Blog
/
/
April 16, 2025

AI Uncovered: Introducing Darktrace Incident Graph Evaluation for Security Threats (DIGEST)

Discover how Darktrace’s new DIGEST model enhances Cyber AI Analyst by using GNNs and RNNs to score and prioritize threats with expert-level precision before damage is done.
No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.
man looking at computer screenDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Apr 2025

DIGEST advances how Cyber AI Analyst scores and prioritizes incidents. Trained on over a million anonymized incident graphs, our model brings deeper context to severity scoring by analyzing how threats are structured and how they evolve. DIGEST assesses threats as an expert, before damage is done. For more details beyond this overview, please read our Technical Research Paper.

Darktrace combines machine learning (ML) and artificial intelligence (AI) approaches using a multi-layered, multi-method approach. The result is an AI system that continuously ingests data from across an organization’s environment, learns from it, and adapts in real time. DIGEST adds a new layer to this system, specifically to our Cyber AI Analyst, the first and most experienced AI Analyst in cybersecurity, dedicated to refining how incidents are scored and prioritized. DIGEST improves what your team uses to focus on what matters the most first.

To build DIGEST, we combined Graph Neural Networks (GNNs) to interpret incident structure with Recurrent Neural Networks (RNNs) to analyze how incidents evolve over time. This pairing allows DIGEST to reliably determine the potential severity of an incident even at an early stage to give the Cyber AI Analyst a critical edge in identifying high-risk threats early and recognizing when activity is unlikely to escalate.

DIGEST works locally in real-time regardless of whether your Darktrace deployment is on prem or in the cloud, without requiring data to be sent externally for decisions to be made. It was built to support teams in all environments, including those with strict data controls and limited connectivity.

Our approach to AI is unique, drawing inspiration from multiple disciplines to tackle the toughest cybersecurity challenges. DIGEST demonstrates how a novel application of GNNs and RNNs improves the prioritization and triage of security incidents. By blending interdisciplinary expertise with innovative AI techniques, we are able to push the boundaries of what’s possible and deliver it where it is needed most. We are eager to share our findings to accelerate progress throughout the broader field of AI development.

DIGEST: Pattern, progression, and prioritization

Most security incidents start quietly. A device contacting an unusual domain. Credentials are used at unexpected hours. File access patterns shift. The fundamental challenge is not always detecting these anomalies but knowing what to address first. DIGEST gives us this capability.

To understand DIGEST, it helps to start with Cyber AI Analyst, a critical component of our Self-Learning AI system and a front-line triage partner in security investigations. It combines supervised and unsupervised machine learning (ML) techniques, natural language processing (NLP), and graph-based reasoning to investigate and summarize security incidents.

DIGEST was built as an additional layer of analysis within Cyber AI Analyst. It enhances its capabilities by refining how incidents are scored and prioritized, helping teams focus on what matters most more quickly. For a general view of the ML and AI methods that power Darktrace products, read our AI Arsenal whitepaper. This paper provides insights regarding the various approaches we use to detect, investigate, and prioritize threats.

Cyber AI Analyst is constantly investigating alerts and produces millions of critical incidents every year. The dynamic graphs produced by Cyber AI Analyst investigations represent an abstract understanding of security incidents that is fully anonymized and privacy preserving. This allowed us to use the Call Home and aianalyst.darktrace.com services to produce a dataset comprising the broad structure of millions of incidents that Cyber AI analyst detected on customer deployments, without containing any sensitive data. (Read our technical research paper for more details about our dataset).

The dynamic graphs from Cyber AI Analyst capture the structure of security incidents where nodes represent entities like users, devices or resources, and edges represent the multitude of relationships between them. As new activity is observed, the graph expands, capturing the progression of incidents over time. Our dataset contained everything from benign administrative behavior to full-scale ransomware attacks.

Unique data, unmatched insights

Key terms

Graph Neural Networks (GNNs): A type of neural network designed to analyze and interpret data structured as graphs, capturing relationships between nodes.

Recurrent Neural Networks (RNNs): A type of neural network designed to model sequences where the order of events matters, like how activity unfolds in a security incident.

The Cyber AI Analyst dataset used to train DIGEST reflects over a decade of work in AI paired with unmatched expertise in cybersecurity. Prior to training DIGEST on our incident graph data set, we performed rigorous data preprocessing to ensure to remove issues such as duplicate or ill-formed incidents. Additionally, to validate DIGEST’s outputs, expert security analysts assessed and verified the model’s scoring.

Transforming data into insights requires using the right strategies and techniques. Given the graphical nature of Cyber AI Analyst incident data, we used GNNs and RNNs to train DIGEST to understand incidents and how they are likely to change over time. Change does not always mean escalation. DIGEST’s enhanced scoring also keeps potentially legitimate or low-severity activity from being prioritized over threats that are more likely to get worse. At the beginning, all incidents might look the same to a person. To DIGEST, it looks like the beginning of a pattern.

As a result, DIGEST enhances our understanding of security incidents by evaluating the structure of the incident, probable next steps in an incident’s trajectory, and how likely it is to grow into a larger event.

To illustrate these capabilities in action, we are sharing two examples of DIGEST’s scoring adjustments from use cases within our customers’ environments.

First, Figure 1 shows the graphical representation of a ransomware attack, and Figure 2 shows how DIGEST scored incident progression of that ransomware attack. At hour two, DIGEST’s score escalated to 95% well before observation of data encryption. This means that prior to seeing malicious encryption behaviors, DIGEST understood the structure of the incident and flagged these early activities as high-likelihood precursors to a severe event. Early detection, especially when flagged prior to malicious encryption behaviors, gives security teams a valuable head start and can minimize the overall impact of the threat, Darktrace Autonomous Response can also be enabled by Cyber AI Analyst to initiate an immediate action to stop the progression, allowing the human security team time to investigate and implement next steps.

Graph representation of a ransomware attack
Figure 1: Graph representation of a ransomware attack
Timeline of DIGEST incident score escalation. Note that timestep does not equate to hours, the spike in score to 95% occurred approximately 2 hours into the attack, prior to data encryption.
Figure 2:  Timeline of DIGEST incident score escalation. Note that timestep does not equate to hours, the spike in score to 95% occurred approximately 2 hours into the attack, prior to data encryption.

In contrast, our second example shown in Figure 3 and Figure 4 illustrates how DIGEST’s analysis of an incident can help teams avoid wasting time on lower risk scenarios. In this instance, Figure 3 illustrates a graph of unusual administrative activity, where we observed connection to a large group of devices. However, the incident score remained low because DIGEST determined that high risk malicious activity was unlikely. This determination was based on what DIGEST observed in the incident's structure, what it assessed as the probable next steps in the incident lifecycle and how likely it was to grow into a larger adverse event.

Graph representation of unusual admin activity connecting to a large group of devices.
Figure 3: Graph representation of unusual admin activity connecting to a large group of devices.
Timeline of DIGEST incident scoring, where the score remained low as the unusual event was determined to be low risk.
Figure 4: Timeline of DIGEST incident scoring, where the score remained low as the unusual event was determined to be low risk.

These examples show the value of enhanced scoring. DIGEST helps teams act sooner on the threats that count and spend less time chasing the ones that do not.

The next phase of advanced detection is here

Darktrace understands what incidents look like. We have seen, investigated, and learned from them at scale, including over 90 million investigations in 2024. With DIGEST, we can share our deep understanding of incidents and their behaviors with you and triage these incidents using Cyber AI Analyst.

Our ability to innovate in this space is grounded in the maturity of our team and the experiences we have built upon in over a decade of building AI solutions for cybersecurity. This experience, along with our depth of understanding of our data, techniques, and strategic layering of AI/ML components has shaped every one of our steps forward.

With DIGEST, we are entering a new phase, with another line of defense that helps teams prioritize and reason over incidents and threats far earlier in an incident’s lifecycle. DIGEST understands your incidents when they start, making it easier for your team to act quickly and confidently.

DIGEST is available in Darktrace 6.3, along with a new embedding model – DEMIST-2 – designed to provide reliable, high-accuracy detections for critical security use cases.

[related-resource]

Want to learn more?

If you are curious about the details of DIGEST’s dataset, model design, training, experiments, and model deployment, read our technical brief.

No items found.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
No items found.

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response

Blog

/

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI