Blog
/
Network
/
February 6, 2025

Reimagining Your SOC: Unlocking a Proactive State of Security

Reimagining your SOC Part 3/3: This blog explores the challenges security professionals face in managing cyber risk, evaluates current market solutions, and outlines strategies for building a proactive security posture.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Feb 2025

Part 1: How to Achieve Proactive Network Security

Part 2: Overcoming Alert Fatigue with AI-Led Investigations  

While the success of a SOC team is often measured through incident management effectiveness (E.g MTTD, MTTR), a true measure of maturity is the reduction of annual security incidents.

Organizations face an increasing number of alerts each year, yet the best SOC teams place focus on proactive operations which don’t reduce the threshold for what becomes an incident but targets the source risks that prevent them entirely.

Freeing up time to focus on cyber risk management is a challenge in and of itself, we cover this in the previous two blogs in this series (see above). However, when the time comes to manage risk, there are several challenges that are unique when compared to detection & response functions within cybersecurity.

Why do cyber risks matter?

While the volume of reported CVEs is increasing at an alarming rate[1], determining the criticality of each vulnerability is becoming increasingly challenging, especially when the likelihood and impact may be different for each organization. Yet vulnerabilities have stood as an important signpost in traditional security and mitigation strategies. Now, without clear prioritization, potentially severe risks may go unreported, leaving organizations exposed to significant threats.

Vulnerabilities also represent just one area of potential risks. Cyberattacks are no longer confined to a single technology type. They now traverse various platforms, including cloud services, email systems, and networks. As technology infrastructure continues to expand, so does the attack surface, making comprehensive visibility across all technology types essential for reducing risk and preventing multi-vector attacks.

However, achieving this visibility is increasingly difficult as infrastructure grows and the cyber risk market remains oversaturated. This visibility challenge extends beyond technology to include personnel and individual cyber hygiene which can still exacerbate broader cyberattacks whether malicious or not.

Organizations must adopt a holistic approach to preventative security. This includes improving visibility across all technology types, addressing human risks, and mobilizing swiftly against emerging security gaps.

“By 2026, 60% of cybersecurity functions will implement business-impact-focused risk assessment methods, aligning cybersecurity strategies with organizational objectives.” [2]

The costs of a fragmented approach

siloed preventative security measures or technologies
Figure 1: Organizations may have a combination of siloed preventative security measures or technologies in place

Unlike other security tools (like SIEM, NDR or SOAR) which contain an established set of capabilities, cyber risk reduction has not traditionally been defined by a single market, rather a variety of products and practices that each provide their own value and are overwhelming if too many are adopted. Just some examples include:

  • Threat and Vulnerability management: Leverages threat intelligence, CVEs and asset management; however, leaves teams with significant patching workflows, ignores business & human factors and is reliant on the speed of teams to keep up with each passing update.  
  • Continuous Controls Monitoring (CCM): Automatically audits the effectiveness of security controls based on industry frameworks but requires careful prioritization and human calculations to set-up effectively. Focuses solely on mobilization.
  • Breach and Attack Simulation (BAS): Automates security posture testing through mock scenarios but require previous prioritization and might not tell you how your specific technologies can be mitigated to reduce that risk.
  • Posture Management technologies: Siloed approaches across Cloud, SaaS, Data Security and even Gen AI that reactively assess misconfigurations and suggest improvements but with only industry frameworks to validate the importance of the risks.
  • Red teaming & Penetration testing: Required by several regulations including (GDPR, HIPPA, PCI, DSS), many organizations hire 'red teams' to perform real breaches in trusted conditions. Penetration tests reveal many flaws, but are not continuous, requiring third-party input and producing long to-do lists with input of broader business risk dependent on the cost of the service.
  • Third-party auditors: Organizations also use third-party auditors to identify assets with vulnerabilities, grade compliance, and recommend improvements. At best, these exercises become tick-box exercises for companies to stay in compliance with the responsibility still on the client to perform further discovery and actioning.

Many of these individual solutions on the market offer simple enhancement, or an automated version of an existing human security task. Ultimately, they lack an understanding of the most critical assets at your organization and are limited in scope, only working in a specific technology area or with the data you provide.

Even when these strategies are complete, implementation of the results require resources, coordination, and buy-in from IT, cybersecurity, and compliance departments. Given the nature of modern business structures, this can be labor and time intensive as responsibilities are shared by organizational segmentation spread across IT, governance, risk and compliance (GRC), and security teams.

Prioritize your true cyber risk with a CTEM approach

Organizations with robust security programs benefit from well-defined policies, standards, key risk indicators (KRIs), and operational metrics, making it easier to measure and report cyber risk accurately.

Implementing a framework like Gartner’s CTEM (Continuous Threat Exposure Management) can help governance by defining the most relevant risks to each organization and which specific solutions meet your improvement needs.

This five-step approach—scoping, discovery, prioritization, validation, and mobilization—encourages focused management cycles, better delegation of responsibilities and a firm emphasis on validating potential risks through technological methods like attack path modeling or breach and attack simulation to add credibility.

Implementing CTEM requires expertise and structure. This begins with an exposure management solution developed uniquely alongside a core threat detection and response offering, to provide visibility of an organization’s most critical risks, whilst linking directly to their incident-based workflows.

“By 2026, organizations prioritizing their security investments, based on a continuous threat exposure management program, will realize a two-third reduction in breaches.” [3]

Achieving a proactive security posture across the whole estate

Unlike conventional tools that focus on isolated risks, Darktrace / Proactive Exposure Management breaks down traditional barriers. Teams can define risk scopes with full, prioritized visibility of the critical risks between: IT/OT networks, email, Active Directory, cloud resources, operational groups, (or even the external attack surface by integrating with Darktrace / Attack Surface Management).

Our innovative, AI-led risk discovery provides a view that mirrors actual attacker methodologies. It does this through advanced algorithms that determine risk based on business importance, rather than traditional device-type prioritization. By implementing a sophisticated damage assessment methodology, security teams don’t just prioritize via severity but instead, the inherent impact, damage, weakness and external exposure of an asset or user.

These calculations also revolutionize vulnerability management by combining industry standard CVE measurements with that organization-specific context to ensure patch management efforts are efficient, rather than an endless list.

Darktrace also integrates MITRE ATT&CK framework mappings to connect all risks through attack path modeling. This offers validation to our AI’s scoring by presenting real world incident scenarios that could occur across your technologies, and the actionable mitigations to mobilize against them.

For those human choke points, security may also deploy targeted phishing engagements. These send real but harmless email ‘attacks’ to test employee susceptibility, strengthening your ability to identify weak points in your security posture, while informing broader governance strategies.

Combining risk with live detection and response

Together, each of these capabilities let teams take the best steps towards reducing risk and the volume of incidents they face. However, getting proactive also sharpens your ability to handle live threats if they occur.  

During real incidents Darktrace users can quickly evaluate the potential impact of affected assets, create their own risk detections based on internal policies, strengthen their autonomous response along critical attack paths, or even see the possible stage of the next attack.

By continually ingesting risk information into live triage workflows, security teams will develop a proactive-first mindset, prioritizing the assets and alerts that have the most impact to the business. This lets them utilize their resource in the most efficient way, freeing up even more time for risk management, mitigation and ensuring continuity for the business.

Whether your organization is laying the foundation for a cybersecurity program or enhancing an advanced one, Darktrace’s self-learning AI adapts to your needs:

  • Foundational stage: For organizations establishing visibility and automating detection and response.
  • Integrated stage: For teams expanding coverage across domains and consolidating tools for simplicity.
  • Proactive stage: For mature security programs enhancing posture with vulnerability management and risk prioritization.

The Darktrace ActiveAI Security Platform empowers security teams to adopt a preventative defense strategy by using Cyber AI Analyst and autonomous response to fuel quicker triage, incident handling and give time back for proactive efforts designed around business impact. The platform encapsulates the critical capabilities that help organizations be proactive and stay ahead of evolving threats.

darktrace proactive exposure management solution brief reduce risk cyber risk

Download the solution brief

Maximize security visibility and reduce risk:

  • Unify risk exposure across all technologies with AI-driven scoring for CVEs, human communications, and architectures.
  • Gain cost and ROI insights on CVE risks, breach costs, patch latency, and blind spots.
  • Strengthen employee awareness with targeted phishing simulations and training.
  • Align proactive and reactive security by assessing device compromises and prevention strategies.
  • Reduce risk with tailored guidance that delivers maximum impact with minimal effort.

Take control of your security posture today. Download here!

References

[1] https://nvd.nist.gov/vuln/search, Search all, Statistics, Total matches By Year 2023 against 2024

[2] https://www.gartner.com/en/documents/5598859

[3] https://www.gartner.com/en/articles/how-to-manage-cybersecurity-threats-not-episodes

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Gabriel Few-Wiegratz
Product Marketing Manager, Exposure Management and Incident Readiness

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Proactive Security

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI