ブログ
/
Network
/
November 8, 2022

How Raccoon Stealer v2 Infects Systems

Learn about Raccoon Stealer v2's infection process and its implications for cybersecurity. Discover effective strategies to protect your systems.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
08
Nov 2022

Raccoon Stealer Malware

Since the release of version 2 of Raccoon Stealer in May 2022, Darktrace has observed huge volumes of Raccoon Stealer v2 infections across its client base. The info-stealer, which seeks to obtain and then exfiltrate sensitive data saved on users’ devices, displays a predictable pattern of network activity once it is executed. In this blog post, we will provide details of this pattern of activity, with the goal of helping security teams to recognize network-based signs of Raccoon Stealer v2 infection within their own networks. 

What is Raccoon Stealer?

Raccoon Stealer is a classic example of information-stealing malware, which cybercriminals typically use to gain possession of sensitive data saved in users’ browsers and cryptocurrency wallets. In the case of browsers, targeted data typically includes cookies, saved login details, and saved credit card details. In the case of cryptocurrency wallets (henceforth, ‘crypto-wallets’), targeted data typically includes public keys, private keys, and seed phrases [1]. Once sensitive browser and crypto-wallet data is in the hands of cybercriminals, it will likely be used to conduct harmful activities, such as identity theft, cryptocurrency theft, and credit card fraud.

How do you obtain Raccoon Stealer?

Like most info-stealers, Raccoon Stealer is purchasable. The operators of Raccoon Stealer sell Raccoon Stealer samples to their customers (called ‘affiliates’), who then use the info-stealer to gain possession of sensitive data saved on users’ devices. Raccoon Stealer affiliates typically distribute their samples via SEO-promoted websites providing free or cracked software. 

Is Raccoon Stealer Still Active?

On the 25th of March 2022, the operators of Raccoon Stealer announced that they would be suspending their operations because one of their core developers had been killed during the Russia-Ukraine conflict [2]. The presence of the hardcoded RC4 key ‘edinayarossiya’ (Russian for ‘United Russia’) within observed Raccoon Stealer v2 samples [3] provides potential evidence of the Raccoon Stealer operators’ allegiances.

Recent details shared by the US Department of Justice [4]/[5] indicate that it was in fact the arrest, rather than the death, of an operator which led the Raccoon Stealer team to suspend their operations [6]. As a result of the FBI, along with law enforcement partners in Italy and the Netherlands, dismantling Raccoon Stealer infrastructure in March 2022 [4], the Raccoon Stealer team was forced to build a new version of the info-stealer.  

On the 17th May 2022, the completion of v2 of the info-stealer was announced on the Raccoon Stealer Telegram channel [7].  Since its release in May 2022, Raccoon Stealer v2 has become extremely popular amongst cybercriminals. The prevalence of Raccoon Stealer v2 in the wider landscape has been reflected in Darktrace’s client base, with hundreds of infections being observed within client networks on a monthly basis.   

Since Darktrace’s SOC first saw a Raccoon Stealer v2 infection on the 22nd May 2022, the info-stealer has undergone several subtle changes. However, the info-stealer’s general pattern of network activity has remained essentially unchanged.  

How Does Raccoon Stealer v2 Infection Work?

A Raccoon Stealer v2 infection typically starts with a user attempting to download cracked or free software from an SEO-promoted website. Attempting to download software from one of these cracked/free software websites redirects the user’s browser (typically via several .xyz or .cfd endpoints) to a page providing download instructions. In May, June, and July, many of the patterns of download behavior observed by Darktrace’s SOC matched the pattern of behavior observed in a cracked software campaign reported by Avast in June [8].   

webpage whose download instructions led to a Raccoon Stealer v2
Figure 1: Above is a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on Discord CDN
example of a webpage whose download instructions led to a Raccoon Stealer v2
Figure 2: Above is an example of a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on Bitbucket
example of a webpage whose download instructions led to a Raccoon Stealer v2
Figure 3: Above is an example of a webpage whose download instructions led to a Raccoon Stealer v2 sample hosted on MediaFire

Following the instructions on the download instruction page causes the user’s device to download a password-protected RAR file from a file storage service such as ‘cdn.discordapp[.]com’, ‘mediafire[.]com’, ‘mega[.]nz’, or ‘bitbucket[.]org’. Opening the downloaded file causes the user’s device to execute Raccoon Stealer v2. 

The Event Log for an infected device,
Figure 4: The Event Log for an infected device, taken from Darktrace’s Threat Visualiser interface, shows a device contacting two cracked software websites (‘crackedkey[.]org’ and ‘crackedpc[.]co’) before contacting a webpage (‘premiumdownload[.]org) providing instructions to download Raccoon Stealer v2 from Bitbucket

Once Raccoon Stealer v2 is running on a device, it will make an HTTP POST request with the target URI ‘/’ and an unusual user-agent string (such as ‘record’, ‘mozzzzzzzzzzz’, or ‘TakeMyPainBack’) to a C2 server. This POST request consists of three strings: a machine GUID, a username, and a 128-bit RC4 key [9]. The posted data has the following form:

machineId=X | Y & configId=Z (where X is a machine GUID, Y is a username and Z is a 128-bit RC4 key) 

PCAP showing a device making an HTTP POST request with the User Agent header ‘record’ 
Figure 5:PCAP showing a device making an HTTP POST request with the User Agent header ‘record’ 
PCAP showing a device making an HTTP POST request with the User Agent header ‘mozzzzzzzzzzz’
Figure 6: PCAP showing a device making an HTTP POST request with the User Agent header ‘mozzzzzzzzzzz’
PCAP showing a device making an HTTP POST request with the User Agent header ‘TakeMyPainBack’
Figure 7: PCAP showing a device making an HTTP POST request with the User Agent header ‘TakeMyPainBack’

The C2 server responds to the info-stealer’s HTTP POST request with custom-formatted configuration details. These configuration details consist of fields which tell the info-stealer what files to download, what data to steal, and what target URI to use in its subsequent exfiltration POST requests. Below is a list of the fields Darktrace has observed in the configuration details retrieved by Raccoon Stealer v2 samples:

  • a ‘libs_mozglue’ field, which specifies a download address for a Firefox library named ‘mozglue.dll’
  • a ‘libs_nss3’ field, which specifies a download address for a Network System Services (NSS) library named ‘nss3.dll’ 
  • a ‘libs_freebl3’ field, which specifies a download address for a Network System Services (NSS) library named ‘freebl3.dll’
  • a ‘libs_softokn3’ field, which specifies a download address for a Network System Services (NSS) library named ‘softokn3.dll’
  • a ‘libs_nssdbm3’ field, which specifies a download address for a Network System Services (NSS) library named ‘nssdbm3.dll’
  • a ‘libs_sqlite3’ field, which specifies a download address for a SQLite command-line program named ‘sqlite3.dll’
  • a ‘libs_ msvcp140’ field, which specifies a download address for a Visual C++ runtime library named ‘msvcp140.dll’
  • a ‘libs_vcruntime140’ field, which specifies a download address for a Visual C++ runtime library named ‘vcruntime140.dll’
  • a ‘ldr_1’ field, which specifies the download address for a follow-up payload for the sample to download 
  • ‘wlts_X’ fields (where X is the name of a crypto-wallet application), which specify data for the sample to obtain from the specified crypto-wallet application
  • ‘ews_X’ fields (where X is the name of a crypto-wallet browser extension), which specify data for the sample to obtain from the specified browser extension
  • ‘xtntns_X’ fields (where X is the name of a password manager browser extension), which specify data for the sample to obtain from the specified browser extension
  • a ‘tlgrm_Telegram’ field, which specifies data for the sample to obtain from the Telegram Desktop application 
  • a ‘grbr_Desktop’ field, which specifies data within a local ‘Desktop’ folder for the sample to obtain 
  • a ‘grbr_Documents’ field, which specifies data within a local ‘Documents’ folder for the sample to obtain
  • a ‘grbr_Recent’ field, which specifies data within a local ‘Recent’ folder for the sample to obtain
  • a ‘grbr_Downloads’ field, which specifies data within a local ‘Downloads’ folder for the sample to obtain
  • a ‘sstmnfo_System Info.txt’ field, which specifies whether the sample should gather and exfiltrate a profile of the infected host 
  • a ‘scrnsht_Screenshot.jpeg’ field, which specifies whether the sample should take and exfiltrate screenshots of the infected host
  • a ‘token’ field, which specifies a 32-length string of hexadecimal digits for the sample to use as the target URI of its HTTP POST requests containing stolen data 

After retrieving its configuration data, Raccoon Stealer v2 downloads the library files specified in the ‘libs_’ fields. Unusual user-agent strings (such as ‘record’, ‘qwrqrwrqwrqwr’, and ‘TakeMyPainBack’) are used in the HTTP GET requests for these library files. In all Raccoon Stealer v2 infections seen by Darktrace, the paths of the URLs specified in the ‘libs_’ fields have the following form:

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/X (where X is the name of the targeted DLL file) 

Advanced Search logs for an infected host
Figure 8: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘record’ for DLL files
Advanced Search logs for an infected host
Figure 9: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘qwrqrwrqwrqwr’ for DLL files
Advanced Search logs for an infected host
Figure 10: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device making an HTTP POST request to retrieve configuration details, and then making HTTP GET requests with the User Agent header ‘TakeMyPainBack’ for DLL files

Raccoon Stealer v2 uses the DLLs which it downloads to gain access to sensitive data (such as cookies, credit card details, and login details) saved in browsers running on the infected host.  

Depending on the data provided in the configuration details, Raccoon Stealer v2 will typically seek to obtain, in addition to sensitive data saved in browsers, the following information:

  • Information about the Operating System and applications installed on the infected host
  • Data from specified crypto-wallet software
  • Data from specified crypto-wallet browser extensions
  • Data from specified local folders
  • Data from Telegram Desktop
  • Data from specified password manager browser extensions
  • Screenshots of the infected host 

Raccoon Stealer v2 exfiltrates the data which it obtains to its C2 server by making HTTP POST requests with unusual user-agent strings (such as ‘record’, ‘rc2.0/client’, ‘rqwrwqrqwrqw’, and ‘TakeMyPainBack’) and target URIs matching the 32-length string of hexadecimal digits specified in the ‘token’ field of the configuration details. The stolen data exfiltrated by Raccoon Stealer typically includes files named ‘System Info.txt’, ‘---Screenshot.jpeg’, ‘\cookies.txt’, and ‘\passwords.txt’. 

Advanced Search logs for an infected host
Figure 11: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating files named ‘System Info.txt’ and ‘---Screenshot.jpeg’
Advanced Search logs for an infected host
Figure 12: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating a file named ‘System Info.txt’ 
Advanced Search logs for an infected host
Figure 13: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating files named ‘System Info.txt’, ‘\cookies.txt’ and ‘\passwords.txt’
Advanced Search logs for an infected host
Figure 14: Advanced Search logs for an infected host, found on Darktrace’s Advanced Search interface, show a device retrieving configuration details via a POST request, downloading several DLLs, and then exfiltrating a file named ‘System Info.txt’

If a ‘ldr_1’ field is present in the retrieved configuration details, then Raccoon Stealer will complete its operation by downloading the binary file specified in the ‘ldr_1’ field. In all observed cases, the paths of the URLs specified in the ‘ldr_1’ field end in a sequence of digits, followed by ‘.bin’. The follow-up payload seems to vary between infections, likely due to this additional-payload feature being customizable by Raccoon Stealer affiliates. In many cases, the info-stealer, CryptBot, was delivered as the follow-up payload. 

Darktrace Coverage of Raccoon Stealer

Once a user’s device becomes infected with Raccoon Stealer v2, it will immediately start to communicate over HTTP with a C2 server. The HTTP requests made by the info-stealer have an empty Host header (although Host headers were used by early v2 samples) and highly unusual User Agent headers. When Raccoon Stealer v2 was first observed in May 2022, the user-agent string ‘record’ was used in its HTTP requests. Since then, it appears that the operators of Raccoon Stealer have made several changes to the user-agent strings used by the info-stealer,  likely in an attempt to evade signature-based detections. Below is a timeline of the changes to the info-stealer’s user-agent strings, as observed by Darktrace’s SOC:

  • 22nd May 2022: Samples seen using the user-agent string ‘record’
  • 2nd July 2022: Samples seen using the user-agent string ‘mozzzzzzzzzzz’
  • 29th July 2022: Samples seen using the user-agent string ‘rc2.0/client’
  • 10th August 2022: Samples seen using the user-agent strings ‘qwrqrwrqwrqwr’ and ‘rqwrwqrqwrqw’
  • 16th Sep 2022: Samples seen using the user-agent string ‘TakeMyPainBack’

The presence of these highly unusual user-agent strings within infected devices’ HTTP requests causes the following Darktrace DETECT/Network models to breach:

  • Device / New User Agent
  • Device / New User Agent and New IP
  • Anomalous Connection / New User Agent to IP Without Hostname
  • Device / Three or More New User Agents

These DETECT models look for devices making HTTP requests with unusual user-agent strings, rather than specific user-agent strings which are known to be malicious. This method of detection enables the models to continually identify Raccoon Stealer v2 HTTP traffic, despite the changes made to the info-stealer’s user-agent strings.   

After retrieving configuration details from a C2 server, Raccoon Stealer v2 samples make HTTP GET requests for several DLL libraries. Since these GET requests are directed towards highly unusual IP addresses, the downloads of the DLLs cause the following DETECT models to breach:

  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations

Raccoon Stealer v2 samples send data to their C2 server via HTTP POST requests with an absent Host header. Since these POST requests lack a Host header and have a highly unusual destination IP, their occurrence causes the following DETECT model to breach:

  • Anomalous Connection / Posting HTTP to IP Without Hostname

Certain Raccoon Stealer v2 samples download (over HTTP) a follow-up payload once they have exfiltrated data. Since the target URIs of the HTTP GET requests made by v2 samples end in a sequence of digits followed by ‘.bin’, the samples’ downloads of follow-up payloads cause the following DETECT model to breach:

  • Anomalous File / Numeric File Download

If Darktrace RESPOND/Network is configured within a customer’s environment, then Raccoon Stealer v2 activity should cause the following inhibitive actions to be autonomously taken on infected systems: 

  • Enforce pattern of life — This action results in a device only being able to make connections which are normal for it to make
  • Enforce group pattern of life — This action results in a device only being able to make connections which are normal for it or any of its peers to make
  • Block matching connections — This action results in a device being unable to make connections to particular IP/Port pairs
  • Block all outgoing traffic — This action results in a device being unable to make any connections 
The Event Log for an infected device
Figure 15: The Event Log for an infected device, taken from Darktrace’s Threat Visualiser interface, shows Darktrace RESPOND taking inhibitive actions in response to the HTTP activities of a Raccoon Stealer v2 sample downloaded from MediaFire

Given that Raccoon Stealer v2 infections move extremely fast, with the time between initial infection and data exfiltration sometimes less than a minute, the availability of Autonomous Response technology such as Darktrace RESPOND is vital for the containment of Raccoon Stealer v2 infections.  

Timeline of Darktrace stopping raccoon stealer.
Figure 16: Figure displaying the steps of a Raccoon Stealer v2 infection, along with the corresponding Darktrace detections

Conclusion

Since the release of Raccoon Stealer v2 back in 2022, the info-stealer has relentlessly infected the devices of unsuspecting users. Once the info-stealer infects a user’s device, it retrieves and then exfiltrates sensitive information within a matter of minutes. The distinctive pattern of network behavior displayed by Raccoon Stealer v2 makes the info-stealer easy to spot. However, the changes which the Raccoon Stealer operators make to the User Agent headers of the info-stealer’s HTTP requests make anomaly-based methods key for the detection of the info-stealer’s HTTP traffic. The operators of Raccoon Stealer can easily change the superficial features of their malware’s C2 traffic, however, they cannot easily change the fact that their malware causes highly unusual network behavior. Spotting this behavior, and then autonomously responding to it, is likely the best bet which organizations have at stopping a Raccoon once it gets inside their networks.  

Thanks to the Threat Research Team for its contributions to this blog.

References

[1] https://www.microsoft.com/security/blog/2022/05/17/in-hot-pursuit-of-cryware-defending-hot-wallets-from-attacks/

[2] https://twitter.com/3xp0rtblog/status/1507312171914461188

[3] https://www.esentire.com/blog/esentire-threat-intelligence-malware-analysis-raccoon-stealer-v2-0

[4] https://www.justice.gov/usao-wdtx/pr/newly-unsealed-indictment-charges-ukrainian-national-international-cybercrime-operation

[5] https://www.youtube.com/watch?v=Fsz6acw-ZJ

[6] https://riskybiznews.substack.com/p/raccoon-stealer-dev-didnt-die-in

[7] https://medium.com/s2wblog/raccoon-stealer-is-back-with-a-new-version-5f436e04b20d

[8] https://blog.avast.com/fakecrack-campaign

[9] https://blog.sekoia.io/raccoon-stealer-v2-part-2-in-depth-analysis/

Appendices

MITRE ATT&CK Mapping

Resource Development

• T1588.001 — Obtain Capabilities: Malware

• T1608.001 — Stage Capabilities: Upload Malware

• T1608.005 — Stage Capabilities: Link Target

• T1608.006 — Stage Capabilities: SEO Poisoning

Execution

•  T1204.002 — User Execution: Malicious File

Credential Access

• T1555.003 — Credentials from Password Stores:  Credentials from Web Browsers

• T1555.005 — Credentials from Password Stores:  Password Managers

• T1552.001 — Unsecured Credentials: Credentials  In Files

Command and Control

•  T1071.001 — Application Layer Protocol: Web Protocols

•  T1105 — Ingress Tool Transfer

IOCS

Type

IOC

Description

User-Agent String

record

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

mozzzzzzzzzzz

String used inUser Agent header of Raccoon Stealer v2’s HTTP requests

User-Agent String

rc2.0/client

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

qwrqrwrqwrqwr

String used in  User Agent header of Raccoon Stealer v2’s HTTP requests

User-Agent String

rqwrwqrqwrqw

String used in User Agent header of  Raccoon Stealer v2’s HTTP requests

User-Agent  String

TakeMyPainBack

String used in  User Agent header of Raccoon Stealer v2’s HTTP requests

Domain Name

brain-lover[.]xyz  

Raccoon Stealer v2 C2 infrastructure

Domain  Name

polar-gift[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

cool-story[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

fall2sleep[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

broke-bridge[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

use-freedom[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

just-trust[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

soft-viper[.]site

Raccoon Stealer  v2 C2 infrastructure

Domain Name

tech-lover[.]xyz

Raccoon Stealer v2 C2 infrastructure

Domain  Name

heal-brain[.]xyz

Raccoon Stealer  v2 C2 infrastructure

Domain Name

love-light[.]xyz

Raccoon Stealer v2 C2 infrastructure

IP  Address

104.21.80[.]14

Raccoon Stealer  v2 C2 infrastructure

IP Address

107.152.46[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

135.181.147[.]255

Raccoon Stealer  v2 C2 infrastructure

IP Address

135.181.168[.]157

Raccoon Stealer v2 C2 infrastructure

IP  Address

138.197.179[.]146

Raccoon Stealer  v2 C2 infrastructure

IP Address

141.98.169[.]33

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.170[.]100

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.170[.]175

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.170[.]98

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.173[.]33

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.173[.]72

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.19.247[.]175

Raccoon Stealer v2 C2 infrastructure

IP  Address

146.19.247[.]177

Raccoon Stealer  v2 C2 infrastructure

IP Address

146.70.125[.]95

Raccoon Stealer v2 C2 infrastructure

IP  Address

152.89.196[.]234

Raccoon Stealer  v2 C2 infrastructure

IP Address

165.225.120[.]25

Raccoon Stealer v2 C2 infrastructure

IP  Address

168.100.10[.]238

Raccoon Stealer  v2 C2 infrastructure

IP Address

168.100.11[.]23

Raccoon Stealer v2 C2 infrastructure

IP  Address

168.100.9[.]234

Raccoon Stealer  v2 C2 infrastructure

IP Address

170.75.168[.]118

Raccoon Stealer v2 C2 infrastructure

IP  Address

172.67.173[.]14

Raccoon Stealer  v2 C2 infrastructure

IP Address

172.86.75[.]189

Raccoon Stealer v2 C2 infrastructure

IP  Address

172.86.75[.]33

Raccoon Stealer  v2 C2 infrastructure

IP Address

174.138.15[.]216

Raccoon Stealer v2 C2 infrastructure

IP  Address

176.124.216[.]15

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.106.92[.]14

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.173.34[.]161

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.173.34[.]161  

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.225.17[.]198

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.225.19[.]190

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.225.19[.]229

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.53.46[.]103

Raccoon Stealer v2 C2 infrastructure

IP  Address

185.53.46[.]76

Raccoon Stealer  v2 C2 infrastructure

IP Address

185.53.46[.]77

Raccoon Stealer v2 C2 infrastructure

IP  Address

188.119.112[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

190.117.75[.]91

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.106.191[.]182

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.149.129[.]135

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.149.129[.]144

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.149.180[.]210

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.149.185[.]192

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.233.193[.]50

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]17

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]192

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]213

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]214

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]215

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.43.146[.]26

Raccoon Stealer  v2 C2 infrastructure

IP Address

193.43.146[.]45

Raccoon Stealer v2 C2 infrastructure

IP  Address

193.56.146[.]177

Raccoon Stealer  v2 C2 infrastructure

IP Address

194.180.174[.]180

Raccoon Stealer v2 C2 infrastructure

IP  Address

195.201.148[.]250

Raccoon Stealer  v2 C2 infrastructure

IP Address

206.166.251[.]156

Raccoon Stealer v2 C2 infrastructure

IP  Address

206.188.196[.]200

Raccoon Stealer  v2 C2 infrastructure

IP Address

206.53.53[.]18

Raccoon Stealer v2 C2 infrastructure

IP  Address

207.154.195[.]173

Raccoon Stealer  v2 C2 infrastructure

IP Address

213.252.244[.]2

Raccoon Stealer v2 C2 infrastructure

IP  Address

38.135.122[.]210

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.10.20[.]248

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.11.19[.]99

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]110

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.133.216[.]145

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]148

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.133.216[.]249

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.133.216[.]71

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.140.146[.]169

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.140.147[.]245

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.212[.]100

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.142.213[.]24

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.215[.]91

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.142.215[.]91  

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.142.215[.]92

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.144.29[.]18

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.144.29[.]243

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.15.156[.]11

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.15.156[.]2

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.15.156[.]31

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.15.156[.]31

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.150.67[.]156

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.153.230[.]183

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.153.230[.]228

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.159.251[.]163

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.159.251[.]164

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.61.136[.]67

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.61.138[.]162

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.67.228[.]8

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.67.231[.]202

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.67.34[.]152

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.67.34[.]234

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.144[.]187

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.144[.]54

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.144[.]55

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.145[.]174

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.145[.]83

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.8.147[.]39

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.8.147[.]79

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.84.0.152

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.86.86[.]78

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.54[.]110

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.54[.]110

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.54[.]95

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]115

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]117

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]193

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]198

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.89.55[.]20

Raccoon Stealer  v2 C2 infrastructure

IP Address

45.89.55[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

45.92.156[.]150

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]154

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.36[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]231

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.36[.]232

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.36[.]233

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.39[.]34

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.39[.]74

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.182.39[.]75

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.182.39[.]77

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.118[.]33

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.176[.]62

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]217

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]234

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]43

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]47

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.177[.]92

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.177[.]98

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.22[.]142

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.23[.]100

Raccoon Stealer v2 C2 infrastructure

IP  Address

5.252.23[.]25

Raccoon Stealer  v2 C2 infrastructure

IP Address

5.252.23[.]76

Raccoon Stealer v2 C2 infrastructure

IP  Address

51.195.166[.]175

Raccoon Stealer  v2 C2 infrastructure

IP Address

51.195.166[.]176

Raccoon Stealer v2 C2 infrastructure

IP  Address

51.195.166[.]194

Raccoon Stealer  v2 C2 infrastructure

IP Address

51.81.143[.]169

Raccoon Stealer v2 C2 infrastructure

IP  Address

62.113.255[.]110

Raccoon Stealer  v2 C2 infrastructure

IP Address

65.109.3[.]107

Raccoon Stealer v2 C2 infrastructure

IP  Address

74.119.192[.]56

Raccoon Stealer  v2 C2 infrastructure

IP Address

74.119.192[.]73

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.232.39[.]101

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.73.133[.]0

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.73.133[.]4

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.73.134[.]45

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.75.230[.]25

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.75.230[.]39

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.75.230[.]70

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.75.230[.]93

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.100[.]101

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]12

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.102[.]230

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]44

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.102[.]57

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.102[.]84

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.103[.]31

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.73[.]154

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.73[.]213

Raccoon Stealer  v2 C2 infrastructure

IP Address

77.91.73[.]32

Raccoon Stealer v2 C2 infrastructure

IP  Address

77.91.74[.]67

Raccoon Stealer  v2 C2 infrastructure

IP Address

78.159.103[.]195

Raccoon Stealer v2 C2 infrastructure

IP  Address

78.159.103[.]196

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.66.87[.]23

Raccoon Stealer v2 C2 infrastructure

IP  Address

80.66.87[.]28

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.71.157[.]112

Raccoon Stealer v2 C2 infrastructure

IP  Address

80.71.157[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

80.92.204[.]202

Raccoon Stealer v2 C2 infrastructure

IP  Address

87.121.52[.]10

Raccoon Stealer  v2 C2 infrastructure

IP Address

88.119.175[.]187

Raccoon Stealer v2 C2 infrastructure

IP  Address

89.185.85[.]53

Raccoon Stealer  v2 C2 infrastructure

IP Address

89.208.107[.]42

Raccoon Stealer v2 C2 infrastructure

IP  Address

89.39.106[.]78

Raccoon Stealer  v2 C2 infrastructure

IP Address

91.234.254[.]126

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.104[.]16

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.104[.]17

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.104[.]18

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.106[.]116

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.106[.]224

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.107[.]132

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.107[.]138

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.96[.]109

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.97[.]129

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.97[.]53

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.97[.]56

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.131.97[.]57

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.131.98[.]5

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.244[.]114

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.244[.]119

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.244[.]21

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.247[.]24

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.247[.]26

Raccoon Stealer v2 C2 infrastructure

IP  Address

94.158.247[.]30

Raccoon Stealer  v2 C2 infrastructure

IP Address

94.158.247[.]44

Raccoon Stealer v2 C2 infrastructure

IP  Address

95.216.109[.]16

Raccoon Stealer  v2 C2 infrastructure

IP Address

95.217.124[.]179

Raccoon Stealer v2 C2 infrastructure

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/mozglue.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/nss3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/freebl3.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/softokn3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/nssdbm3.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/sqlite3.dll

URI used in download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/msvcp140.dll

URI used in  download of library file

URI

/aN7jD0qO6kT5bK5bQ4eR8fE1xP7hL2vK/vcruntime140.dll

URI used in download of library file

URI

/C9S2G1K6I3G8T3X7/56296373798691245143.bin

URI used in  download of follow-up payload

URI

/O6K3E4G6N9S8S1/91787438215733789009.bin

URI used in download of follow-up  payload

URI

/Z2J8J3N2S2Z6X2V3S0B5/45637662345462341.bin

URI used in  download of follow-up payload

URI

/rgd4rgrtrje62iuty/19658963328526236.bin

URI used in download of follow-up  payload

URI

/sd325dt25ddgd523/81852849956384.bin

URI used in  download of follow-up payload

URI

/B0L1N2H4R1N5I5S6/40055385413647326168.bin

URI used in download of follow-up  payload

URI

/F5Q8W3O3O8I2A4A4B8S8/31427748106757922101.bin

URI used in  download of follow-up payload

URI

/36141266339446703039.bin

URI used in download of follow-up  payload

URI

/wH0nP0qH9eJ6aA9zH1mN/1.bin

URI used in  download of follow-up payload

URI

/K2X2R1K4C6Z3G8L0R1H0/68515718711529966786.bin

URI used in download of follow-up  payload

URI

/C3J7N6F6X3P8I0I0M/17819203282122080878.bin

URI used in  download of follow-up payload

URI

/W9H1B8P3F2J2H2K7U1Y7G5N4C0Z4B/18027641.bin

URI used in download of follow-up  payload

URI

/P2T9T1Q6P7Y5J3D2T0N0O8V/73239348388512240560937.bin

URI used in  download of follow-up payload

URI

/W5H6O5P0E4Y6P8O1B9D9G0P9Y9G4/671837571800893555497.bin

URI used in download of follow-up  payload

URI

/U8P2N0T5R0F7G2J0/898040207002934180145349.bin

URI used in  download of follow-up payload

URI

/AXEXNKPSBCKSLMPNOMNRLUEPR/3145102300913020.bin

URI used in download of follow-up  payload

URI

/wK6nO2iM9lE7pN7e/7788926473349244.bin

URI used in  download of follow-up payload

URI

/U4N9B5X5F5K2A0L4L4T5/84897964387342609301.bin

URI used in download of follow-up  payload

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

/

February 16, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

AI

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ