Blog
/
AI
/
April 16, 2025

Force Multiply Your Security Team with Agentic AI: How the Industry’s Only True Cyber AI Analyst™ Saves Time and Stop Threats

See how Darktrace Cyber AI Analyst™, an agentic AI virtual analyst, cuts through alert noise, accelerates threat response, and strengthens your security team — all without adding headcount.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ed Metcalf
Senior Director of Product Marketing, AI & Innovation Products
Team collaborating in work spaceDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Apr 2025

With 90million investigations in 2024 alone, Darktrace Cyber AI Analyst TM is transforming security operations with AI and has added up to 30 Full Time Security Analysts to almost 10,000 security teams.

In today’s high-stakes threat landscape, security teams are overwhelmed — stretched thin by burnout, alert fatigue, and a constant barrage of fast-moving attacks. As traditional tools can’t keep up, many are turning to AI to solve these challenges. But not all AI is created equal, and no single type of AI can perform all the functions necessary to effectively streamline security operations, safeguard your organization and rapidly respond to threats.

Thus, a multi-layered AI approach is critical to enhance threat detection, investigation, and response and augment security teams. By leveraging multiple AI methods, such as machine learning, deep learning, and natural language processing, security systems become more adaptive and resilient, capable of identifying and mitigating complex cyber threats in real time. This comprehensive approach ensures that no single AI method's limitations compromise the overall security posture, providing a robust defense against evolving threats.

As leaders in AI in cybersecurity, Darktrace has been utilizing a multi-layered AI approach for years, strategically combining and layering a range of AI techniques to provide better security outcomes. One key component of this is our Cyber AI Analyst – a sophisticated agentic AI system that avoids the pitfalls of generative AI. This approach ensures expeditious and scalable investigation and analysis, accurate threat detection and rapid automated response, empowering security teams to stay ahead of today's sophisticated cyber threats.

In this blog we will explore:

  • What agentic AI is and why security teams are adopting it to deliver a set of critical functions needed in cybersecurity
  • How Darktrace’s Cyber AI AnalystTM is a sophisticated agentic AI system that uses a multi-layered AI approach to achieve better security outcomes and enhance SOC analysts
  • Introduce two new innovative machine learning models that further augment Cyber AI Analyst’s investigation and evaluation capabilities

The rise of agentic AI

To combat the overwhelming volume of alerts, the shortage of security professionals, and burnout, security teams need AI that can perform complex tasks without human intervention, also known as agentic AI. The ability of these systems to act autonomously can significantly improve efficiency and effectiveness. However, many attempts to implement agentic AI rely on generative AI, which has notable drawbacks.

Broadly speaking, agentic AI refers to artificial intelligence systems that act autonomously as "agents," capable of carrying out complex tasks, making decisions, and interacting with tools or external systems with no or limited human intervention. Unlike traditional AI models that perform predefined tasks, it uses advanced techniques to mimic human decision-making processes, dynamically adapting to new challenges and responding to varied inputs. In a narrower definition, agentic AI often uses generative large language models (LLMs) as its core, using this to plan tasks and interactions with other systems, iteratively feeding its output into its input to accomplish more tasks than are traditionally possible with a single prompt. When described in terms of technology rather than functionality, agentic AI would be deemed as AI using this kind of generative system.

In cybersecurity, agentic AI systems can be used to autonomously monitor traffic, identify unusual patterns or anomalies indicating potential threats, and take action to respond to these possible attacks. For example, they can handle incident response tasks such as isolating affected systems or patching vulnerabilities, and triaging alerts. This reduces the reliance on human analysts for routine tasks, allowing them to focus on high-priority incidents and strategic initiatives, thereby increasing the overall efficiency and effectiveness of the SOC.

Despite their potential, agentic AI systems with a generative AI core have notable limitations. Whether based on widely used foundation models or fully custom proprietary implementations, generative AI often struggles with poor reasoning and can produce incorrect conclusions. These models are prone to "hallucinations," where they generate false information, which can be magnified through iterative processes. Additionally, generative AI systems are particularly susceptible to inheriting biases from training data, leading to incorrect outcomes, and are vulnerable to adversarial attacks, such as prompt injection that manipulates the AI's decision-making process.

Thus, choosing the right agentic AI system is crucial for security teams to ensure accurate threat detection, streamline investigations, and minimize false positives. It's essential to look beyond generative AI-based systems, which can lead to false positives and missed threats, and adopt AI that integrates multiple techniques. By considering AI systems that leverage a variety of advanced methods, organizations can build a more robust and comprehensive security strategy.  

Industry’s most experienced agentic AI analyst

First introduced in 2019, Darktrace Cyber AI AnalystTM emerged as a groundbreaking, patented solution in the cybersecurity landscape. As the most experienced AI Analyst deployed to almost 10,000 customers worldwide, Cyber AI Analyst is a sophisticated example of agentic AI, aligning closely with our broad definition. Unlike generative AI-based systems, it uses a multi-layered AI approach - strategically combining and layering various AI techniques, both in parallel and sequentially – to autonomously investigate and triage alerts with speed and precision that outpaces human teams. By utilizing a diverse set of AI methods, including unsupervised machine learning, models trained on expert cyber analysts, and custom security-specific large language models, Cyber AI Analyst mirrors human investigative processes by questioning data, testing hypotheses, and reaching conclusions at machine speed and scale. It integrates data from various sources – including network, cloud, email, OT and even third-party alerts – to identify threats and execute appropriate responses without human input, ensuring accurate and reliable decision-making.

With its ability to learn and adapt using Darktrace's unique understanding of an organization’s environment, Cyber AI Analyst highlights anomalies and passes only the most relevant activity to human users. Every investigation is thoroughly explained with natural language summaries, providing transparent and interpretable AI insights. Unlike generative AI-based agentic systems, Cyber AI Analyst's outputs are based on a comprehensive understanding of the underlying data, avoiding inaccuracies and "hallucinations," thereby dramatically reducing risk of false positives.

90 million investigations. Zero burnout.

Building on six years of innovation since launch, Darktrace's Cyber AI Analyst continues to revolutionize security operations by automating time-consuming tasks and enabling teams to focus on strategic initiatives. In 2024 alone, the sophisticated AI system autonomously conducted 90 million investigations, its analysis and correlation during these investigations resulted in escalating just 3 million incidents for human validation and resulting in fewer than 500,000 incidents deemed critical to the security of the organization. This completely changed the security operations process, providing customers with an ability to investigate every relevant alert as an unprecedented alternative to detection engineering that avoids massive quantities of risk from the traditional approach.  Cyber AI Analyst performed the equivalent of 42 million hours of human investigation for relevant security alerts.

The benefits of Cyber AI Analyst will transform security operations as we know it today:

  • Autonomously investigates thousands of alerts, distilling them into a few critical incidents — saving security teams thousands of hours and removing risk from current “triage few” processes. [See how the State of Oklahoma gained 2,561 hours of investigation time and eliminated 3,142 alerts in 3 months]
  • It decreases critical incident discoverability from hours to minutes, enabling security teams to respond faster to potential threats that will severely impact their organization. Learn how South Coast Water District went from hours to minutes in incident discovery.
  • It reduces false positives by 90%, giving security teams confidence in its accuracy and output.
  • Delivers the output of up to 30 full-time analysts – without the cost, burnout, or ramp-up time, while elevating existing human security analysts to validation and response

Cyber AI Analyst allows security teams to allocate their resources more effectively, focusing on genuine threats rather than sifting through noise. This not only enhances productivity but also ensures that critical alerts are addressed promptly, minimizing potential damage and improving overall cyber resilience.

Always innovating - Next-generation AI models for cybersecurity

As empowering defenders with AI has never been more critical, Darktrace remains committed to driving innovation that helps our customers proactively reduce risk, strengthen their security posture, and uplift their teams. To further enhance security teams, Darktrace is introducing two next-generation AI models for cybersecurity within Cyber AI Analyst, including:

  • Darktrace Incident Graph Evaluation for Security Threats (DIGEST): Using graph neural networks, this model analyzes how attacks progress to predict which threats are likely to escalate — giving your team earlier warnings and sharper prioritization.  This means earlier warnings, better prioritization, and fewer surprises during active threats.
  • Darktrace Embedding Model for Investigation of Security Threats - Version 2 (DEMIST-2): This new language model is purpose-built for cybersecurity. With deep contextual understanding, it automates critical human-like analysis— like assessing hostnames, file sensitivity, and tracking users across environments. Unlike large general-purpose models, it delivers superior performance with a smaller footprint. Working across all our deployment types, including on-prem and cloud, it can run without internet access, keeping inference local.

Unlike the foundational LLMs that power many generative and agentic systems, these models are purpose-built for cybersecurity, supported by insights of over 200 security analysts and is capable of mimicking how an analyst thinks, to bring AI-based precision and depth of analysis into the SOC. By understanding how attacks evolve and predicting which threats are most likely to escalate, these machine learning models enable Cyber AI AnalystTM to provide earlier detection, sharper prioritization, and faster, more confident decision-making.

Conclusion

Darktrace Cyber AI AnalystTM redefines security operations with proven agentic AI — delivering autonomous investigations and faster response times, while significantly reducing false positives. With powerful new models like DIGEST and DEMIST-2, it empowers security teams to prioritize what matters, cut through noise, and stay ahead of evolving threats — all without additional headcount. As cyber risk grows, Cyber AI Analyst stands out as a force multiplier, driving efficiency, resilience, and confidence in every SOC.

[related-resource]

Additional resources

Learn more about Cyber AI Analyst

Explore the solution brief, learn how Cyber AI Analyst combines advanced AI techniques to deliver faster, more effective security outcomes

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ed Metcalf
Senior Director of Product Marketing, AI & Innovation Products

More in this series

No items found.

Blog

/

OT

/

May 20, 2025

Adapting to new USCG cybersecurity mandates: Darktrace for ports and maritime systems

Cargo ships at a portDefault blog imageDefault blog image

What is the Marine Transportation System (MTS)?

Marine Transportation Systems (MTS) play a substantial roll in U.S. commerce, military readiness, and economic security. Defined as a critical national infrastructure, the MTS encompasses all aspects of maritime transportation from ships and ports to the inland waterways and the rail and roadways that connect them.

MTS interconnected systems include:

  • Waterways: Coastal and inland rivers, shipping channels, and harbors
  • Ports: Terminals, piers, and facilities where cargo and passengers are transferred
  • Vessels: Commercial ships, barges, ferries, and support craft
  • Intermodal Connections: Railroads, highways, and logistics hubs that tie maritime transport into national and global supply chains

The Coast Guard plays a central role in ensuring the safety, security, and efficiency of the MTS, handling over $5.4 trillion in annual economic activity. As digital systems increasingly support operations across the MTS, from crane control to cargo tracking, cybersecurity has become essential to protecting this lifeline of U.S. trade and infrastructure.

Maritime Transportation Systems also enable international trade, making them prime targets for cyber threats from ransomware gangs to nation-state actors.

To defend against growing threats, the United States Coast Guard (USCG) has moved from encouraging cybersecurity best practices to enforcing them, culminating in a new mandate that goes into effect on July 16, 2025. These regulations aim to secure the digital backbone of the maritime industry.

Why maritime ports are at risk

Modern ports are a blend of legacy and modern OT, IoT, and IT digitally connected technologies that enable crane operations, container tracking, terminal storage, logistics, and remote maintenance.

Many of these systems were never designed with cybersecurity in mind, making them vulnerable to lateral movement and disruptive ransomware attack spillover.

The convergence of business IT networks and operational infrastructure further expands the attack surface, especially with the rise of cloud adoption and unmanaged IoT and IIoT devices.

Cyber incidents in recent years have demonstrated how ransomware or malicious activity can halt crane operations, disrupt logistics, and compromise safety at scale threatening not only port operations, but national security and economic stability.

Relevant cyber-attacks on maritime ports

Maersk & Port of Los Angeles (2017 – NotPetya):
A ransomware attack crippled A.P. Moller-Maersk, the world’s largest shipping company. Operations at 17 ports, including the Port of Los Angeles, were halted due to system outages, causing weeks of logistical chaos.

Port of San Diego (2018 – Ransomware Attack):
A ransomware attack targeted the Port of San Diego, disrupting internal IT systems including public records, business services, and dockside cargo operations. While marine traffic was unaffected, commercial activity slowed significantly during recovery.

Port of Houston (2021 – Nation-State Intrusion):
A suspected nation-state actor exploited a known vulnerability in a Port of Houston web application to gain access to its network. While the attack was reportedly thwarted, it triggered a federal investigation and highlighted the vulnerability of maritime systems.

Jawaharlal Nehru Port Trust, India (2022 – Ransomware Incident):
India’s largest container port experienced disruptions due to a ransomware attack affecting operations and logistics systems. Container handling and cargo movement slowed as IT systems were taken offline during recovery efforts.

A regulatory shift: From guidance to enforcement

Since the Maritime Transportation Security Act (MTSA) of 2002, ports have been required to develop and maintain security plans. Cybersecurity formally entered the regulatory fold in 2020 with revisions to 33 CFR Part 105 and 106, requiring port authorities to assess and address computer system vulnerabilities.

In January 2025, the USCG finalized new rules to enforce cybersecurity practices across the MTS. Key elements include (but are not limited to):

  • A dedicated cyber incident response plan (PR.IP-9)
  • Routine cybersecurity risk assessments and exercises (ID.RA)
  • Designation of a cybersecurity officer and regular workforce training (section 3.1)
  • Controls for access management, segmentation, logging, and encryption (PR.AC-1:7)
  • Supply chain risk management (ID.SC)
  • Incident reporting to the National Response Center

Port operators are encouraged to align their programs with the NIST Cybersecurity Framework (CSF 2.0) and NIST SP 800-82r3, which provide comprehensive guidance for IT and OT security in industrial environments.

How Darktrace can support maritime & ports

Unified IT + OT + Cloud coverage

Maritime ports operate in hybrid environments spanning business IT systems (finance, HR, ERP), industrial OT (cranes, gates, pumps, sensors), and an increasing array of cloud and SaaS platforms.

Darktrace is the only vendor that provides native visibility and threat detection across OT/IoT, IT, cloud, and SaaS environments — all in a single platform. This means:

  • Cranes and other physical process control networks are monitored in the same dashboard as Active Directory and Office 365.
  • Threats that start in the cloud (e.g., phishing, SaaS token theft) and pivot or attempt to pivot into OT are caught early — eliminating blind spots that siloed tools miss.

This unification is critical to meeting USCG requirements for network-wide monitoring, risk identification, and incident response.

AI that understands your environment. Not just known threats

Darktrace’s AI doesn’t rely on rules or signatures. Instead, it uses Self-Learning AI TM that builds a unique “pattern of life” for every device, protocol, user, and network segment, whether it’s a crane router or PLC, SCADA server, Workstation, or Linux file server.

  • No predefined baselines or manual training
  • Real-time anomaly detection for zero-days, ransomware, and supply chain compromise
  • Continuous adaptation to new devices, configurations, and operations

This approach is critical in diverse distributed OT environments where change and anomalous activity on the network are more frequent. It also dramatically reduces the time and expertise needed to classify and inventory assets, even for unknown or custom-built systems.

Supporting incident response requirements

A key USCG requirement is that cybersecurity plans must support effective incident response.

Key expectations include:

  • Defined response roles and procedures: Personnel must know what to do and when (RS.CO-1).
  • Timely reporting: Incidents must be reported and categorized according to established criteria (RS.CO-2, RS.AN-4).
  • Effective communication: Information must be shared internally and externally, including voluntary collaboration with law enforcement and industry peers (RS.CO-3 through RS.CO-5).
  • Thorough analysis: Alerts must be investigated, impacts understood, and forensic evidence gathered to support decision-making and recovery (RS.AN-1 through RS.AN-5).
  • Swift mitigation: Incidents must be contained and resolved efficiently, with newly discovered vulnerabilities addressed or documented (RS.MI-1 through RS.MI-3).
  • Ongoing improvement: Organizations must refine their response plans using lessons learned from past incidents (RS.IM-1 and RS.IM-2).

That means detections need to be clear, accurate, and actionable.

Darktrace cuts through the noise using AI that prioritizes only high-confidence incidents and provides natural-language narratives and investigative reports that explain:

  • What’s happening, where it’s happening, when it’s happening
  • Why it’s unusual
  • How to respond

Result: Port security teams often lean and multi-tasked can meet USCG response-time expectations and reporting needs without needing to scale headcount or triage hundreds of alerts.

Built-for-edge deployment

Maritime environments are constrained. Many traditional SaaS deployment types often are unsuitable for tugboats, cranes, or air-gapped terminal systems.

Darktrace builds and maintains its own ruggedized, purpose-built appliances and unique virtual deployment options that:

  • Deploy directly into crane networks or terminal enclosures
  • Require no configuration or tuning, drop-in ready
  • Support secure over-the-air updates and fleet management
  • Operate without cloud dependency, supporting isolated and air-gapped systems

Use case: Multiple ports have been able to deploy Darktrace directly into the crane’s switch enclosure, securing lateral movement paths without interfering with the crane control software itself.

Segmentation enforcement & real-time threat containment

Darktrace visualizes real-time connectivity and attack pathways across IT, OT, and IoT it and integrates with firewalls (e.g., Fortinet, Cisco, Palo Alto) to enforce segmentation using AI insights alongside Darktrace’s own native autonomous and human confirmed response capabilities.

Benefits of autonomous and human confirmed response:

  • Auto-isolate rogue devices before the threat can escalate
  • Quarantine a suspicious connectivity with confidence operations won’t be halted
  • Autonomously buy time for human responders during off-hours or holidays
  • This ensures segmentation isn't just documented but that in the case of its failure or exploitation responses are performed as a compensating control

No reliance on 3rd parties or external connectivity

Darktrace’s supply chain integrity is a core part of its value to critical infrastructure customers. Unlike solutions that rely on indirect data collection or third-party appliances, Darktrace:

  • Uses in-house engineered sensors and appliances
  • Does not require transmission of data to or from the cloud

This ensures confidence in both your cyber visibility and the security of the tools you deploy.

See examples here of how Darktrace stopped supply chain attacks:

Readiness for USCG and Beyond

With a self-learning system that adapts to each unique port environment, Darktrace helps maritime operators not just comply but build lasting cyber resilience in a high-threat landscape.

Cybersecurity is no longer optional for U.S. ports its operationally and nationally critical. Darktrace delivers the intelligence, automation, and precision needed to meet USCG requirements and protect the digital lifeblood of the modern port.

Continue reading
About the author
Daniel Simonds
Director of Operational Technology

Blog

/

Network

/

May 20, 2025

Catching a RAT: How Darktrace Neutralized AsyncRAT

woman working on laptopDefault blog imageDefault blog image

What is a RAT?

As the proliferation of new and more advanced cyber threats continues, the Remote Access Trojan (RAT) remains a classic tool in a threat actor's arsenal. RATs, whether standardized or custom-built, enable attackers to remotely control compromised devices, facilitating a range of malicious activities.

What is AsyncRAT?

Since its first appearance in 2019, AsyncRAT has become increasingly popular among a wide range of threat actors, including cybercriminals and advanced persistent threat (APT) groups.

Originally available on GitHub as a legitimate tool, its open-source nature has led to widespread exploitation. AsyncRAT has been used in numerous campaigns, including prolonged attacks on essential US infrastructure, and has even reportedly penetrated the Chinese cybercriminal underground market [1] [2].

How does AsyncRAT work?

Original source code analysis of AsyncRAT demonstrates that once installed, it establishes persistence via techniques such as creating scheduled tasks or registry keys and uses SeDebugPrivilege to gain elevated privileges [3].

Its key features include:

  • Keylogging
  • File search
  • Remote audio and camera access
  • Exfiltration techniques
  • Staging for final payload delivery

These are generally typical functions found in traditional RATs. However, it also boasts interesting anti-detection capabilities. Due to the popularity of Virtual Machines (VM) and sandboxes for dynamic analysis, this RAT checks for the manufacturer via the WMI query 'Select * from Win32_ComputerSystem' and looks for strings containing 'VMware' and 'VirtualBox' [4].

Darktrace’s coverage of AsyncRAT

In late 2024 and early 2025, Darktrace observed a spike in AsyncRAT activity across various customer environments. Multiple indicators of post-compromise were detected, including devices attempting or successfully connecting to endpoints associated with AsyncRAT.

On several occasions, Darktrace identified a clear association with AsyncRAT through the digital certificates of the highlighted SSL endpoints. Darktrace’s Real-time Detection effectively identified and alerted on suspicious activities related to AsyncRAT. In one notable incident, Darktrace’s Autonomous Response promptly took action to contain the emerging threat posed by AsyncRAT.

AsyncRAT attack overview

On December 20, 2024, Darktrace first identified the use of AsyncRAT, noting a device successfully establishing SSL connections to the uncommon external IP 185.49.126[.]50 (AS199654 Oxide Group Limited) via port 6606. The IP address appears to be associated with AsyncRAT as flagged by open-source intelligence (OSINT) sources [5]. This activity triggered the device to alert the ‘Anomalous Connection / Rare External SSL Self-Signed' model.

Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.
Figure 1: Model alert in Darktrace / NETWORK showing the repeated SSL connections to a rare external Self-Signed endpoint, 185.49.126[.]50.

Following these initial connections, the device was observed making a significantly higher number of connections to the same endpoint 185.49.126[.]50 via port 6606 over an extended period. This pattern suggested beaconing activity and triggered the 'Compromise/Beaconing Activity to External Rare' model alert.

Further analysis of the original source code, available publicly, outlines the default ports used by AsyncRAT clients for command-and-control (C2) communications [6]. It reveals that port 6606 is the default port for creating a new AsyncRAT client. Darktrace identified both the Certificate Issuer and the Certificate Subject as "CN=AsyncRAT Server". This SSL certificate encrypts the packets between the compromised system and the server. These indicators of compromise (IoCs) detected by Darktrace further suggest that the device was successfully connecting to a server associated with AsyncRAT.

Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Figure 2: Model alert in Darktrace / NETWORK displaying the Digital Certificate attributes, IP address and port number associated with AsyncRAT.
Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Figure 3: Darktrace’s detection of repeated connections to the suspicious IP address 185.49.126[.]50 over port 6606, indicative of beaconing behavior.
Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.
Figure 4: Darktrace's Autonomous Response actions blocking the suspicious IP address,185.49.126[.]50.

A few days later, the same device was detected making numerous connections to a different IP address, 195.26.255[.]81 (AS40021 NL-811-40021), via various ports including 2106, 6606, 7707, and 8808. Notably, ports 7707 and 8808 are also default ports specified in the original AsyncRAT source code [6].

Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.
Figure 5: Darktrace’s detection of connections to the suspicious endpoint 195.26.255[.]81, where the default ports (6606, 7707, and 8808) for AsyncRAT were observed.

Similar to the activity observed with the first endpoint, 185.49.126[.]50, the Certificate Issuer for the connections to 195.26.255[.]81 was identified as "CN=AsyncRAT Server". Further OSINT investigation confirmed associations between the IP address 195.26.255[.]81 and AsyncRAT [7].

Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server
Figure 6: Darktrace's detection of a connection to the suspicious IP address 195.26.255[.]81 and the domain name identified under the common name (CN) of a certificate as AsyncRAT Server.

Once again, Darktrace's Autonomous Response acted swiftly, blocking the connections to 195.26.255[.]81 throughout the observed AsyncRAT activity.

Figure 7: Darktrace's Autonomous Response actions were applied against the suspicious IP address 195.26.255[.]81.

A day later, Darktrace again alerted to further suspicious activity from the device. This time, connections to the suspicious endpoint 'kashuub[.]com' and IP address 191.96.207[.]246 via port 8041 were observed. Further analysis of port 8041 suggests it is commonly associated with ScreenConnect or Xcorpeon ASIC Carrier Ethernet Transport [8]. ScreenConnect has been observed in recent campaign’s where AsyncRAT has been utilized [9]. Additionally, one of the ASN’s observed, namely ‘ASN Oxide Group Limited’, was seen in both connections to kashuub[.]com and 185.49.126[.]50.

This could suggest a parallel between the two endpoints, indicating they might be hosting AsyncRAT C2 servers, as inferred from our previous analysis of the endpoint 185.49.126[.]50 and its association with AsyncRAT [5]. OSINT reporting suggests that the “kashuub[.]com” endpoint may be associated with ScreenConnect scam domains, further supporting the assumption that the endpoint could be a C2 server.

Darktrace’s Autonomous Response technology was once again able to support the customer here, blocking connections to “kashuub[.]com”. Ultimately, this intervention halted the compromise and prevented the attack from escalating or any sensitive data from being exfiltrated from the customer’s network into the hands of the threat actors.

Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.
Figure 8: Darktrace’s Autonomous Response applied a total of nine actions against the IP address 191.96.207[.]246 and the domain 'kashuub[.]com', successfully blocking the connections.

Due to the popularity of this RAT, it is difficult to determine the motive behind the attack; however, from existing knowledge of what the RAT does, we can assume accessing and exfiltrating sensitive customer data may have been a factor.

Conclusion

While some cybercriminals seek stability and simplicity, openly available RATs like AsyncRAT provide the infrastructure and open the door for even the most amateur threat actors to compromise sensitive networks. As the cyber landscape continually shifts, RATs are now being used in all types of attacks.

Darktrace’s suite of AI-driven tools provides organizations with the infrastructure to achieve complete visibility and control over emerging threats within their network environment. Although AsyncRAT’s lack of concealment allowed Darktrace to quickly detect the developing threat and alert on unusual behaviors, it was ultimately Darktrace Autonomous Response's consistent blocking of suspicious connections that prevented a more disruptive attack.

Credit to Isabel Evans (Cyber Analyst), Priya Thapa (Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

  • Real-time Detection Models
       
    • Compromise / Suspicious SSL Activity
    •  
    • Compromise / Beaconing Activity To      External Rare
    •  
    • Compromise / High Volume of      Connections with Beacon Score
    •  
    • Anomalous Connection / Suspicious      Self-Signed SSL
    •  
    • Compromise / Sustained SSL or HTTP      Increase
    •  
    • Compromise / SSL Beaconing to Rare      Destination
    •  
    • Compromise / Suspicious Beaconing      Behaviour
    •  
    • Compromise / Large Number of      Suspicious Failed Connections
  •  
  • Autonomous     Response Models
       
    • Antigena / Network / Significant      Anomaly / Antigena Controlled and Model Alert
    •  
    • Antigena / Network / Significant      Anomaly / Antigena Enhanced Monitoring from Client Block

List of IoCs

·     185.49.126[.]50 - IP – AsyncRAT C2 Endpoint

·     195.26.255[.]81 – IP - AsyncRAT C2 Endpoint

·      191.96.207[.]246 – IP – Likely AsyncRAT C2 Endpoint

·     CN=AsyncRAT Server - SSL certificate - AsyncRATC2 Infrastructure

·      Kashuub[.]com– Hostname – Likely AsyncRAT C2 Endpoint

MITRE ATT&CK Mapping:

Tactic –Technique – Sub-Technique  

 

Execution– T1053 - Scheduled Task/Job: Scheduled Task

DefenceEvasion – T1497 - Virtualization/Sandbox Evasion: System Checks

Discovery– T1057 – Process Discovery

Discovery– T1082 – System Information Discovery

LateralMovement - T1021.001 - Remote Services: Remote Desktop Protocol

Collection/ Credential Access – T1056 – Input Capture: Keylogging

Collection– T1125 – Video Capture

Commandand Control – T1105 - Ingress Tool Transfer

Commandand Control – T1219 - Remote Access Software

Exfiltration– T1041 - Exfiltration Over C2 Channel

 

References

[1]  https://blog.talosintelligence.com/operation-layover-how-we-tracked-attack/

[2] https://intel471.com/blog/china-cybercrime-undergrond-deepmix-tea-horse-road-great-firewall

[3] https://www.attackiq.com/2024/08/01/emulate-asyncrat/

[4] https://www.fortinet.com/blog/threat-research/spear-phishing-campaign-with-new-techniques-aimed-at-aviation-companies

[5] https://www.virustotal.com/gui/ip-address/185.49.126[.]50/community

[6] https://dfir.ch/posts/asyncrat_quasarrat/

[7] https://www.virustotal.com/gui/ip-address/195.26.255[.]81

[8] https://www.speedguide.net/port.php?port=8041

[9] https://www.esentire.com/blog/exploring-the-infection-chain-screenconnects-link-to-asyncrat-deployment

[10] https://scammer.info/t/taking-out-connectwise-sites/153479/518?page=26

Continue reading
About the author
Isabel Evans
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI