Blog
/
Network
/
November 8, 2022

How Raccoon Stealer v2 Infects Systems

Learn about Raccoon Stealer v2's infection process and its implications for cybersecurity. Discover effective strategies to protect your systems.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Nov 2022

Raccoon Stealer Malware

Since the release of version 2 of Raccoon Stealer in May 2022, Darktrace has observed huge volumes of Raccoon Stealer v2 infections across its client base. The info-stealer, which seeks to obtain and then exfiltrate sensitive data saved on users’ devices, displays a predictable pattern of network activity once it is executed. In this blog post, we will provide details of this pattern of activity, with the goal of helping security teams to recognize network-based signs of Raccoon Stealer v2 infection within their own networks. 

What is Raccoon Stealer?

Raccoon Stealer is a classic example of information-stealing malware, which cybercriminals typically use to gain possession of sensitive data saved in users’ browsers and cryptocurrency wallets. In the case of browsers, targeted data typically includes cookies, saved login details, and saved credit card details. In the case of cryptocurrency wallets (henceforth, ‘crypto-wallets’), targeted data typically includes public keys, private keys, and seed phrases [1]. Once sensitive browser and crypto-wallet data is in the hands of cybercriminals, it will likely be used to conduct harmful activities, such as identity theft, cryptocurrency theft, and credit card fraud.

How do you obtain Raccoon Stealer?

Like most info-stealers, Raccoon Stealer is purchasable. The operators of Raccoon Stealer sell Raccoon Stealer samples to their customers (called ‘affiliates’), who then use the info-stealer to gain possession of sensitive data saved on users’ devices. Raccoon Stealer affiliates typically distribute their samples via SEO-promoted websites providing free or cracked software. 

Is Raccoon Stealer Still Active?

On the 25th of March 2022, the operators of Raccoon Stealer announced that they would be suspending their operations because one of their core developers had been killed during the Russia-Ukraine conflict [2]. The presence of the hardcoded RC4 key ‘edinayarossiya’ (Russian for ‘United Russia’) within observed Raccoon Stealer v2 samples [3] provides potential evidence of the Raccoon Stealer operators’ allegiances.

Recent details shared by the US Department of Justice [4]/[5] indicate that it was in fact the arrest, rather than the death, of an operator which led the Raccoon Stealer team to suspend their operations [6]. As a result of the FBI, along with law enforcement partners in Italy and the Netherlands, dismantling Raccoon Stealer infrastructure in March 2022 [4], the Raccoon Stealer team was forced to build a new version of the info-stealer.  

On the 17th May 2022, the completion of v2 of the info-stealer was announced on the Raccoon Stealer Telegram channel [7].  Since its release in May 2022, Raccoon Stealer v2 has become extremely popular amongst cybercriminals. The prevalence of Raccoon Stealer v2 in the wider landscape has been reflected in Darktrace’s client base, with hundreds of infections being observed within client networks on a monthly basis.   

Since Darktrace’s SOC first saw a Raccoon Stealer v2 infection on the 22nd May 2022, the info-stealer has undergone several subtle changes. However, the info-stealer’s general pattern of network activity has remained essentially unchanged.  

How Does Raccoon Stealer v2 Infection Work?

A Raccoon Stealer v2 infection typically starts with a user attempting to download cracked or free software from an SEO-promoted website. Attempting to download software from one of these cracked/free software websites redirects the user’s browser (typically via several .xyz or .cfd endpoints) to a page providing download instructions. In May, June, and July, many of the patterns of download behavior observed by Darktrace’s SOC matched the pattern of behavior observed in a cracked software campaign reported by Avast in June [8].   

webpage whose download instructions led to a Raccoon Stealer v2
Figure 1: Above is a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on Discord CDN
example of a webpage whose download instructions led to a Raccoon Stealer v2
Figure 2: Above is an example of a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on Bitbucket
example of a webpage whose download instructions led to a Raccoon Stealer v2
Figure 3: Above is an example of a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on MediaFire

Following the instructions on the download instruction page causes the user’s device to download a password-protected RAR file from a file storage service such as ‘cdn.discordapp[.]com’, ‘mediafire[.]com’, ‘mega[.]nz’, or ‘bitbucket[.]org’. Opening the downloaded file causes the user’s device to execute Raccoon Stealer v2. 

The Event Log for an infected device,
Figure 4: The Event Log for an infected device, taken from Darktrace’s Threat Visualiser interface, shows a device contacting two cracked software websites (‘crackedkey[.]org’ and ‘crackedpc[.]co’) before contacting a webpage (‘premiumdownload[.]org) providing instructions to download Raccoon Stealer v2 from Bitbucket

Once Raccoon Stealer v2 is running on a device, it will make an HTTP POST request with the target URI ‘/’ and an unusual user-agent string (such as ‘record’, ‘mozzzzzzzzzzz’, or ‘TakeMyPainBack’) to a C2 server. This POST request consists of three strings: a machine GUID, a username, and a 128-bit RC4 key [9]. The posted data has the following form:

machineId=X | Y & configId=Z (where X is a machine GUID, Y is a username and Z is a 128-bit RC4 key) 

PCAP showing a device making an HTTP POST request with the User Agent header ‘record’ 
Figure 5:PCAP showing a device making an HTTP POST request with the User Agent header ‘record’ 
PCAP showing a device making an HTTP POST request with the User Agent header ‘mozzzzzzzzzzz’
Figure 6: PCAP showing a device making an HTTP POST request with the User Agent header ‘mozzzzzzzzzzz’
PCAP showing a device making an HTTP POST request with the User Agent header ‘TakeMyPainBack’
Figure 7: PCAP showing a device making an HTTP POST request with the User Agent header ‘TakeMyPainBack’

The C2 server responds to the info-stealer’s HTTP POST request with custom-formatted configuration details. These configuration details consist of fields which tell the info-stealer what files to download, what data to steal, and what target URI to use in its subsequent exfiltration POST requests. Below is a list of the fields Darktrace has observed in the configuration details retrieved by Raccoon Stealer v2 samples:

  • a ‘libs_mozglue’ field, which specifies a download address for a Firefox library named ‘mozglue.dll’
  • a ‘libs_nss3’ field, which specifies a download address for a Network System Services (NSS) library named ‘nss3.dll’ 
  • a ‘libs_freebl3’ field, which specifies a download address for a Network System Services (NSS) library named ‘freebl3.dll’
  • a ‘libs_softokn3’ field, which specifies a download address for a Network System Services (NSS) library named ‘softokn3.dll’
  • a ‘libs_nssdbm3’ field, which specifies a download address for a Network System Services (NSS) library named ‘nssdbm3.dll’
  • a ‘libs_sqlite3’ field, which specifies a download address for a SQLite command-line program named ‘sqlite3.dll’
  • a ‘libs_ msvcp140’ field, which specifies a download address for a Visual C++ runtime library named ‘msvcp140.dll’
  • a ‘libs_vcruntime140’ field, which specifies a download address for a Visual C++ runtime library named ‘vcruntime140.dll’
  • a ‘ldr_1’ field, which specifies the download address for a follow-up payload for the sample to download 
  • ‘wlts_X’ fields (where X is the name of a crypto-wallet application), which specify data for the sample to obtain from the specified crypto-wallet application
  • ‘ews_X’ fields (where X is the name of a crypto-wallet browser extension), which specify data for the sample to obtain from the specified browser extension
  • ‘xtntns_X’ fields (where X is the name of a password manager browser extension), which specify data for the sample to obtain from the specified browser extension
  • a ‘tlgrm_Telegram’ field, which specifies data for the sample to obtain from the Telegram Desktop application 
  • a ‘grbr_Desktop’ field, which specifies data within a local ‘Desktop’ folder for the sample to obtain 
  • a ‘grbr_Documents’ field, which specifies data within a local ‘Documents’ folder for the sample to obtain
  • a ‘grbr_Recent’ field, which specifies data within a local ‘Recent’ folder for the sample to obtain
  • a ‘grbr_Downloads’ field, which specifies data within a local ‘Downloads’ folder for the sample to obtain
  • a ‘sstmnfo_System Info.txt’ field, which specifies whether the sample should gather and exfiltrate a profile of the infected host 
  • a ‘scrnsht_Screenshot.jpeg’ field, which specifies whether the sample should take and exfiltrate screenshots of the infected host
  • a ‘token’ field, which specifies a 32-length string of hexadecimal digits for the sample to use as the target URI of its HTTP POST requests containing stolen data 

After retrieving its configuration data, Raccoon Stealer v2 downloads the library files specified in the ‘libs_’ fields. Unusual user-agent strings (such as ‘record’, ‘qwrqrwrqwrqwr’, and ‘TakeMyPainBack’) are used in the HTTP GET requests for these library files. In all Raccoon Stealer v2 infections seen by Darktrace, the paths of the URLs specified in the ‘libs_’ fields have the following form:

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/X (where X is the name of the targeted DLL file) 

Advanced Search logs for an infected host
Figure 8: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘record’ for DLL files
Advanced Search logs for an infected host
Figure 9: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘qwrqrwrqwrqwr’ for DLL files
Advanced Search logs for an infected host
Figure 10: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘TakeMyPainBack’ for DLL files

Raccoon Stealer v2 uses the DLLs which it downloads to gain access to sensitive data (such as cookies, credit card details, and login details) saved in browsers running on the infected host.  

Depending on the data provided in the configuration details, Raccoon Stealer v2 will typically seek to obtain, in addition to sensitive data saved in browsers, the following information:

  • Information about the Operating System and applications installed on the infected host
  • Data from specified crypto-wallet software
  • Data from specified crypto-wallet browser extensions
  • Data from specified local folders
  • Data from Telegram Desktop
  • Data from specified password manager browser extensions
  • Screenshots of the infected host 

Raccoon Stealer v2 exfiltrates the data which it obtains to its C2 server by making HTTP POST requests with unusual user-agent strings (such as ‘record’, ‘rc2.0/client’, ‘rqwrwqrqwrqw’, and ‘TakeMyPainBack’) and target URIs matching the 32-length string of hexadecimal digits specified in the ‘token’ field of the configuration details. The stolen data exfiltrated by Raccoon Stealer typically includes files named ‘System Info.txt’, ‘---Screenshot.jpeg’, ‘\cookies.txt’, and ‘\passwords.txt’. 

Advanced Search logs for an infected host
Figure 11: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating files named ‘System Info.txt’ and ‘---Screenshot.jpeg’
Advanced Search logs for an infected host
Figure 12: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating a file named ‘System Info.txt’ 
Advanced Search logs for an infected host
Figure 13: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating files named ‘System Info.txt’, ‘\cookies.txt’ and ‘\passwords.txt’
Advanced Search logs for an infected host
Figure 14: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating a file named ‘System Info.txt’

If a ‘ldr_1’ field is present in the retrieved configuration details, then Raccoon Stealer will complete its operation by downloading the binary file specified in the ‘ldr_1’ field. In all observed cases, the paths of the URLs specified in the ‘ldr_1’ field end in a sequence of digits, followed by ‘.bin’. The follow-up payload seems to vary between infections, likely due to this additional-payload feature being customizable by Raccoon Stealer affiliates. In many cases, the info-stealer, CryptBot, was delivered as the follow-up payload. 

Darktrace Coverage of Raccoon Stealer

Once a user’s device becomes infected with Raccoon Stealer v2, it will immediately start to communicate over HTTP with a C2 server. The HTTP requests made by the info-stealer have an empty Host header (although Host headers were used by early v2 samples) and highly unusual User Agent headers. When Raccoon Stealer v2 was first observed in May 2022, the user-agent string ‘record’ was used in its HTTP requests. Since then, it appears that the operators of Raccoon Stealer have made several changes to the user-agent strings used by the info-stealer,  likely in an attempt to evade signature-based detections. Below is a timeline of the changes to the info-stealer’s user-agent strings, as observed by Darktrace’s SOC:

  • 22nd May 2022: Samples seen using the user-agent string ‘record’
  • 2nd July 2022: Samples seen using the user-agent string ‘mozzzzzzzzzzz’
  • 29th July 2022: Samples seen using the user-agent string ‘rc2.0/client’
  • 10th August 2022: Samples seen using the user-agent strings ‘qwrqrwrqwrqwr’ and ‘rqwrwqrqwrqw’
  • 16th Sep 2022: Samples seen using the user-agent string ‘TakeMyPainBack’

The presence of these highly unusual user-agent strings within infected devices’ HTTP requests causes the following Darktrace DETECT/Network models to breach:

  • Device / New User Agent
  • Device / New User Agent and New IP
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / Three or More New User Agents

These DETECT models look for devices making HTTP requests with unusual user-agent strings, rather than specific user-agent strings which are known to be malicious. This method of detection enables the models to continually identify Raccoon Stealer v2 HTTP traffic, despite the changes made to the info-stealer’s user-agent strings.   

After retrieving configuration details from a C2 server, Raccoon Stealer v2 samples make HTTP GET requests for several DLL libraries. Since these GET requests are directed towards highly unusual IP addresses, the downloads of the DLLs cause the following DETECT models to breach:

  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations

Raccoon Stealer v2 samples send data to their C2 server via HTTP POST requests with an absent Host header. Since these POST requests lack a Host header and have a highly unusual destination IP, their occurrence causes the following DETECT model to breach:

  • Anomalous Connection / Posting HTTP to IP Without Hostname

Certain Raccoon Stealer v2 samples download (over HTTP) a follow-up payload once they have exfiltrated data. Since the target URIs of the HTTP GET requests made by v2 samples end in a sequence of digits followed by ‘.bin’, the samples’ downloads of follow-up payloads cause the following DETECT model to breach:

  • Anomalous File / Numeric File Download

If Darktrace RESPOND/Network is configured within a customer’s environment, then Raccoon Stealer v2 activity should cause the following inhibitive actions to be autonomously taken on infected systems: 

  • Enforce pattern of life — This action results in a device only being able to make connections which are normal for it to make
  • Enforce group pattern of life — This action results in a device only being able to make connections which are normal for it or any of its peers to make
  • Block matching connections — This action results in a device being unable to make connections to particular IP/Port pairs
  • Block all outgoing traffic — This action results in a device being unable to make any connections 
The Event Log for an infected device
Figure 15: The Event Log for an infected device, taken from Darktrace’s Threat Visualiser interface, shows Darktrace RESPOND taking inhibitive actions in response to the HTTP activities of a Raccoon Stealer v2 sample downloaded from MediaFire

Given that Raccoon Stealer v2 infections move extremely fast, with the time between initial infection and data exfiltration sometimes less than a minute, the availability of Autonomous Response technology such as Darktrace RESPOND is vital for the containment of Raccoon Stealer v2 infections.  

Timeline of Darktrace stopping raccoon stealer.
Figure 16: Figure displaying the steps of a Raccoon Stealer v2 infection, along with the corresponding Darktrace detections

Conclusion

Since the release of Raccoon Stealer v2 back in 2022, the info-stealer has relentlessly infected the devices of unsuspecting users. Once the info-stealer infects a user’s device, it retrieves and then exfiltrates sensitive information within a matter of minutes. The distinctive pattern of network behavior displayed by Raccoon Stealer v2 makes the info-stealer easy to spot. However, the changes which the Raccoon Stealer operators make to the User Agent headers of the info-stealer’s HTTP requests make anomaly-based methods key for the detection of the info-stealer’s HTTP traffic. The operators of Raccoon Stealer can easily change the superficial features of their malware’s C2 traffic, however, they cannot easily change the fact that their malware causes highly unusual network behavior. Spotting this behavior, and then autonomously responding to it, is likely the best bet which organizations have at stopping a Raccoon once it gets inside their networks.  

Thanks to the Threat Research Team for its contributions to this blog.

References

[1] https://www.microsoft.com/security/blog/2022/05/17/in-hot-pursuit-of-cryware-defending-hot-wallets-from-attacks/

[2] https://twitter.com/3xp0rtblog/status/1507312171914461188

[3] https://www.esentire.com/blog/esentire-threat-intelligence-malware-analysis-raccoon-stealer-v2-0

[4] https://www.justice.gov/usao-wdtx/pr/newly-unsealed-indictment-charges-ukrainian-national-international-cybercrime-operation

[5] https://www.youtube.com/watch?v=Fsz6acw-ZJ

[6] https://riskybiznews.substack.com/p/raccoon-stealer-dev-didnt-die-in

[7] https://medium.com/s2wblog/raccoon-stealer-is-back-with-a-new-version-5f436e04b20d

[8] https://blog.avast.com/fakecrack-campaign

[9] https://blog.sekoia.io/raccoon-stealer-v2-part-2-in-depth-analysis/

Appendices

MITRE ATT&CK Mapping

Resource Development

• T1588.001 — Obtain Capabilities: Malware

• T1608.001 — Stage Capabilities: Upload Malware

• T1608.005 — Stage Capabilities: Link Target

• T1608.006 — Stage Capabilities: SEO Poisoning

Execution

•  T1204.002 — User Execution: Malicious File

Credential Access

• T1555.003 — Credentials from Password Stores:  Credentials from Web Browsers

• T1555.005 — Credentials from Password Stores:  Password Managers

• T1552.001 — Unsecured Credentials: Credentials  In Files

Command and Control

•  T1071.001 — Application Layer Protocol: Web Protocols

•  T1105 — Ingress Tool Transfer

IOCS

Type

IOC

Description

User-Agent String

record

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

mozzzzzzzzzzz

String used inUser Agent header of Raccoon Stealer v2’s HTTP requests

User-Agent String

rc2.0/client

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

qwrqrwrqwrqwr

String used in  User Agent header of Raccoon Stealer v2’s HTTP requests

User-Agent String

rqwrwqrqwrqw

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

TakeMyPainBack

String used in  User Agent header of Raccoon Stealer v2’s HTTP requests

Domain Name

brain-lover[.]xyz  

Raccoon Stealer v2 C2 infrastructure

Domain  Name

polar-gift[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

cool-story[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

fall2sleep[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

broke-bridge[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

use-freedom[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

just-trust[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

soft-viper[.]site

Raccoon Stealer  v2 C2 infrastructure

Domain Name

tech-lover[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

heal-brain[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

love-light[.]xyz

Raccoon Stealer v2 C2 infrastructure

IP  Address

104.21.80[.]14

Raccoon Stealer  v2 C2 infrastructure

IP Address

107.152.46[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

135.181.147[.]255

Raccoon Stealer  v2 C2 infrastructure

IP Address

135.181.168[.]157

Raccoon Stealer v2 C2 infrastructure

IP  Address

138.197.179[.]146

Raccoon Stealer  v2 C2 infrastructure

IP Address

141.98.169[.]33

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.170[.]100

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.170[.]175

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.170[.]98

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.173[.]33

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.173[.]72

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.247[.]175

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.247[.]177

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.70.125[.]95

Raccoon Stealer v2 C2 infrastructure

IP  Address

152.89.196[.]234

Raccoon Stealer  v2 C2 infrastructure

IP Address

165.225.120[.]25

Raccoon Stealer v2 C2 infrastructure

IP  Address

168.100.10[.]238

Raccoon Stealer  v2 C2 infrastructure

IP Address

168.100.11[.]23

Raccoon Stealer v2 C2 infrastructure

IP  Address

168.100.9[.]234

Raccoon Stealer  v2 C2 infrastructure

IP Address

170.75.168[.]118

Raccoon Stealer v2 C2 infrastructure

IP  Address

172.67.173[.]14

Raccoon Stealer  v2 C2 infrastructure

IP Address

172.86.75[.]189

Raccoon Stealer v2 C2 infrastructure

IP  Address

172.86.75[.]33

Raccoon Stealer  v2 C2 infrastructure

IP Address

174.138.15[.]216

Raccoon Stealer v2 C2 infrastructure

IP  Address

176.124.216[.]15

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.106.92[.]14

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.173.34[.]161

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.173.34[.]161  

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.225.17[.]198

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.225.19[.]190

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.225.19[.]229

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.53.46[.]103

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.53.46[.]76

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.53.46[.]77

Raccoon Stealer v2 C2 infrastructure

IP  Address

188.119.112[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

190.117.75[.]91

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.106.191[.]182

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.149.129[.]135

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.149.129[.]144

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.149.180[.]210

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.149.185[.]192

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.233.193[.]50

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]17

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]192

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]213

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]214

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]215

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]26

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]45

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.56.146[.]177

Raccoon Stealer  v2 C2 infrastructure

IP Address

194.180.174[.]180

Raccoon Stealer v2 C2 infrastructure

IP  Address

195.201.148[.]250

Raccoon Stealer  v2 C2 infrastructure

IP Address

206.166.251[.]156

Raccoon Stealer v2 C2 infrastructure

IP  Address

206.188.196[.]200

Raccoon Stealer  v2 C2 infrastructure

IP Address

206.53.53[.]18

Raccoon Stealer v2 C2 infrastructure

IP  Address

207.154.195[.]173

Raccoon Stealer  v2 C2 infrastructure

IP Address

213.252.244[.]2

Raccoon Stealer v2 C2 infrastructure

IP  Address

38.135.122[.]210

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.10.20[.]248

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.11.19[.]99

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]110

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.133.216[.]145

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]148

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.133.216[.]249

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]71

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.140.146[.]169

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.140.147[.]245

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.212[.]100

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.142.213[.]24

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.215[.]91

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.142.215[.]91  

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.215[.]92

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.144.29[.]18

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.144.29[.]243

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.15.156[.]11

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.15.156[.]2

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.15.156[.]31

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.15.156[.]31

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.150.67[.]156

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.153.230[.]183

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.153.230[.]228

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.159.251[.]163

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.159.251[.]164

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.61.136[.]67

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.61.138[.]162

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.67.228[.]8

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.67.231[.]202

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.67.34[.]152

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.67.34[.]234

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.144[.]187

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.144[.]54

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.144[.]55

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.145[.]174

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.145[.]83

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.147[.]39

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.147[.]79

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.84.0.152

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.86.86[.]78

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.54[.]110

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.54[.]110

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.54[.]95

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]115

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]117

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]193

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]198

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]20

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.92.156[.]150

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]154

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.36[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]231

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.36[.]232

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]233

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.39[.]34

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.39[.]74

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.39[.]75

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.39[.]77

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.118[.]33

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.176[.]62

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]217

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]234

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]43

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]47

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]92

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]98

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.22[.]142

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.23[.]100

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.23[.]25

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.23[.]76

Raccoon Stealer v2 C2 infrastructure

IP  Address

51.195.166[.]175

Raccoon Stealer  v2 C2 infrastructure

IP Address

51.195.166[.]176

Raccoon Stealer v2 C2 infrastructure

IP  Address

51.195.166[.]194

Raccoon Stealer  v2 C2 infrastructure

IP Address

51.81.143[.]169

Raccoon Stealer v2 C2 infrastructure

IP  Address

62.113.255[.]110

Raccoon Stealer  v2 C2 infrastructure

IP Address

65.109.3[.]107

Raccoon Stealer v2 C2 infrastructure

IP  Address

74.119.192[.]56

Raccoon Stealer  v2 C2 infrastructure

IP Address

74.119.192[.]73

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.232.39[.]101

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.73.133[.]0

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.73.133[.]4

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.73.134[.]45

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.75.230[.]25

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.75.230[.]39

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.75.230[.]70

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.75.230[.]93

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.100[.]101

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]12

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.102[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]44

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.102[.]57

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.103[.]31

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.73[.]154

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.73[.]213

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.73[.]32

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.74[.]67

Raccoon Stealer  v2 C2 infrastructure

IP Address

78.159.103[.]195

Raccoon Stealer v2 C2 infrastructure

IP  Address

78.159.103[.]196

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.66.87[.]23

Raccoon Stealer v2 C2 infrastructure

IP  Address

80.66.87[.]28

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.71.157[.]112

Raccoon Stealer v2 C2 infrastructure

IP  Address

80.71.157[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.92.204[.]202

Raccoon Stealer v2 C2 infrastructure

IP  Address

87.121.52[.]10

Raccoon Stealer  v2 C2 infrastructure

IP Address

88.119.175[.]187

Raccoon Stealer v2 C2 infrastructure

IP  Address

89.185.85[.]53

Raccoon Stealer  v2 C2 infrastructure

IP Address

89.208.107[.]42

Raccoon Stealer v2 C2 infrastructure

IP  Address

89.39.106[.]78

Raccoon Stealer  v2 C2 infrastructure

IP Address

91.234.254[.]126

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.104[.]16

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.104[.]17

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.104[.]18

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.106[.]116

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.106[.]224

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.107[.]132

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.107[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.96[.]109

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.97[.]129

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.97[.]53

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.97[.]56

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.97[.]57

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.98[.]5

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.244[.]114

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.244[.]119

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.244[.]21

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.247[.]24

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.247[.]26

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.247[.]30

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.247[.]44

Raccoon Stealer v2 C2 infrastructure

IP  Address

95.216.109[.]16

Raccoon Stealer  v2 C2 infrastructure

IP Address

95.217.124[.]179

Raccoon Stealer v2 C2 infrastructure

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/mozglue.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/nss3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/freebl3.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/softokn3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/nssdbm3.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/sqlite3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/msvcp140.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/vcruntime140.dll

URI used in download of library file

URI

/C9S2G1K6I3G8T3X7/56296373798691245143.bin

URI used in  download of follow-up payload

URI

/O6K3E4G6N9S8S1/91787438215733789009.bin

URI used in download of follow-up  payload

URI

/Z2J8J3N2S2Z6X2V3S0B5/45637662345462341.bin

URI used in  download of follow-up payload

URI

/rgd4rgrtrje62iuty/19658963328526236.bin

URI used in download of follow-up  payload

URI

/sd325dt25ddgd523/81852849956384.bin

URI used in  download of follow-up payload

URI

/B0L1N2H4R1N5I5S6/40055385413647326168.bin

URI used in download of follow-up  payload

URI

/F5Q8W3O3O8I2A4A4B8S8/31427748106757922101.bin

URI used in  download of follow-up payload

URI

/36141266339446703039.bin

URI used in download of follow-up  payload

URI

/wH0nP0qH9eJ6aA9zH1mN/1.bin

URI used in  download of follow-up payload

URI

/K2X2R1K4C6Z3G8L0R1H0/68515718711529966786.bin

URI used in download of follow-up  payload

URI

/C3J7N6F6X3P8I0I0M/17819203282122080878.bin

URI used in  download of follow-up payload

URI

/W9H1B8P3F2J2H2K7U1Y7G5N4C0Z4B/18027641.bin

URI used in download of follow-up  payload

URI

/P2T9T1Q6P7Y5J3D2T0N0O8V/73239348388512240560937.bin

URI used in  download of follow-up payload

URI

/W5H6O5P0E4Y6P8O1B9D9G0P9Y9G4/671837571800893555497.bin

URI used in download of follow-up  payload

URI

/U8P2N0T5R0F7G2J0/898040207002934180145349.bin

URI used in  download of follow-up payload

URI

/AXEXNKPSBCKSLMPNOMNRLUEPR/3145102300913020.bin

URI used in download of follow-up  payload

URI

/wK6nO2iM9lE7pN7e/7788926473349244.bin

URI used in  download of follow-up payload

URI

/U4N9B5X5F5K2A0L4L4T5/84897964387342609301.bin

URI used in download of follow-up  payload

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
SOC Analyst

More in this series

No items found.

Blog

/

Identity

/

May 23, 2025

From Rockstar2FA to FlowerStorm: Investigating a Blooming Phishing-as-a-Service Platform

man on computerDefault blog imageDefault blog image

What is FlowerStorm?

FlowerStorm is a Phishing-as-a-Service (PhaaS) platform believed to have gained traction following the decline of the former PhaaS platform Rockstar2FA. It employs Adversary-in-the-Middle (AitM) attacks to target Microsoft 365 credentials. After Rockstar2FA appeared to go dormant, similar PhaaS portals began to emerge under the name FlowerStorm. This naming is likely linked to the plant-themed terminology found in the HTML titles of its phishing pages, such as 'Sprout' and 'Blossom'. Given the abrupt disappearance of Rockstar2FA and the near-immediate rise of FlowerStorm, it is possible that the operators rebranded to reduce exposure [1].

External researchers identified several similarities between Rockstar2FA and FlowerStorm, suggesting a shared operational overlap. Both use fake login pages, typically spoofing Microsoft, to steal credentials and multi-factor authentication (MFA) tokens, with backend infrastructure hosted on .ru and .com domains. Their phishing kits use very similar HTML structures, including randomized comments, Cloudflare turnstile elements, and fake security prompts. Despite Rockstar2FA typically being known for using automotive themes in their HTML titles, while FlowerStorm shifted to a more botanical theme, the overall design remained consistent [1].

Despite these stylistic differences, both platforms use similar credential capture methods and support MFA bypass. Their domain registration patterns and synchronized activity spikes through late 2024 suggest shared tooling or coordination [1].

FlowerStorm, like Rockstar2FA, also uses their phishing portal to mimic legitimate login pages such as Microsoft 365 for the purpose of stealing credentials and MFA tokens while the portals are relying heavily on backend servers using top-level domains (TLDs) such as .ru, .moscow, and .com. Starting in June 2024, some of the phishing pages began utilizing Cloudflare services with domains such as pages[.]dev. Additionally, usage of the file “next.php” is used to communicate with their backend servers for exfiltration and data communication. FlowerStorm’s platform focuses on credential harvesting using fields such as email, pass, and session tracking tokens in addition to supporting email validation and MFA authentications via their backend systems [1].

Darktrace’s coverage of FlowerStorm Microsoft phishing

While multiple suspected instances of the FlowerStorm PhaaS platform were identified during Darktrace’s investigation, this blog will focus on a specific case from March 2025. Darktrace’s Threat Research team analyzed the affected customer environment and discovered that threat actors were accessing a Software-as-a-Service (SaaS) account from several rare external IP addresses and ASNs.

Around a week before the first indicators of FlowerStorm were observed, Darktrace detected anomalous logins via Microsoft Office 365 products, including Office365 Shell WCSS-Client and Microsoft PowerApps.  Although not confirmed in this instance, Microsoft PowerApps could potentially be leveraged by attackers to create phishing applications or exploit vulnerabilities in data connections [2].

Darktrace’s detection of the unusual SaaS credential use.
Figure 1: Darktrace’s detection of the unusual SaaS credential use.

Following this initial login, Darktrace observed subsequent login activity from the rare source IP, 69.49.230[.]198. Multiple open-source intelligence (OSINT) sources have since associated this IP with the FlowerStorm PhaaS operation [3][4].  Darktrace then observed the SaaS user resetting the password on the Core Directory of the Azure Active Directory using the user agent, O365AdminPortal.

Given FlowerStorm’s known use of AitM attacks targeting Microsoft 365 credentials, it seems highly likely that this activity represents an attacker who previously harvested credentials and is now attempting to escalate their privileges within the target network.

Darktrace / IDENTITY’s detection of privilege escalation on a compromised SaaS account, highlighting unusual login activity and a password reset event.
Figure 2: Darktrace / IDENTITY’s detection of privilege escalation on a compromised SaaS account, highlighting unusual login activity and a password reset event.

Notably, Darktrace’s Cyber AI Analyst also detected anomalies during a number of these login attempts, which is significant given FlowerStorm’s known capability to bypass MFA and steal session tokens.

Cyber AI Analyst’s detection of new login behavior for the SaaS user, including abnormal MFA usage.
Figure 3: Cyber AI Analyst’s detection of new login behavior for the SaaS user, including abnormal MFA usage.
Multiple login and failed login events were observed from the anomalous source IP over the month prior, as seen in Darktrace’s Advanced Search.
Figure 4: Multiple login and failed login events were observed from the anomalous source IP over the month prior, as seen in Darktrace’s Advanced Search.

In response to the suspicious SaaS activity, Darktrace recommended several Autonomous Response actions to contain the threat. These included blocking the user from making further connections to the unusual IP address 69.49.230[.]198 and disabling the user account to prevent any additional malicious activity. In this instance, Darktrace’s Autonomous Response was configured in Human Confirmation mode, requiring manual approval from the customer’s security team before any mitigative actions could be applied. Had the system been configured for full autonomous response, it would have immediately blocked the suspicious connections and disabled any users deviating from their expected behavior—significantly reducing the window of opportunity for attackers.

Figure 5: Autonomous Response Actions recommended on this account behavior; This would result in disabling the user and blocking further sign-in activity from the source IP.

Conclusion

The FlowerStorm platform, along with its predecessor, RockStar2FA is a PhaaS platform known to leverage AitM attacks to steal user credentials and bypass MFA, with threat actors adopting increasingly sophisticated toolkits and techniques to carry out their attacks.

In this incident observed within a Darktrace customer's SaaS environment, Darktrace detected suspicious login activity involving abnormal VPN usage from a previously unseen IP address, which was subsequently linked to the FlowerStorm PhaaS platform. The subsequent activity, specifically a password reset, was deemed highly suspicious and likely indicative of an attacker having obtained SaaS credentials through a prior credential harvesting attack.

Darktrace’s prompt detection of these SaaS anomalies and timely notifications from its Security Operations Centre (SOC) enabled the customer to mitigate and remediate the threat before attackers could escalate privileges and advance the attack, effectively shutting it down in its early stages.

Credit to Justin Torres (Senior Cyber Analyst), Vivek Rajan (Cyber Analyst), Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Alert Detections

·      SaaS / Access / M365 High Risk Level Login

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login from Rare High-Risk Endpoint

·      SaaS / Compromise / SaaS Anomaly Following Anomalous Login

·      SaaS / Compromise / Unusual Login and Account Update

·      SaaS / Unusual Activity / Unusual MFA Auth and SaaS Activity

Cyber AI Analyst Coverage

·      Suspicious Access of Azure Active Directory  

·      Suspicious Access of Azure Active Directory  

List of Indicators of Compromise (IoCs)

IoC - Type - Description + Confidence

69.49.230[.]198 – Source IP – Malicious IP Associated with FlowerStorm, Observed in Login Activity

MITRE ATT&CK Mapping

Tactic – Technique – Sub-Technique  

Cloud Accounts - DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - T1078.004 - T1078

Cloud Service Dashboard - DISCOVERY - T1538

Compromise Accounts - RESOURCE DEVELOPMENT - T1586

Steal Web Session Cookie - CREDENTIAL ACCESS - T1539

References:

[1] https://news.sophos.com/en-us/2024/12/19/phishing-platform-rockstar-2fa-trips-and-flowerstorm-picks-up-the-pieces/

[2] https://learn.microsoft.com/en-us/security/operations/incident-response-playbook-compromised-malicious-app

[3] https://www.virustotal.com/gui/ip-address/69.49.230.198/community

[4] https://otx.alienvault.com/indicator/ip/69.49.230.198

Continue reading
About the author
Justin Torres
Cyber Analyst

Blog

/

Network

/

May 23, 2025

Defending the Frontlines: Proactive Cybersecurity in Local Government

Default blog imageDefault blog image

Serving a population of over 165,000 citizens, this county government delivers essential services that enhance the quality of life for all of its residents in Florida, United States. From public safety and works to law enforcement, economic development, health, and community services, the county’s cybersecurity strategy plays a foundational role in protecting its citizens.

From flying blind to seeing the bigger picture

Safeguarding data from multiple systems, service providers, and citizens is a key aspect of the County’s Systems Management remit. Protecting sensitive information while enabling smooth engagement with multiple external partners poses a unique challenge; the types of data and potential threats are continuously evolving, but resources – both human and financial – remain consistently tight.

When the Chief Information Officer took on his role in 2024, building out a responsive defense-in-depth strategy was central to achieving these goals. However, with limited resources and complex needs, his small security team was struggling with high alert volumes, inefficient tools, and time-consuming investigations that frequently led nowhere.

Meanwhile, issues like insider threats, Denial of Service (DoS), and phishing attacks were growing; the inefficiencies were creating serious security vulnerabilities. As the CIO put it, he was flying blind. With so much data coming in, security analysts were in danger of missing the bigger picture.

“We would just see a single portion of data that could send us down a rabbit hole, thinking something’s going on – only to find out after spending days, weeks, or even months that it was nothing. If you’re only seeing one piece of the issue, it’s really difficult to identify whether something is a legitimate threat or a false positive.”

Local government’s unique cybersecurity challenges

According to the CIO, even with a bigger team, aligning and comparing all the data into a comprehensive, bigger picture would be a major challenge. “The thing about local government specifically is that it’s a complex security environment. We bring together a lot of different individuals and organizations, from construction workers to people who bring projects into our community to better the County. What we work with varies from day to day.”

The challenge wasn’t just about identifying threats, but also about doing so quickly enough to respond before damage was done. The CIO said this was particularly concerning when dealing with sophisticated threats: “We’re dealing with nation-state attackers nowadays, as opposed to ‘script kiddies.’ There’s no time to lose. We’ve got to have cybersecurity that can respond as quickly as they can attack.”

To achieve this, among the most critical challenges the CIO and his team needed to address were:

  • Contextual awareness and visibility across the network: The County team lacked the granular visibility needed to identify potentially harmful behaviors. The IT team needed a tool that uncovered hidden activities and provided actionable insights, with minimal manual intervention.
  • Augmenting human expertise and improving response times: Hiring additional analysts to monitor the environment is prohibitively expensive for many local governments. The IT team needed a cybersecurity solution that could augment existing skills while automating day-to-day tasks. More effective resource allocation would drive improved response times.
  • Preventing email-based threats: Phishing and malicious email links present a persistent threat. The County team needed a way to flag, identify, and hold suspicious messages automatically and efficiently. Given the team’s public service remit, contextual awareness is crucial to ensuring that no legitimate communications are accidentally blocked. Accuracy is extremely important.
  • Securing access and managing insider threats: Having already managed insider threats posed by former staff members, the IT team wanted to adopt a more proactive, deterrent-based approach towards employee IT resource use, preventing incidents before they could occur.

Proactive cybersecurity

Recognizing these challenges, the CIO and County sought AI-driven solutions capable of acting autonomously to support a lean IT team and give the big picture view needed, without getting lost in false positive alerts.

Ease of deployment was another key requirement: the CIO wanted to quickly establish a security baseline for County that would not require extensive pre-planning or disrupt existing systems. Having worked with Darktrace in previous roles, he knew the solution had the capacity to make the critical connections he was looking for, while delivering fast response times and reducing the burden on security teams.

When every second counts, we want to be as close to the same resources as our attackers are utilizing. We have got to have something that can respond as quickly as they can attack. For the County, that’s Darktrace.” – CIO, County Systems Management Department.

Closing network visibility gaps with Darktrace / NETWORK

The County chose Darktrace / NETWORK for unparalleled visibility into the County’s network. With the solution in place, the CIO and his team were able to identify and address previously hidden activities, uncovering insider threats in unexpected places. For example, one team member had installed an unauthorized anonymizer plug-in on their browser, posing a potentially serious security risk via traffic being sent out to the internet. “Darktrace immediately alerted on it,” said CIO. “We were able to deal with the threat proactively and quickly.”

Darktrace / NETWORK continuously monitored and updated its understanding of the County environment, intelligently establishing the different behaviors and network activity. The end result was a level of context awareness that enabled the team to focus on the alerts that mattered most, saving time and effort.

“Darktrace brings all the data we need together, into one picture. We’re able to see what’s going on at a glance, as opposed to spending time trying to identify real threats from false positives,” said the CIO. The ability to automate actions freed the team up to focus on more complex tasks, with 66% of network response actions being applied autonomously, taking the right action at the right time to stop the earliest signs of threatening activity. This reduced pressure on the County’s team members, while buying valuable containment time to perform deeper investigations.

The agentless deployment advantage

For the CIO, one of the major benefits of Darktrace / NETWORK is that it’s agentless. “Agents alert attackers to the presence of security in your environment, it helps them to understand that there’s something else they need to bring down your defenses,” he said. Using Darktrace to mirror network traffic, the County can maintain full visibility across all network entities without alerting attackers and respond to threatening activity at machine speed. “It allows me to sleep better at night, knowing that this tool can effectively unplug the network cable from that device and bring it offline,” said CIO.

Streamlining investigations with Darktrace Cyber AI Analyst

For lean security teams, contextual awareness is crucial in reducing the burden of alert fatigue. Using Cyber AI Analyst, the County team is able to take the pressure off, automatically investigating every relevant event, and reducing thousands of individual alerts to only a small number of incidents that require manual review.

For the County team, the benefits are clear: 520 investigation hours saved in one month, with an average of just 11 minutes investigation time per incident. For the CIO, Darktrace goes beyond reducing workloads, it actually drives security: “It identifies threats almost instantly, bringing together logs and behaviors into a single, clear view.”

The efficiency gain has been so significant that the CIO believes Darktrace augments capabilities beyond the size of a team of analysts. “You could have three analysts working around the clock, but it’s hard to bring all those logs and behaviors together in one place and communicate everything in a coordinated way. Nothing does that as quickly as Darktrace can.”

Catching the threats from within: Defense in depth with Darktrace / IDENTITY

One of the key benefits of Darktrace for the County was its breadth of capability and responsiveness. “We’re looking at everything from multi-factor authentication, insider threats, distributed denial of service attacks,” said the CIO. “I’ve worked with other products in the past, but I’ve never found a tool as good as Darktrace.”

Further insider threats uncovered by Darktrace / IDENTITY included insecure access practices. Some users had logins and passwords on shared network resources or in plain-text files. Darktrace alerted the security team and the threats were mitigated before serious damage was done.

Darktrace / IDENTITY gives organizations advanced visibility of application user behavior from unusual authentication, password sprays, account takeover, resource theft, and admin abuse. Security teams can take targeted actions including the forced log-off of a user or temporary disabling of an account to give the team time to verify legitimacy.

First line of defense against the number one attack vector: Enhancing email security with Darktrace / EMAIL

Email-based threats, such as phishing, are among the most common attack vectors in modern cybersecurity, and a key vector for ransomware attacks. Post implementation performance was so strong that the organization now plans to retire other tools, cutting costs without compromising on security.

Darktrace / EMAIL was one of the first tools that I implemented when I started here,” said CIO. “I really recognize the value of it in our environment.” In addition to detecting and flagging potentially malicious email, the CIO said an unexpected benefit has been the reinforcement of more security-aware behaviors among end users. “People are checking their junk folders now, alerting us and checking to see if something is legitimate or not.”

The CIO said that, unlike traditional email security tools that basically perform only one function, Darktrace has multiple additional capabilities that deliver extra layers of protection compared to one-dimensional alternatives. For example, AI-employee feedback loops leverage insights gained from individual users to not only improve detection rates, but also provide end users with contextual security awareness training, to enhance greater understanding of the risks.

Straightforward integration, ease of use

The County wanted a powerful, responsive solution – without demanding pre-installation or integration needs, and with maximum ease of use. “The integration is relatively painless,” said the CIO. “That’s another real benefit, you can bring Darktrace into your environment and have it up and running faster than you could ever hire additional analysts to look at the same data.”

The team found that, compared to competing products, where there was extensive setup, overhead, and resources, “Darktrace is almost plug-and-play.” According to the CIO, the solution started ingesting information and providing notifications immediately: “You can turn on defense or response mechanisms at a granular level, for email or network – or both at the same time.”

The County sees Darktrace as an integral part of its cybersecurity strategy into the future. “Having worked with Darktrace in the past, it was an easy decision for me to agree to a multi-year partnership,” said the CIO “As we continue to build out our defense-in-depth strategy, the ability to use Darktrace to manage other data sources and identify new, additional behavior will be crucial to our proactive, risk-based approach.”

Darktrace has the capacity to meet the organization’s need for exceptional responsiveness, without burning out teams. “If you’re not overburdening the teams that you do have with significant workloads, they have a lot more agility to deal with things on the fly,” said the CIO.

Continue reading
About the author
The Darktrace Community
Your data. Our AI.
Elevate your network security with Darktrace AI