Blog
/
/
April 16, 2025

Force Multiply Your Security Team with Agentic AI: How the Industry’s Only True Cyber AI Analyst™ Saves Time and Stop Threats

See how Darktrace Cyber AI Analyst™, an agentic AI virtual analyst, cuts through alert noise, accelerates threat response, and strengthens your security team — all without adding headcount.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ed Metcalf
Senior Director of Product Marketing, AI & Innovation Products
Team collaborating in work spaceDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Apr 2025

With 90million investigations in 2024 alone, Darktrace Cyber AI Analyst TM is transforming security operations with AI and has added up to 30 Full Time Security Analysts to almost 10,000 security teams.

In today’s high-stakes threat landscape, security teams are overwhelmed — stretched thin by burnout, alert fatigue, and a constant barrage of fast-moving attacks. As traditional tools can’t keep up, many are turning to AI to solve these challenges. But not all AI is created equal, and no single type of AI can perform all the functions necessary to effectively streamline security operations, safeguard your organization and rapidly respond to threats.

Thus, a multi-layered AI approach is critical to enhance threat detection, investigation, and response and augment security teams. By leveraging multiple AI methods, such as machine learning, deep learning, and natural language processing, security systems become more adaptive and resilient, capable of identifying and mitigating complex cyber threats in real time. This comprehensive approach ensures that no single AI method's limitations compromise the overall security posture, providing a robust defense against evolving threats.

As leaders in AI in cybersecurity, Darktrace has been utilizing a multi-layered AI approach for years, strategically combining and layering a range of AI techniques to provide better security outcomes. One key component of this is our Cyber AI Analyst – a sophisticated agentic AI system that avoids the pitfalls of generative AI. This approach ensures expeditious and scalable investigation and analysis, accurate threat detection and rapid automated response, empowering security teams to stay ahead of today's sophisticated cyber threats.

In this blog we will explore:

  • What agentic AI is and why security teams are adopting it to deliver a set of critical functions needed in cybersecurity
  • How Darktrace’s Cyber AI AnalystTM is a sophisticated agentic AI system that uses a multi-layered AI approach to achieve better security outcomes and enhance SOC analysts
  • Introduce two new innovative machine learning models that further augment Cyber AI Analyst’s investigation and evaluation capabilities

The rise of agentic AI

To combat the overwhelming volume of alerts, the shortage of security professionals, and burnout, security teams need AI that can perform complex tasks without human intervention, also known as agentic AI. The ability of these systems to act autonomously can significantly improve efficiency and effectiveness. However, many attempts to implement agentic AI rely on generative AI, which has notable drawbacks.

Broadly speaking, agentic AI refers to artificial intelligence systems that act autonomously as "agents," capable of carrying out complex tasks, making decisions, and interacting with tools or external systems with no or limited human intervention. Unlike traditional AI models that perform predefined tasks, it uses advanced techniques to mimic human decision-making processes, dynamically adapting to new challenges and responding to varied inputs. In a narrower definition, agentic AI often uses generative large language models (LLMs) as its core, using this to plan tasks and interactions with other systems, iteratively feeding its output into its input to accomplish more tasks than are traditionally possible with a single prompt. When described in terms of technology rather than functionality, agentic AI would be deemed as AI using this kind of generative system.

In cybersecurity, agentic AI systems can be used to autonomously monitor traffic, identify unusual patterns or anomalies indicating potential threats, and take action to respond to these possible attacks. For example, they can handle incident response tasks such as isolating affected systems or patching vulnerabilities, and triaging alerts. This reduces the reliance on human analysts for routine tasks, allowing them to focus on high-priority incidents and strategic initiatives, thereby increasing the overall efficiency and effectiveness of the SOC.

Despite their potential, agentic AI systems with a generative AI core have notable limitations. Whether based on widely used foundation models or fully custom proprietary implementations, generative AI often struggles with poor reasoning and can produce incorrect conclusions. These models are prone to "hallucinations," where they generate false information, which can be magnified through iterative processes. Additionally, generative AI systems are particularly susceptible to inheriting biases from training data, leading to incorrect outcomes, and are vulnerable to adversarial attacks, such as prompt injection that manipulates the AI's decision-making process.

Thus, choosing the right agentic AI system is crucial for security teams to ensure accurate threat detection, streamline investigations, and minimize false positives. It's essential to look beyond generative AI-based systems, which can lead to false positives and missed threats, and adopt AI that integrates multiple techniques. By considering AI systems that leverage a variety of advanced methods, organizations can build a more robust and comprehensive security strategy.  

Industry’s most experienced agentic AI analyst

First introduced in 2019, Darktrace Cyber AI AnalystTM emerged as a groundbreaking, patented solution in the cybersecurity landscape. As the most experienced AI Analyst deployed to almost 10,000 customers worldwide, Cyber AI Analyst is a sophisticated example of agentic AI, aligning closely with our broad definition. Unlike generative AI-based systems, it uses a multi-layered AI approach - strategically combining and layering various AI techniques, both in parallel and sequentially – to autonomously investigate and triage alerts with speed and precision that outpaces human teams. By utilizing a diverse set of AI methods, including unsupervised machine learning, models trained on expert cyber analysts, and custom security-specific large language models, Cyber AI Analyst mirrors human investigative processes by questioning data, testing hypotheses, and reaching conclusions at machine speed and scale. It integrates data from various sources – including network, cloud, email, OT and even third-party alerts – to identify threats and execute appropriate responses without human input, ensuring accurate and reliable decision-making.

With its ability to learn and adapt using Darktrace's unique understanding of an organization’s environment, Cyber AI Analyst highlights anomalies and passes only the most relevant activity to human users. Every investigation is thoroughly explained with natural language summaries, providing transparent and interpretable AI insights. Unlike generative AI-based agentic systems, Cyber AI Analyst's outputs are based on a comprehensive understanding of the underlying data, avoiding inaccuracies and "hallucinations," thereby dramatically reducing risk of false positives.

90 million investigations. Zero burnout.

Building on six years of innovation since launch, Darktrace's Cyber AI Analyst continues to revolutionize security operations by automating time-consuming tasks and enabling teams to focus on strategic initiatives. In 2024 alone, the sophisticated AI system autonomously conducted 90 million investigations, its analysis and correlation during these investigations resulted in escalating just 3 million incidents for human validation and resulting in fewer than 500,000 incidents deemed critical to the security of the organization. This completely changed the security operations process, providing customers with an ability to investigate every relevant alert as an unprecedented alternative to detection engineering that avoids massive quantities of risk from the traditional approach.  Cyber AI Analyst performed the equivalent of 42 million hours of human investigation for relevant security alerts.

The benefits of Cyber AI Analyst will transform security operations as we know it today:

  • Autonomously investigates thousands of alerts, distilling them into a few critical incidents — saving security teams thousands of hours and removing risk from current “triage few” processes. [See how the State of Oklahoma gained 2,561 hours of investigation time and eliminated 3,142 alerts in 3 months]
  • It decreases critical incident discoverability from hours to minutes, enabling security teams to respond faster to potential threats that will severely impact their organization. Learn how South Coast Water District went from hours to minutes in incident discovery.
  • It reduces false positives by 90%, giving security teams confidence in its accuracy and output.
  • Delivers the output of up to 30 full-time analysts – without the cost, burnout, or ramp-up time, while elevating existing human security analysts to validation and response

Cyber AI Analyst allows security teams to allocate their resources more effectively, focusing on genuine threats rather than sifting through noise. This not only enhances productivity but also ensures that critical alerts are addressed promptly, minimizing potential damage and improving overall cyber resilience.

Always innovating - Next-generation AI models for cybersecurity

As empowering defenders with AI has never been more critical, Darktrace remains committed to driving innovation that helps our customers proactively reduce risk, strengthen their security posture, and uplift their teams. To further enhance security teams, Darktrace is introducing two next-generation AI models for cybersecurity within Cyber AI Analyst, including:

  • Darktrace Incident Graph Evaluation for Security Threats (DIGEST): Using graph neural networks, this model analyzes how attacks progress to predict which threats are likely to escalate — giving your team earlier warnings and sharper prioritization.  This means earlier warnings, better prioritization, and fewer surprises during active threats.
  • Darktrace Embedding Model for Investigation of Security Threats - Version 2 (DEMIST-2): This new language model is purpose-built for cybersecurity. With deep contextual understanding, it automates critical human-like analysis— like assessing hostnames, file sensitivity, and tracking users across environments. Unlike large general-purpose models, it delivers superior performance with a smaller footprint. Working across all our deployment types, including on-prem and cloud, it can run without internet access, keeping inference local.

Unlike the foundational LLMs that power many generative and agentic systems, these models are purpose-built for cybersecurity, supported by insights of over 200 security analysts and is capable of mimicking how an analyst thinks, to bring AI-based precision and depth of analysis into the SOC. By understanding how attacks evolve and predicting which threats are most likely to escalate, these machine learning models enable Cyber AI AnalystTM to provide earlier detection, sharper prioritization, and faster, more confident decision-making.

Conclusion

Darktrace Cyber AI AnalystTM redefines security operations with proven agentic AI — delivering autonomous investigations and faster response times, while significantly reducing false positives. With powerful new models like DIGEST and DEMIST-2, it empowers security teams to prioritize what matters, cut through noise, and stay ahead of evolving threats — all without additional headcount. As cyber risk grows, Cyber AI Analyst stands out as a force multiplier, driving efficiency, resilience, and confidence in every SOC.

[related-resource]

Additional resources

Learn more about Cyber AI Analyst

Explore the solution brief, learn how Cyber AI Analyst combines advanced AI techniques to deliver faster, more effective security outcomes

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Ed Metcalf
Senior Director of Product Marketing, AI & Innovation Products

More in this series

No items found.

Blog

/

/

September 25, 2025

Announcing Unified Real-Time CDR and Automated Investigations to Transform Cloud Security Operations

Default blog imageDefault blog image

Fragmented Tools are Failing SOC Teams in the Cloud Era

The cloud has transformed how businesses operate, reshaping everything from infrastructure to application delivery. But cloud security has not kept pace. Most tools still rely on traditional models of logging, policy enforcement, and posture management; approaches that provide surface-level visibility but lack the depth to detect or investigate active attacks.

Meanwhile, attackers are exploiting vulnerabilities, delivering cloud-native exploits, and moving laterally in ways that posture management alone cannot catch fast enough. Critical evidence is often missed, and alerts lack the forensic depth SOC analysts need to separate noise from true risk. As a result, organizations remain exposed: research shows that nearly nine in ten organizations have suffered a critical cloud breach despite investing in existing security tools [1].

SOC teams are left buried in alerts without actionable context, while ephemeral workloads like containers and serverless functions vanish before evidence can be preserved. Point tools for logging or forensics only add complexity, with 82% of organizations using multiple platforms to investigate cloud incidents [2].

The result is a broken security model: posture tools surface risks but don’t connect them to active attacker behaviors, while investigation tools are too slow and fragmented to provide timely clarity. Security teams are left reactive, juggling multiple point solutions and still missing critical signals. What’s needed is a unified approach that combines real-time detection and response for active threats with automated investigation and cloud posture management in a single workflow.

Just as security teams once had to evolve beyond basic firewalls and antivirus into network and endpoint detection, response, and forensics, cloud security now requires its own next era: one that unifies detection, response, and investigation at the speed and scale of the cloud.

A Powerful Combination: Real-Time CDR + Automated Cloud Forensics

Darktrace / CLOUD now uniquely unites detection, investigation, and response into one workflow, powered by Self-Learning AI. This means every alert, from any tool in your stack, can instantly become actionable evidence and a complete investigation in minutes.

With this release, Darktrace / CLOUD delivers a more holistic approach to cloud defense, uniting real-time detection, response, and investigation with proactive risk reduction. The result is a single solution that helps security teams stay ahead of attackers while reducing complexity and blind spots.

  • Automated Cloud Forensic Investigations: Instantly capture and analyze volatile evidence from cloud assets, reducing investigation times from days to minutes and eliminating blind spots
  • Enhanced Cloud-Native Threat Detection: Detect advanced attacker behaviors such as lateral movement, privilege escalation, and command-and-control in real time
  • Enhanced Live Cloud Topology Mapping: Gain continuous insight into cloud environments, including ephemeral workloads, with live topology views that simplify investigations and expose anomalous activity
  • Agentless Scanning for Proactive Risk Reduction: Continuously monitor for misconfigurations, vulnerabilities, and risky exposures to reduce attack surface and stop threats before they escalate.

Automated Cloud Forensic Investigations

Darktrace / CLOUD now includes capabilities introduced with Darktrace / Forensic Acquisition & Investigation, triggering automated forensic acquisition the moment a threat is detected. This ensures ephemeral evidence, from disks and memory to containers and serverless workloads can be preserved instantly and analyzed in minutes, not days. The integration unites detection, response, and forensic investigation in a way that eliminates blind spots and reduces manual effort.

Figure 1: Easily view Forensic Investigation of a cloud resource within the Darktrace / CLOUD architecture map

Enhanced Cloud-Native Threat Detection

Darktrace / CLOUD strengthens its real-time behavioral detection to expose early attacker behaviors that logs alone cannot reveal. Enhanced cloud-native detection capabilities include:

• Reconnaissance & Discovery – Detects enumeration and probing activity post-compromise.

• Privilege Escalation via Role Assumption – Identifies suspicious attempts to gain elevated access.

• Malicious Compute Resource Usage – Flags threats such as crypto mining or spam operations.

These enhancements ensure active attacks are detected earlier, before adversaries can escalate or move laterally through cloud environments.

Figure 2: Cyber AI Analyst summary of anomalous behavior for privilege escalation and establishing persistence.

Enhanced Live Cloud Topology Mapping

New enhancements to live topology provide real-time mapping of cloud environments, attacker movement, and anomalous behavior. This dynamic visibility helps SOC teams quickly understand complex environments, trace attack paths, and prioritize response. By integrating with Darktrace / Proactive Exposure Management (PEM), these insights extend beyond the cloud, offering a unified view of risks across networks, endpoints, SaaS, and identity — giving teams the context needed to act with confidence.

Figure 3: Enhanced live topology maps unify visibility across architectures, identities, network connections and more.

Agentless Scanning for Proactive Risk Reduction

Darktrace / CLOUD now introduces agentless scanning to uncover malware and vulnerabilities in cloud assets without impacting performance. This lightweight, non-disruptive approach provides deep visibility into cloud workloads and surfaces risks before attackers can exploit them. By continuously monitoring for misconfigurations and exposures, the solution strengthens posture management and reduces attack surface across hybrid and multi-cloud environments.

Figure 4: Agentless scanning of cloud assets reveals vulnerabilities, which are prioritized by severity.

Together, these capabilities move cloud security operations from reactive to proactive, empowering security teams to detect novel threats in real time, reduce exposures before they are exploited, and accelerate investigations with forensic depth. The result is faster triage, shorter MTTR, and reduced business risk — all delivered in a single, AI-native solution built for hybrid and multi-cloud environments.

Accelerating the Evolution of Cloud Security

Cloud security has long been fragmented, forcing teams to stitch together posture tools, log-based monitoring, and external forensics to get even partial coverage. With this release, Darktrace / CLOUD delivers a holistic, unified approach that covers every stage of the cloud lifecycle, from proactive posture management and risk identification to real-time detection, to automated investigation and response.

By bringing these capabilities together in a single AI-native solution, Darktrace is advancing cloud security beyond incremental change and setting a new standard for how organizations protect their hybrid and multi-cloud environments.

With Darktrace / CLOUD, security teams finally gain end-to-end visibility, response, and investigation at the speed of the cloud, transforming cloud defense from fragmented and reactive to unified and proactive.

[related-resource]

Sources: [1], [2] Darktrace Report: Organizations Require a New Approach to Handle Investigations in the Cloud

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

/

September 25, 2025

Introducing the Industry’s First Truly Automated Cloud Forensics Solution

Default blog imageDefault blog image

Why Cloud Investigations Fail Today

Cloud investigations have become one of the hardest problems in modern cybersecurity. Traditional DFIR tools were built for static, on-prem environments, rather than dynamic and highly scalable cloud environments, containing ephemeral workloads that disappear in minutes. SOC analysts are flooded with cloud security alerts with one-third lacking actionable data to confirm or dismiss a threat[1], while DFIR teams waste 3-5 days requesting access and performing manual collection, or relying on external responders.

These delays leave organizations vulnerable. Research shows that nearly 90% of organizations suffer some level of damage before they can fully investigate and contain a cloud incident [2]. The result is a broken model: alerts are closed without a complete understanding of the threat due to a lack of visibility and control, investigations drag on, and attackers retain the upper hand.

For SOC teams, the challenge is scale and clarity. Analysts are inundated with alerts but lack the forensic depth to quickly distinguish real threats from noise. Manual triage wastes valuable time, creates alert fatigue, and often forces teams to escalate or dismiss incidents without confidence — leaving adversaries with room to maneuver.

For DFIR teams, the challenge is depth and speed. Traditional forensics tools were built for static, on-premises environments and cannot keep pace with ephemeral workloads that vanish in minutes. Investigators are left chasing snapshots, requesting access from cloud teams, or depending on external responders, leading to blind spots and delayed response.

That’s why we built Darktrace / Forensic Acquisition & Investigation, the first automated forensic solution designed specifically for the speed, scale, and complexities of the cloud. It addresses both sets of challenges by combining automated forensic evidence capture, attacker timeline reconstruction, and cross-cloud scale. The solution empowers SOC analysts with instant clarity and DFIR teams with forensic depth, all in minutes, not days. By leveraging the very nature of the cloud, Darktrace makes these advanced capabilities accessible to security teams of all sizes, regardless of expertise or resources.

Introducing Automated Forensics at the Speed and Scale of Cloud

Darktrace / Forensic Acquisition & Investigation transforms cloud investigations by capturing, processing, and analyzing forensic evidence of cloud workloads, instantly, even from time-restricted ephemeral resources. Triggered by a detection from any cloud security tool, the entire process is automated, providing accurate root cause analysis and deep insights into attacker behavior in minutes rather than days or weeks. SOC and DFIR teams no longer have to rely on manual processes, snapshots, or external responders, they can now leverage the scale and elasticity of the cloud to accelerate triage and investigations.

Seamless Integration with Existing Detection Tools

Darktrace / Forensic Acquisition & Investigation does not require customers to replace their detection stack. Instead, it integrates with cloud-native providers, XDR platforms, and SIEM/SOAR tools, automatically initiating forensic capture whenever an alert is raised. This means teams can continue leveraging their existing investments while gaining the forensic depth required to validate alerts, confirm root cause, and accelerate response.

Most importantly, the solution is natively integrated with Darktrace / CLOUD, turning real-time detections of novel attacker behaviors into full forensic investigations instantly. When Darktrace / CLOUD identifies suspicious activity such as lateral movement, privilege escalation, or abnormal usage of compute resources, Darktrace / Forensic Acquisition & Investigation automatically preserves the underlying forensic evidence before it disappears. This seamless workflow unites detection, response, and investigation in a way that eliminates gaps, accelerates triage, and gives teams confidence that every critical cloud alert can be investigated to completion.

Figure 1: Integration with Darktrace / CLOUD – this example is showing the ability to pivot into the forensic investigation associated with a compromised cloud asset

Automated Evidence Collection Across Hybrid and Multi-Cloud

The solution provides automated forensic acquisition across AWS, Microsoft Azure, GCP, and on-prem environments. It supports both full volume capture, creating a bit-by-bit copy of an entire storage device for the most comprehensive preservation of evidence, and triage collection, which prioritizes speed by gathering only the most essential forensic artifacts such as process data, logs, network connections, and open file contents. This flexibility allows teams to strike the right balance between speed and depth depending on the investigation at hand.

Figure 2: Ability to acquire forensic data from Cloud, SaaS and on-prem environments

Automated Investigations, Root Cause Analysis and Attacker Timelines

Once evidence is collected, Darktrace applies automation to reconstruct attacker activity into a unified timeline. This includes correlating commands, files, lateral movement, and network activity into a single investigative view enriched with custom threat intelligence such as IOCs. Detailed investigation reporting including an investigation summary, an overview of the attacker timeline, and key events. Analysts can pivot into detailed views such as the filesystem view, traversing directories or inspecting file content, or filter and search using faceted options to quickly narrow the scope of an investigation.

Figure 3: Automated Investigation view surfacing the most significant attacker activity, which is contextualized with Alarm information

Forensics for Containers and Ephemeral Assets

Investigating containers and serverless workloads has historically been one of the hardest challenges for DFIR teams, as these assets often disappear before evidence can be preserved. Darktrace / Forensic Acquisition & Investigation captures forensic evidence across managed Kubernetes cloud services, even from distroless or no-shell containers, AWS ECS and other environments, ensuring that ephemeral activity is no longer a blind spot. For hybrid organizations, this extends to on-premises Kubernetes and OpenShift deployments, bringing consistency across environments.

Figure 4: Container investigations – this example is showing the ability to capture containers from managed Kubernetes cloud services

SaaS Log Collection for Modern Investigations

Beyond infrastructure-level data, the solution collects logs from SaaS providers such as Microsoft 365, Entra ID, and Google Workspace. This enables investigations into common attack types like business email compromise (BEC), account takeover (ATO), and insider threats — giving teams visibility into both infrastructure-level and SaaS-driven compromise from a single platform.

Figure 5: Ability to import logs from SaaS providers including Microsoft 365, Entra ID, and Google Workspace

Proactive Vulnerability and Malware Discovery

Finally, the solution surfaces risk proactively with vulnerability and malware discovery for Linux-based cloud resources. Vulnerabilities are presented in a searchable table and correlated with the attacker timeline, enabling teams to quickly understand not just which packages are exposed, but whether they have been targeted or exploited in the context of an incident.

Figure 6: Vulnerability data with pivot points into the attacker timeline

Cloud-Native Scale and Performance

Darktrace / Forensic Acquisition & Investigation uses a cloud-native parallel processing architecture that spins up compute resources on demand, ensuring that investigations run at scale without bottlenecks. Detailed reporting and summaries are automatically generated, giving teams a clear record of the investigation process and supporting compliance, litigation readiness, and executive reporting needs.

Scalable and Flexible Deployment Options

Every organization has different requirements for speed, control, and integration. Darktrace / Forensic Acquisition & Investigation is designed to meet those needs with two flexible deployment models.

  • Self-Hosted Virtual Appliance delivers deep integration and control across hybrid environments, preserving forensic data for compliance and litigation while scaling to the largest enterprise investigations.
  • SaaS-Delivered Deployment provides fast time-to-value out of the box, enabling automated forensic response without requiring deep cloud expertise or heavy setup.

Both models are built to scale across regions and accounts, ensuring organizations of any size can achieve rapid value and adapt the solution to their unique operational and compliance needs. This flexibility makes advanced cloud forensics accessible to every security team — whether they are optimizing for speed, integration depth, or regulatory alignment

Delivering Advanced Cloud Forensics for Every Team

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

Whether deployed as a SaaS-delivered service for fast time-to-value or as a self-hosted appliance for deep integration, Darktrace / Forensic Acquisition & Investigation provides the features that matter most: automated evidence capture, cross-cloud investigations, forensic depth for ephemeral assets, and root cause clarity without manual effort.

With Darktrace / Forensic Acquisition & Investigation, what once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

[related-resource]

Sources: [1], [2] Darktrace Report: Organizations Require a New Approach to Handle Investigations in the Cloud

Additional Resources

Continue reading
About the author
Paul Bottomley
Director of Product Management | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI