Blog
/
Network
/
November 6, 2023

How PlugX Malware Has Evolved & Adapted

Discover how Darktrace effectively detected and thwarted the PlugX remote access trojan in 2023 despite its highly evasive and adaptive nature.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Nov 2023

What is PlugX Remote Access Trojan?

Understanding remote access trojans (RATs)

As malicious actors across the threat landscape continue to pursue more efficient and effective ways of compromising target networks, all while remaining undetected by security measures, it is unsurprising to see an increase in the use of remote access trojans (RATs) in recent years. RATs typically operate stealthily, evading security tools while offering threat actors remote control over infected devices, allowing attackers to execute a wide range of malicious activities like data theft or installing additional malware.

Definition and general functionality of RATs: A Remote Access Trojan (RAT) is a type of malware that enables unauthorized remote control of an infected computer. Once installed, RATs allow attackers to monitor user activities, steal sensitive information, manipulate files, and execute commands. RATs are typically distributed via phishing emails, malicious attachments, drive-by downloads, or exploiting software vulnerabilities. Due to their ability to provide comprehensive control over a compromised system, RATs pose a significant security threat to individuals and organizations.

Historical overview of PlugX

PlugX is one such example of a RAT that has attributed to Chinese threat actors such as Mustang Panda, since it first appeared in the wild back in 2008. It is known for its use in espionage, a modular and plug-in style approach to malware development. It has the ability to evolve with the latest tactics, techniques, and procedures (TTPs) that allow it to avoid the detection of traditional security tools as it implants itself target devices.

How does PlugX work?

The ultimate goal of any RAT is to remotely control affected devices with a wide range of capabilities, which in PlugX’s case has typically included rebooting systems, keylogging, managing critical system processes, and file upload/downloads. One technique PlugX heavily relies on is dynamic-link library (DLL) sideloading to infiltrate devices. This technique involves executing a malicious payload that is embedded within a benign executable found in a data link library (DLL) [1]. The embedded payload within the DLL is often encrypted or obfuscated to prevent detection.

What’s more, a new variant of PlugX was observed in the wild across Papua New Guinea, Ghana, Mongolia, Zimbabwe, and Nigeria in August 2022, that added several new capabilities to its toolbox.

Key capabilities of PlugX

The new variation is reported to continuously monitor affected environments for new USB devices to infect, allowing it to spread further through compromised networks [2]. It is then able to hide malicious files within a USB device by using a novel technique that prevents them from being viewed on Windows operating systems (OS). These hidden files can only be viewed on a Unix-like (.nix) OS, or by analyzing an affected USB devices with a forensic tool [2]. The new PlugX variant also has the ability to create a hidden directory, “RECYCLER.BIN”, containing a collection of stolen documents, likely in preparation for exfiltration via its command and control (C2) channels. [3]

Since December 2022, PlugX has been observed targeting networks in Europe through malware delivery via HTML smuggling campaigns, a technique that has been dubbed SmugX [4].

This evasive tactic allows threat actors to prepare and deploy malware via phishing campaigns by exploiting legitimate HTML5 and JavaScript features [5].

Darktrace Coverage of PlugX

Between January and March 2023, Darktrace observed activity relating to the PlugX RAT on multiple customers across the fleet. While PlugX’s TTPs may have bypassed traditional security tools, the anomaly-based detection capabilities of Darktrace allowed it to identify and alert the subtle deviations in the behavior of affected devices, while Darktrace was able to take immediate mitigative action against such anomalous activity and stop attackers in their tracks.  

C2 Communication

Between January and March 2023, Darktrace detected multiple suspicious connections related to the PlugX RAT within customer environments. When a device has been infected, it will typically communicate through C2 infrastructure established for the PlugX RAT. In most cases observed by Darktrace, affected devices exhibited suspicious C2 connections to rare endpoints that were assessed with moderate to high confidence to be linked to PlugX.

On the network of one Darktrace customer the observed communication was a mix of successful and unsuccessful connections at a high volume to rare endpoints on ports such as 110, 443, 5938, and 80. These ports are commonly associated with POP3, HTTPS, TeamViewer RDP / DynGate, and HTTP, respectively.  Figure 1 below showcases this pattern of activity.

Figure 1: Model Breach Event Log demonstrating various successful and unsuccessful connections to the PlugX C2 endpoint 103.56.53[.]46 via various destination ports.

On another customer’s network, Darktrace observed C2 communication involving multiple failed connection attempts to another rare external endpoint associated with PlugX. The device in this case was detected attempting connections to the endpoint, 45.142.166[.]112 on ports 110, 80, and 443 which caused the DETECT model ‘Anomalous Connection / Multiple Failed Connections to Rare Endpoint’ to breach. This model examines devices attempting connections to a rare external endpoint over a short period of time, and it breached in response to almost all PlugX C2 related activity detected by Darktrace. This highlights Darktrace DETECT’s unique ability to identify anomalous activity which appears benign or uncertain, rather than relying on traditional signature-based detections.

Figure 2: Device Event Log demonstrating various successful and unsuccessful connections to the PlugX C2 endpoint 45.142.166[.]112 via various destination on January 27, 2023.

New User Agent

Darktrace's Self-Learning AI approach to threat detection also allowed it to recognize connections to PlugX associated endpoints that utilized a new user agent. In almost all connections to PlugX endpoints detected by Darktrace, the same user agent, Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36, was observed, illustrating a clear pattern in PlugX-related activity

In one example from February 2023, an affected device successfully connected to an endpoint associated with PlugX, 45.142.166[.]112, while using the aforementioned new user agent, as depicted in Figure 3.

Figure 3: The Device Event log above showcases a successful connection to the PlugX associated IP address, 45.142.166[.]112 using the new user agent ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’.

On March 21, 2023, Darktrace observed similar activity on a separate customer’s network affected by connections to PlugX. This activity included connections to the same endpoint, 45.142.166[.]112. The connection was an HTTP POST request made via proxy with the same new user agent, ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’. When investigated further this user agent actually reveals very little about itself and appears to be missing a couple of common features that are typically contained in a user agent string, such as a web browser and its version or the mention of Safari before its build ID (‘537.36’).

Additionally, for this connection the URI observed consisted of a random string of 8 hexadecimal characters, namely ‘d819f07a’. This is a technique often used by malware to communicate with its C2 servers, while evading the detection of signature-based detection tools. Darktrace, however, recognized that this external connection to an endpoint with no hostname constituted anomalous behavior, and could have been indicative of a threat actor communicating with malicious infrastructure, thus the ‘Anomalous Connection / Possible Callback URI’ model was breached.

Figure 4: An affected device was detected using the new user agent, ‘Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36’ while connecting to the rare external endpoint 45.142.166[.]112 via proxy.

Numeric File Download

Darktrace’s detection of PlugX activity on another customer’s network, in February 2023, helped to demonstrate related patterns of activity within the C2 communication and tooling attack phases. Observed PlugX activity on this network followed the subsequent pattern; a connection to a PlugX endpoints is made, followed by a HTTP POST request to a numeric URI with a random string of 8 hexadecimal characters, as previously highlighted. Darktrace identified that this activity represented unusual ‘New Activity’ for this device, and thus treated it with suspicion.

Figure 5: New activity was identified by Darktrace in the Device Event Log shown above for connections to the endpoint 45.142.166[.]112 followed by HTTP POSTs to URIs “/8891431c” and “/ba12b866” on February 15, 2023.

The device in question continued to connect to the endpoint and make HTTP POST connections to various URIs relating to PlugX. Additionally, the user agent `Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36` was again detected for these connections. Figure 6 details the activity captured by Darktrace’s Cyber AI Analyst.

Figure 6: The image above showcases activity captured by Darktrace’s AI Analyst for PlugX connections made on February 15, 2023.

Darktrace detected that during these connections, the device in question attempted to download a suspicious file named only with numbers. The use of numeric file names is a technique often used by threat actors to obfuscate the download of malicious files or programs and bypass traditional security tools. Darktrace understood that the download of a numeric file, coupled with the use of an anomalous new user agent, mean the incident should be treated with suspicion. Fortunately, Darktrace RESPOND was enabled in autonomous response mode during this attack, meaning it was able to automatically block the device from downloading the file, or any other files, from the suspicious external location for a two-hour period, potentially preventing the download of PlugX’s malicious tooling.

Conclusion

Amid the continued evolution of PlugX from an espionage tool to a more widely available malware, it is essential that threat detection does not rely on a set of characteristics or indicators, but rather is focused on anomalies. Throughout these cases, Darktrace demonstrated the efficacy of its detection and alerting on emerging activity pertaining to a particularly stealthy and versatile RAT. Over the years, PlugX has continually looked to evolve and survive in the ever-changing threat landscape by adapting new capabilities and TTPs through which it can infect a system and spread to new devices without being noticed by security teams and their tools.

However, Darktrace’s Self-Learning AI allows it to gain a strong understanding of customer networks, learning what constitutes expected network behavior which in turn allows it to recognize the subtle deviations indicative of an ongoing compromise.

Darktrace’s ability to identify emerging threats through anomaly-based detection, rather than relying on established threat intelligence, uniquely positions it to detect and respond to highly adaptable and dynamic threats, like the PlugX malware, regardless of how it may evolve in the future.

Credit to: Nahisha Nobregas, SOC Analyst & Dylan Hinz, Cyber Analyst

Appendices

MITRE ATT&CK Framework

Execution

  • T1059.003 Command and Scripting Interpreter: Windows Command Shell

Persistence and Privilege Escalation

  • T1547.001 Boot or Logon AutoStart Execution: Registry Run Keys / Startup Folder
  • T1574.001 Hijack Execution Flow: DLL Search Order Hijacking
  • T1574.002 Hijack Execution Flow: DLL Side-Loading
  • T1543.003 Create or Modify System Process: Windows Service
  • T1140 Deobfuscate / Decode Files or Information
  • T1083 File and Directory Discovery

Defense Evasion

  • T1564.001 Hide Artifacts: Hidden Files and Directories
  • T1036.004 Masquerading: Task or Service
  • T1036.005 Masquerading: Match Legitimate Name or Location
  • T1027.006 Obfuscated Files or Information: HTML Smuggling

Credential Access

  • T1056.001 Input Capture: Keylogging

Collection

  • T1105 Ingress Tool Transfer

Command and Control

  • T1573.001 Encrypted Channel: Symmetric Cryptography
  • T1070.003 Mail Protocols
  • T1071.001 Web Protocol

DETECT Model Breaches

  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Anomalous File / New User Agent Followed By Numeric File Download
  • Anomalous Connection / Possible Callback URL

Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

45.142.166[.]112 - IP - PlugX C2 Endpoint / moderate - high

103.56.53[.]46 - IP - PlugX C2 Endpoint / moderate - high

Mozilla/5.0 (Windows NT 10.0;Win64;x64)AppleWebKit/537.36 - User Agent - PlugX User Agent / moderate – high

/8891431c - URI - PlugX URI / moderate-high

/ba12b866 - URI - PlugX URI / moderate -high

References

1. https://www.crowdstrike.com/blog/dll-side-loading-how-to-combat-threat-actor-evasion-techniques/

2. https://unit42.paloaltonetworks.com/plugx-variants-in-usbs/

3. https://news.sophos.com/en-us/2023/03/09/border-hopping-plugx-usb-worm/

4. https://thehackernews.com/2023/07/chinese-hackers-use-html-smuggling-to.html

5. https://www.cyfirma.com/outofband/html-smuggling-a-stealthier-approach-to-deliver-malware/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nahisha Nobregas
SOC Analyst

More in this series

No items found.

Blog

/

Network

/

October 29, 2025

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287

WSUS Exploited: Darktrace’s Analysis of Post-Exploitation Activities Related to CVE-2025-59287Default blog imageDefault blog image

Introduction

On October 14, 2025, Microsoft disclosed a new critical vulnerability affecting the Windows Server Update Service (WSUS), CVE-2025-59287.  Exploitation of the vulnerability could allow an unauthenticated attacker to remotely execute code [1][6].

WSUS allows for centralized distribution of Microsoft product updates [3]; a server running WSUS is likely to have significant privileges within a network making it a valuable target for threat actors. While WSUS servers are not necessarily expected to be open to the internet, open-source intelligence (OSINT) has reported  thousands of publicly exposed instances that may be vulnerable to exploitation [2].

Microsoft’s initial ‘Patch Tuesday’ update for this vulnerability did not fully mitigate the risk, and so an out-of-band update followed on October 23 [4][5] . Widespread exploitation of this vulnerability started to be observed shortly after the security update [6], prompting CISA to add CVE-2025-59287 to its Known Exploited Vulnerability Catalog (KEV) on October 24 [7].

Attack Overview

The Darktrace Threat Research team have recently identified multiple potential cases of CVE-2025-59287 exploitation, with two detailed here. While the likely initial access method is consistent across the cases, the follow-up activities differed, demonstrating the variety in which such a CVE can be exploited to fulfil each attacker’s specific goals.

The first signs of suspicious activity across both customers were detected by Darktrace on October 24, the same day this vulnerability was added to CISA’s KEV. Both cases discussed here involve customers based in the United States.

Case Study 1

The first case, involving a customer in the Information and Communication sector, began with an internet-facing device making an outbound connection to the hostname webhook[.]site. Observed network traffic indicates the device was a WSUS server.

OSINT has reported abuse of the workers[.]dev service in exploitation of CVE-2025-59287, where enumerated network information gathered through running a script on the compromised device was exfiltrated using this service [8].

In this case, the majority of connectivity seen to webhook[.]site involved a PowerShell user agent; however, cURL user agents were also seen with some connections taking the form of HTTP POSTs. This connectivity appears to align closely with OSINT reports of CVE-2025-59287 post-exploitation behaviour [8][9].

Connections to webhook[.]site continued until October 26. A single URI was seen consistently until October 25, after which the connections used a second URI with a similar format.

Later on October 26, an escalation in command-and-control (C2) communication appears to have occurred, with the device starting to make repeated connections to two rare workers[.]dev subdomains (royal-boat-bf05.qgtxtebl.workers[.]dev & chat.hcqhajfv.workers[.]dev), consistent with C2 beaconing. While workers[.]dev is associated with the legitimate Cloudflare Workers service, the service is commonly abused by malicious actors for C2 infrastructure. The anomalous nature of the connections to both webhook[.]site and workers[.]dev led to Darktrace generating multiple alerts including high-fidelity Enhanced Monitoring alerts and alerts for Darktrace’s Autonomous Response.

Infrastructure insight

Hosted on royal-boat-bf05.qgtxtebl.workers[.]dev is a Microsoft Installer file (MSI) named v3.msi.

Screenshot of v3.msi content.
Figure 1: Screenshot of v3.msi content.

Contained in the MSI file is two Cabinet files named “Sample.cab” and “part2.cab”. After extracting the contents of the cab files, a file named “Config” and a binary named “ServiceEXE”. ServiceEXE is the legitimate DFIR tool Velociraptor, and “Config” contains the configuration details, which include chat.hcqhajfv.workers[.]dev as the server_url, suggesting that Velociraptor is being used as a tunnel to the C2. Additionally, the configuration points to version 0.73.4, a version of Velociraptor that is vulnerable to CVE-2025-6264, a privilege escalation vulnerability.

 Screenshot of Config file.
Figure 2: Screenshot of Config file.

Velociraptor, a legitimate security tool maintained by Rapid7, has been used recently in malicious campaigns. A vulnerable version of tool has been used by threat actors for command execution and endpoint takeover, while other campaigns have used Velociraptor to create a tunnel to the C2, similar to what was observed in this case [10] .

The workers[.]dev communication continued into the early hours of October 27. The most recent suspicious behavior observed on the device involved an outbound connection to a new IP for the network - 185.69.24[.]18/singapure - potentially indicating payload retrieval.

The payload retrieved from “/singapure” is a UPX packed Windows binary. After unpacking the binary, it is an open-source Golang stealer named “Skuld Stealer”. Skuld Stealer has the capabilities to steal crypto wallets, files, system information, browser data and tokens. Additionally, it contains anti-debugging and anti-VM logic, along with a UAC bypass [11].

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 3: A timeline outlining suspicious activity on the device alerted by Darktrace.

Case Study 2

The second case involved a customer within the Education sector. The affected device was also internet-facing, with network traffic indicating it was a WSUS server

Suspicious activity in this case once again began on October 24, notably only a few seconds after initial signs of compromise were observed in the first case. Initial anomalous behaviour also closely aligned, with outbound PowerShell connections to webhook[.]site, and then later connections, including HTTP POSTs, to the same endpoint with a cURL user agent.

While Darktrace did not observe any anomalous network activity on the device after October 24, the customer’s security integration resulted in an additional alert on October 27 for malicious activity, suggesting that the compromise may have continued locally.

By leveraging Darktrace’s security integrations, customers can investigate activity across different sources in a seamless manner, gaining additional insight and context to an attack.

A timeline outlining suspicious activity on the device alerted by Darktrace.
Figure 4: A timeline outlining suspicious activity on the device alerted by Darktrace.

Conclusion

Exploitation of a CVE can lead to a wide range of outcomes. In some cases, it may be limited to just a single device with a focused objective, such as exfiltration of sensitive data. In others, it could lead to lateral movement and a full network compromise, including ransomware deployment. As the threat of internet-facing exploitation continues to grow, security teams must be prepared to defend against such a possibility, regardless of the attack type or scale.

By focussing on detection of anomalous behaviour rather than relying on signatures associated with a specific CVE exploit, Darktrace is able to alert on post-exploitation activity regardless of the kind of behaviour seen. In addition, leveraging security integrations provides further context on activities beyond the visibility of Darktrace / NETWORK, enabling defenders to investigate and respond to attacks more effectively.

With adversaries weaponizing even trusted incident response tools, maintaining broad visibility and rapid response capabilities becomes critical to mitigating post-exploitation risk.

Credit to Emma Foulger (Global Threat Research Operations Lead), Tara Gould (Threat Research Lead), Eugene Chua (Principal Cyber Analyst & Analyst Team Lead), Nathaniel Jones (VP, Security & AI Strategy, Field CISO),

Edited by Ryan Traill (Analyst Content Lead)

Appendices

References

1.        https://nvd.nist.gov/vuln/detail/CVE-2025-59287

2.    https://www.bleepingcomputer.com/news/security/hackers-now-exploiting-critical-windows-server-wsus-flaw-in-attacks/

3.    https://learn.microsoft.com/en-us/windows-server/administration/windows-server-update-services/get-started/windows-server-update-services-wsus

4.    https://www.cisa.gov/news-events/alerts/2025/10/24/microsoft-releases-out-band-security-update-mitigate-windows-server-update-service-vulnerability-cve

5.    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2025-59287

6.    https://thehackernews.com/2025/10/microsoft-issues-emergency-patch-for.html

7.    https://www.cisa.gov/known-exploited-vulnerabilities-catalog

8.    https://www.huntress.com/blog/exploitation-of-windows-server-update-services-remote-code-execution-vulnerability

9.    https://unit42.paloaltonetworks.com/microsoft-cve-2025-59287/

10. https://blog.talosintelligence.com/velociraptor-leveraged-in-ransomware-attacks/

11. https://github.com/hackirby/skuld

Darktrace Model Detections

·       Device / New PowerShell User Agent

·       Anomalous Connection / Powershell to Rare External

·       Compromise / Possible Tunnelling to Bin Services

·       Compromise / High Priority Tunnelling to Bin Services

·       Anomalous Server Activity / New User Agent from Internet Facing System

·       Device / New User Agent

·       Device / Internet Facing Device with High Priority Alert

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname

·       Anomalous Server Activity / Rare External from Server

·       Compromise / Agent Beacon (Long Period)

·       Device / Large Number of Model Alerts

·       Compromise / Agent Beacon (Medium Period)

·       Device / Long Agent Connection to New Endpoint

·       Compromise / Slow Beaconing Activity To External Rare

·       Security Integration / Low Severity Integration Detection

·       Antigena / Network / Significant Anomaly / Antigena Alerts Over Time Block

·       Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Server Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Server Anomaly Block

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

o   royal-boat-bf05.qgtxtebl.workers[.]dev – Hostname – Likely C2 Infrastructure

o   royal-boat-bf05.qgtxtebl.workers[.]dev/v3.msi - URI – Likely payload

o   chat.hcqhajfv.workers[.]dev – Hostname – Possible C2 Infrastructure

o   185.69.24[.]18 – IP address – Possible C2 Infrastructure

o   185.69.24[.]18/bin.msi - URI – Likely payload

o   185.69.24[.]18/singapure - URI – Likely payload

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

Proactive Security

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist
Your data. Our AI.
Elevate your network security with Darktrace AI