI Arsenal whitepaper. This paper provides insights regarding the various approaches we use to detect, investigate, and prioritize threats.

Cyber AI Analyst is constantly investigating alerts and produces millions of critical incidents every year. The dynamic graphs produced by Cyber AI Analyst investigations represent an abstract understanding of security incidents that is fully anonymized and privacy preserving. This allowed us to use the Call Home and aianalyst.darktrace.com services to produce a dataset comprising the broad structure of millions of incidents that Cyber AI analyst detected on customer deployments, without containing any sensitive data. (Read our technical research paper for more details about our dataset).

The dynamic graphs from Cyber AI Analyst capture the structure of security incidents where nodes represent entities like users, devices or resources, and edges represent the multitude of relationships between them. As new activity is observed, the graph expands, capturing the progression of incidents over time. Our dataset contained everything from benign administrative behavior to full-scale ransomware attacks.

Unique data, unmatched insights

Key terms

Graph Neural Networks (GNNs): A type of neural network designed to analyze and interpret data structured as graphs, capturing relationships between nodes.

Recurrent Neural Networks (RNNs): A type of neural network designed to model sequences where the order of events matters, like how activity unfolds in a security incident.

The Cyber AI Analyst dataset used to train DIGEST reflects over a decade of work in AI paired with unmatched expertise in cybersecurity. Prior to training DIGEST on our incident graph data set, we performed rigorous data preprocessing to ensure to remove issues such as duplicate or ill-formed incidents. Additionally, to validate DIGEST’s outputs, expert security analysts assessed and verified the model’s scoring.

Transforming data into insights requires using the right strategies and techniques. Given the graphical nature of Cyber AI Analyst incident data, we used GNNs and RNNs to train DIGEST to understand incidents and how they are likely to change over time. Change does not always mean escalation. DIGEST’s enhanced scoring also keeps potentially legitimate or low-severity activity from being prioritized over threats that are more likely to get worse. At the beginning, all incidents might look the same to a person. To DIGEST, it looks like the beginning of a pattern.

As a result, DIGEST enhances our understanding of security incidents by evaluating the structure of the incident, probable next steps in an incident’s trajectory, and how likely it is to grow into a larger event.

To illustrate these capabilities in action, we are sharing two examples of DIGEST’s scoring adjustments from use cases within our customers’ environments.

First, Figure 1 shows the graphical representation of a ransomware attack, and Figure 2 shows how DIGEST scored incident progression of that ransomware attack. At hour two, DIGEST’s score escalated to 95% well before observation of data encryption. This means that prior to seeing malicious encryption behaviors, DIGEST understood the structure of the incident and flagged these early activities as high-likelihood precursors to a severe event. Early detection, especially when flagged prior to malicious encryption behaviors, gives security teams a valuable head start and can minimize the overall impact of the threat, Darktrace Autonomous Response can also be enabled by Cyber AI Analyst to initiate an immediate action to stop the progression, allowing the human security team time to investigate and implement next steps.

Graph representation of a ransomware attack
Figure 1: Graph representation of a ransomware attack
Timeline of DIGEST incident score escalation. Note that timestep does not equate to hours, the spike in score to 95% occurred approximately 2 hours into the attack, prior to data encryption.
Figure 2:  Timeline of DIGEST incident score escalation. Note that timestep does not equate to hours, the spike in score to 95% occurred approximately 2 hours into the attack, prior to data encryption.

In contrast, our second example shown in Figure 3 and Figure 4 illustrates how DIGEST’s analysis of an incident can help teams avoid wasting time on lower risk scenarios. In this instance, Figure 3 illustrates a graph of unusual administrative activity, where we observed connection to a large group of devices. However, the incident score remained low because DIGEST determined that high risk malicious activity was unlikely. This determination was based on what DIGEST observed in the incident's structure, what it assessed as the probable next steps in the incident lifecycle and how likely it was to grow into a larger adverse event.

Graph representation of unusual admin activity connecting to a large group of devices.
Figure 3: Graph representation of unusual admin activity connecting to a large group of devices.
Timeline of DIGEST incident scoring, where the score remained low as the unusual event was determined to be low risk.
Figure 4: Timeline of DIGEST incident scoring, where the score remained low as the unusual event was determined to be low risk.

These examples show the value of enhanced scoring. DIGEST helps teams act sooner on the threats that count and spend less time chasing the ones that do not.

The next phase of advanced detection is here

Darktrace understands what incidents look like. We have seen, investigated, and learned from them at scale, including over 90 million investigations in 2024. With DIGEST, we can share our deep understanding of incidents and their behaviors with you and triage these incidents using Cyber AI Analyst.

Our ability to innovate in this space is grounded in the maturity of our team and the experiences we have built upon in over a decade of building AI solutions for cybersecurity. This experience, along with our depth of understanding of our data, techniques, and strategic layering of AI/ML components has shaped every one of our steps forward.

With DIGEST, we are entering a new phase, with another line of defense that helps teams prioritize and reason over incidents and threats far earlier in an incident’s lifecycle. DIGEST understands your incidents when they start, making it easier for your team to act quickly and confidently.

DIGEST is available in Darktrace 6.3, along with a new embedding model – DEMIST-2 – designed to provide reliable, high-accuracy detections for critical security use cases.

[related-resource]

Want to learn more?

If you are curious about the details of DIGEST’s dataset, model design, training, experiments, and model deployment, read our technical brief.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Margaret Cunningham, PhD
Director, Security & AI Strategy, Field CISO

More in this series

No items found.

Blog

/

/

May 16, 2025

Catching a RAT: How Darktrace neutralized AsyncRAT

woman working on laptopDefault blog imageDefault blog image

What is a RAT?

As the proliferation of new and more advanced cyber threats continues, the Remote Access Trojan (RAT) remains a classic tool in a threat actor's arsenal. RATs, whether standardized or custom-built, enable attackers to remotely control compromised devices, facilitating a range of malicious activities.

What is AsyncRAT?

Since its first appearance in 2019, AsyncRAT has become increasingly popular among a wide range of threat actors, including cybercriminals and advanced persistent threat (APT) groups.

Originally available on GitHub as a legitimate tool, its open-source nature has led to widespread exploitation. AsyncRAT has been used in numerous campaigns, including prolonged attacks on essential US infrastructure, and has even reportedly penetrated the Chinese cybercriminal underground market [1] [2].

How does AsyncRAT work?

Original source code analysis of AsyncRAT demonstrates that once installed, it establishes persistence via techniques such as creating scheduled tasks or registry keys and uses SeDebugPrivilege to gain elevated privileges [3].

Its key features include:

  • Keylogging
  • File search
  • Remote audio and camera access
  • Exfiltration techniques
  • Staging for final payload delivery

These are generally typical functions found in traditional RATs. However, it also boasts interesting anti-detection capabilities. Due to the popularity of Virtual Machines (VM) and sandboxes for dynamic analysis, this RAT checks for the manufacturer via the WMI query 'Select * from Win32_ComputerSystem' and looks for strings containing 'VMware' and 'VirtualBox' [4].

Darktrace’s coverage of AsyncRAT

In late 2024 and early 2025, Darktrace observed a spike in AsyncRAT activity across various customer environments. Multiple indicators of post-compromise were detected, including devices attempting or successfully connecting to endpoints associated with AsyncRAT.

On several occasions, Darktrace identified a clear association with AsyncRAT through the digital certificates of the highlighted SSL endpoints. Darktrace’s Real-time Detection effectively identified and alerted on suspicious activities related to AsyncRAT. In one notable incident, Darktrace’s Autonomous Response promptly took action to contain the emerging threat posed by AsyncRAT.

AsyncRAT attack overview

On December 20, 2024, Darktrace first identified the use of AsyncRAT, noting a device successfully establishing SSL connections to the uncommon external IP 185.49.126[.]50 (AS199654 Oxide Group Limited) via port 6606. The IP address appears to be associated with AsyncRAT as flagged by open-source intelligence (OSINT) sources [5]. This activity triggered the device to alert the ‘Anomalous Connection / Rare External SSL Self-Signed' model.

Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.
Figure 1: Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.

Following these initial connections, the device was observed making a significantly higher number of connections to the same endpoint 185.49.126[.]50 via port 6606 over an extended period. This pattern suggested beaconing activity and triggered the 'Compromise/Beaconing Activity to External Rare' model alert.

Further analysis of the original source code, available publicly, outlines the default ports used by AsyncRAT clients for command-and-control (C2) communications [6]. It reveals that port 6606 is the default port for creating a new AsyncRAT client. Darktrace identified both the Certificate Issuer and the Certificate Subject as "CN=AsyncRAT Server". This SSL certificate encrypts the packets between the compromised system and the server. These indicators of compromise (IoCs) detected by Darktrace further suggest that the device was successfully connecting to a server associated with AsyncRAT.

Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Figure 2: Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Figure 3: Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.
Figure 4: Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.

A few days later, the same device was detected making numerous connections to a different IP address, 195.26.255[.]81 (AS40021 NL-811-40021), via various ports including 2106, 6606, 7707, and 8808. Notably, ports 7707 and 8808 are also default ports specified in the original AsyncRAT source code [6].

Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.
Figure 5: Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.

Similar to the activity observed with the first endpoint, 185.49.126[.]50, the Certificate Issuer for the connections to 195.26.255[.]81 was identified as "CN=AsyncRAT Server". Further OSINT investigation confirmed associations between the IP address 195.26.255[.]81 and AsyncRAT [7].

Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server
Figure 6: Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server.

Once again, Darktrace's Autonomous Response acted swiftly, blocking the connections to 195.26.255[.]81 throughout the observed AsyncRAT activity.

Figure 7: Darktrace's Autonomous Response actions were applied against the suspicious IP address 195.26.255[.]81.

A day later, Darktrace again alerted to further suspicious activity from the device. This time, connections to the suspicious endpoint 'kashuub[.]com' and IP address 191.96.207[.]246 via port 8041 were observed. Further analysis of port 8041 suggests it is commonly associated with ScreenConnect or Xcorpeon ASIC Carrier Ethernet Transport [8]. ScreenConnect has been observed in recent campaign’s where AsyncRAT has been utilized [9]. Additionally, one of the ASN’s observed, namely ‘ASN Oxide Group Limited’, was seen in both connections to kashuub[.]com and 185.49.126[.]50.

This could suggest a parallel between the two endpoints, indicating they might be hosting AsyncRAT C2 servers, as inferred from our previous analysis of the endpoint 185.49.126[.]50 and its association with AsyncRAT [5]. OSINT reporting suggests that the “kashuub[.]com” endpoint may be associated with ScreenConnect scam domains, further supporting the assumption that the endpoint could be a C2 server.

Darktrace’s Autonomous Response technology was once again able to support the customer here, blocking connections to “kashuub[.]com”. Ultimately, this intervention halted the compromise and prevented the attack from escalating or any sensitive data from being exfiltrated from the customer’s network into the hands of the threat actors.

Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.
Figure 8: Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.

Due to the popularity of this RAT, it is difficult to determine the motive behind the attack; however, from existing knowledge of what the RAT does, we can assume accessing and exfiltrating sensitive customer data may have been a factor.

Conclusion

While some cybercriminals seek stability and simplicity, openly available RATs like AsyncRAT provide the infrastructure and open the door for even the most amateur threat actors to compromise sensitive networks. As the cyber landscape continually shifts, RATs are now being used in all types of attacks.

Darktrace’s suite of AI-driven tools provides organizations with the infrastructure to achieve complete visibility and control over emerging threats within their network environment. Although AsyncRAT’s lack of concealment allowed Darktrace to quickly detect the developing threat and alert on unusual behaviors, it was ultimately Darktrace Autonomous Response's consistent blocking of suspicious connections that prevented a more disruptive attack.

Credit to Isabel Evans (Cyber Analyst), Priya Thapa (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

  • Real-time Detection Models
       
    • Compromise / Suspicious SSL Activity
    •  
    • Compromise / Beaconing Activity To      External Rare
    •  
    • Compromise / High Volume of      Connections with Beacon Score
    •  
    • Anomalous Connection / Suspicious      Self-Signed SSL
    •  
    • Compromise / Sustained SSL or HTTP      Increase
    •  
    • Compromise / SSL Beaconing to Rare      Destination
    •  
    • Compromise / Suspicious Beaconing      Behaviour
    •  
    • Compromise / Large Number of      Suspicious Failed Connections
  •  
  • Autonomous     Response Models
       
    • Antigena / Network / Significant      Anomaly / Antigena Controlled and Model Alert
    •  
    • Antigena / Network / Significant      Anomaly / Antigena Enhanced Monitoring from Client Block

List of IoCs

·     185.49.126[.]50 - IP – AsyncRAT C2 Endpoint

·     195.26.255[.]81 – IP - AsyncRAT C2 Endpoint

·      191.96.207[.]246 – IP – Likely AsyncRAT C2 Endpoint

·     CN=AsyncRAT Server - SSL certificate - AsyncRATC2 Infrastructure

·      Kashuub[.]com– Hostname – Likely AsyncRAT C2 Endpoint

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique  

 

Execution– T1053 - Scheduled Task/Job: Scheduled Task

DefenceEvasion – T1497 - Virtualization/Sandbox Evasion: System Checks

Discovery– T1057 – Process Discovery

Discovery– T1082 – System Information Discovery

LateralMovement - T1021.001 - Remote Services: Remote Desktop Protocol

Collection/ Credential Access – T1056 – Input Capture: Keylogging

Collection– T1125 – Video Capture

Commandand Control – T1105 - Ingress Tool Transfer

Commandand Control – T1219 - Remote Access Software

Exfiltration– T1041 - Exfiltration Over C2 Channel

 

References

[1]  https://blog.talosintelligence.com/operation-layover-how-we-tracked-attack/

[2] https://intel471.com/blog/china-cybercrime-undergrond-deepmix-tea-horse-road-great-firewall

[3] https://www.attackiq.com/2024/08/01/emulate-asyncrat/

[4] https://www.fortinet.com/blog/threat-research/spear-phishing-campaign-with-new-techniques-aimed-at-aviation-companies

[5] https://www.virustotal.com/gui/ip-address/185.49.126[.]50/community

[6] https://dfir.ch/posts/asyncrat_quasarrat/

[7] https://www.virustotal.com/gui/ip-address/195.26.255[.]81

[8] https://www.speedguide.net/port.php?port=8041

[9] https://www.esentire.com/blog/exploring-the-infection-chain-screenconnects-link-to-asyncrat-deployment

[10] https://scammer.info/t/taking-out-connectwise-sites/153479/518?page=26

Continue reading
About the author
Isabel Evans
Cyber Analyst

Blog

/

/

May 13, 2025

Revolutionizing OT Risk Prioritization with Darktrace 6.3

man in hard hat on tabletDefault blog imageDefault blog image

Powering smarter protection for industrial systems

In industrial environments, security challenges are deeply operational. Whether you’re running a manufacturing line, a power grid, or a semiconductor fabrication facility (fab), you need to know: What risks can truly disrupt my operations, and what should I focus on first?

Teams need the right tools to shift from reactive defense, constantly putting out fires, to proactively thinking about their security posture. However, most OT teams are stuck using IT-centric tools that don’t speak the language of industrial systems, are consistently overwhelmed with static CVE lists, and offer no understanding of OT-specific protocols. The result? Compliance gaps, siloed insights, and risk models that don’t reflect real-world exposure, making risk prioritization seem like a luxury.

Darktrace / OT 6.3 was built in direct response to these challenges. Developed in close collaboration with OT operators and engineers, this release introduces powerful upgrades that deliver the context, visibility, and automation security teams need, without adding complexity. It’s everything OT defenders need to protect critical operations in one platform that understands the language of industrial systems.

additions to darktrace / ot 6/3

Contextual risk modeling with smarter Risk Scoring

Darktrace / OT 6.3 introduces major upgrades to OT Risk Management, helping teams move beyond generic CVE lists with AI-driven risk scoring and attack path modeling.

By factoring in real-world exploitability, asset criticality, and operational context, this release delivers a more accurate view of what truly puts critical systems at risk.

The platform now integrates:

  • CISA’s Known Exploited Vulnerabilities (KEV) database
  • End-of-life status for legacy OT devices
  • Firewall misconfiguration analysis
  • Incident response plan alignment

Most OT environments are flooded with vulnerability data that lacks context. CVE scores often misrepresent risk by ignoring how threats move through the environment or whether assets are even reachable. Firewalls are frequently misconfigured or undocumented, and EOL (End of Life) devices, some of the most vulnerable, often go untracked.

Legacy tools treat these inputs in isolation. Darktrace unifies them, showing teams exactly which attack paths adversaries could exploit, mapped to the MITRE ATT&CK framework, with visibility into where legacy tech increases exposure.

The result: teams can finally focus on the risks that matter most to uptime, safety, and resilience without wasting resources on noise.

Automating compliance with dynamic IEC-62443 reporting

Darktrace / OT now includes a purpose-built IEC-62443-3-3 compliance module, giving industrial teams real-time visibility into their alignment with regulatory standards. No spreadsheets required!

Industrial environments are among the most heavily regulated. However, for many OT teams, staying compliant is still a manual, time-consuming process.

Darktrace / OT introduces a dedicated IEC-62443-3-3 module designed specifically for industrial environments. Security and operations teams can now map their security posture to IEC standards in real time, directly within the platform. The module automatically gathers evidence across all four security levels, flags non-compliance, and generates structured reports to support audit preparation, all in just a few clicks.Most organizations rely on spreadsheets or static tools to track compliance, without clear visibility into which controls meet standards like IEC-62443. The result is hidden gaps, resource-heavy audits, and slow remediation cycles.

Even dedicated compliance tools are often built for IT, require complex setup, and overlook the unique devices found in OT environments. This leaves teams stuck with fragmented reporting and limited assurance that their controls are actually aligned with regulatory expectations.

By automating compliance tracking, surfacing what matters most, and being purpose built for industrial environments, Darktrace / OT empowers organizations to reduce audit fatigue, eliminate blind spots, and focus resources where they’re needed most.

Expanding protocol visibility with deep insights for specialized OT operations

Darktrace has expanded its Deep Packet Inspection (DPI) capabilities to support five industry-specific protocols, across healthcare, semiconductor manufacturing, and ABB control systems.

The new protocols build on existing capabilities across all OT industry verticals and protocol types to ensure the Darktrace Self-Learning AI TM can learn intelligently about even more assets in complex industrial environments. By enabling native, AI-driven inspection of these protocols, Darktrace can identify both security threats and operational issues without relying on additional appliances or complex integrations.

Most security platforms lack native support for industry-specific protocols, creating critical visibility gaps in customer environments like healthcare, semiconductor manufacturing, and ABB-heavy industrial automation. Without deep protocol awareness, organizations struggle to accurately identify specialized OT and IoT assets, detect malicious activity concealed within proprietary protocol traffic, and generate reliable device risk profiles due to insufficient telemetry.

These blind spots result in incomplete asset inventories, and ultimately, flawed risk posture assessments which over-index for CVE patching and legacy equipment.

By combining protocol-aware detection with full-stack visibility across IT, OT, and IoT, Darktrace’s AI can correlate anomalies across domains. For example, connecting an anomaly from a Medical IoT (MIoT) device with suspicious behavior in IT systems, providing actionable, contextual insights other solutions often miss.

Conclusion

Together, these capabilities take OT security beyond alert noise and basic CVE matching, delivering continuous compliance, protocol-aware visibility, and actionable, prioritized risk insights, all inside a single, unified platform built for the realities of industrial environments.

[related-resource]

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI