ブログ
/
Network
/
November 7, 2022

[Part 1] Analysis of a Raccoon Stealer v1 Infection

Darktrace’s SOC team observed a fast-paced compromise involving Raccoon Stealer v1. See which steps the Raccoon Stealer v1 took to extract company data!
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mark Turner
SOC Shift Supervisor
Written by
Sam Lister
Specialist Security Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Nov 2022

Introduction

Towards the end of March 2022, the operators of Raccoon Stealer announced the closure of the Raccoon Stealer project [1]. In May 2022, Raccoon Stealer v2 was unleashed onto the world, with huge numbers of cases being detected across Darktrace’s client base. In this series of blog posts, we will follow the development of Raccoon Stealer between March and September 2022. We will first shed light on how Raccoon Stealer functioned before its demise, by providing details of a Raccoon Stealer v1 infection which Darktrace’s SOC saw within a client network on the 18th March 2022. In the follow-up post, we will provide details about the surge in Raccoon Stealer v2 cases that Darktrace’s SOC has observed since May 2022.  

What is Raccoon Stealer?

The misuse of stolen account credentials is a primary method used by threat actors to gain initial access to target environments [2]. Threat actors have several means available to them for obtaining account credentials. They may, for example, distribute phishing emails which trick their recipients into divulging account credentials. Alternatively, however, they may install information-stealing malware (i.e, info-stealers) onto users’ devices. The results of credential theft can be devastating. Threat actors may use the credentials to gain access to an organization’s SaaS environment, or they may use them to drain users’ online bank accounts or cryptocurrency wallets. 

Raccoon Stealer is a Malware-as-a-Service (MaaS) info-stealer first publicized in April 2019 on Russian-speaking hacking forums. 

Figure 1: One of the first known mentions of Raccoon Stealer on a Russian-speaking hacking forum named ‘Hack Forums’ on the 13th April 2019

The team of individuals behind Raccoon Stealer provide a variety of services to their customers (known as ‘affiliates’), including access to the info-stealer, an easy-to-use automated backend panel, hosting infrastructure, and 24/7 customer support [3]. 

Once Raccoon Stealer affiliates gain access to the info-stealer, it is up to them to decide how to distribute it. Since 2019, affiliates have been observed distributing the info-stealer via a variety of methods, such as exploit kits, phishing emails, and fake cracked software websites [3]/[4]. Once affiliates succeed in installing Raccoon Stealer onto target systems, the info-stealer will typically seek to obtain sensitive information saved in browsers and cryptocurrency wallets. The info-stealer will then exfiltrate the stolen data to a Command and Control (C2) server. The affiliate can then use the stolen data to conduct harmful follow-up activities. 

Towards the end of March 2022, the team behind Raccoon Stealer publicly announced that they would be suspending their operations after one of their core developers was killed during the Russia-Ukraine conflict [5]. 

Figure 2: Raccoon Stealer resignation post on March 25th 2022

Recent details shared by the US Department of Justice [6]/[7] indicate that it was in fact the arrest, rather than the death, of a key Raccoon Stealer operator which led the Raccoon Stealer team to suspend their operations [8].  

The closure of the Raccoon Stealer project, which ultimately resulted from the FBI-backed dismantling of Raccoon Stealer’s infrastructure in March 2022, did not last long, with the completion of Raccoon Stealer v2 being announced on the Raccoon Stealer Telegram channel on the 17th May 2022 [9]. 

 

Figure 3: Telegram post about new version of Raccoon Stealer

In the second part of this blog series, we will provide details of the recent surge in Raccoon Stealer v2 activity. In this post, however, we will provide insight into how the old version of Raccoon Stealer functioned just before its demise, by providing details of a Raccoon Stealer v1 infection which occurred on the 18th March 2022. 

Attack Details

On the 18th March, at around 13:00 (UTC), a user’s device within a customer’s network was seen contacting several websites providing fake cracked software. 

Figure 4: The above figure — obtained from the Darktrace Event Log for the infected device — highlights its connections to cracked software websites such as ‘licensekeysfree[.]com’ and ‘hdlicense[.]com’ before contacting ‘lion-files[.]xyz’ and ‘www.mediafire[.]com’

The user’s attempt to download cracked software from one of these websites resulted in their device making an HTTP GET request with a URI string containing ‘autodesk-revit-crack-v2022-serial-number-2022’ to an external host named ‘lion-filez[.]xyz’

Figure 5: Screenshot from hdlicense[.]com around the time of the infection shows a “Download” button linking to the ‘lion-filez[.]xyz’ endpoint

The device’s HTTP GET request to lion-filez[.]xyz was immediately followed by an HTTPS connection to the file hosting service, www.mediafire[.]com. Given that threat actors are known to abuse platforms such as MediaFire and Discord CDN to host their malicious payloads, it is likely that the user’s device downloaded the Raccoon Stealer v1 sample over its HTTPS connection to www.mediafire[.]com.  

After installing the info-stealer sample, the user’s device was seen making an HTTP GET request with the URI string ‘/g_shock_casio_easy’ to 194.180.191[.]185. The endpoint responded to the request with data related to a Telegram channel named ‘G-Shock’.

Figure 6: Telegram channel ‘@g_shock_casio_easy’

The returned data included the Telegram channel’s description, which in this case, was a base64 encoded and RC4 encrypted string of characters [10]/[11]. The Raccoon Stealer sample decoded and decrypted this string of characters to obtain its C2 IP address, 188.166.49[.]196. This technique used by Raccoon Stealer v1 closely mirrors the espionage method known as ‘dead drop’ — a method in which an individual leaves a physical object such as papers, cash, or weapons in an agreed hiding spot so that the intended recipient can retrieve the object later on without having to come in to contact with the source. In this case, the operators of Raccoon Stealer ‘left’ the malware’s C2 IP address within the description of a Telegram channel. Usage of this method allowed the operators of Raccoon Stealer to easily change the malware’s C2 infrastructure.  

After obtaining the C2 IP address from the ‘G-Shock’ Telegram channel, the Raccoon Stealer sample made an HTTP POST request with the URI string ‘/’ to the C2 IP address, 188.166.49[.]196. This POST request contained a Windows GUID,  a username, and a configuration ID. These details were RC4 encrypted and base64 encoded [12]. The C2 server responded to this HTTP POST request with JSON-formatted configuration information [13], including an identifier string, URL paths for additional files, along with several other fields. This configuration information was also concealed using RC4 encryption and base64 encoding.  

Figure 7- Fields within the JSON-formatted configuration data [13]

In this case, the server’s response included the identifier string ‘hv4inX8BFBZhxYvKFq3x’, along with the following URL paths:

  • /l/f/hv4inX8BFBZhxYvKFq3x/77d765d8831b4a7d8b5e56950ceb96b7c7b0ed70
  • /l/f/hv4inX8BFBZhxYvKFq3x/0cb4ab70083cf5985b2bac837ca4eacb22e9b711
  • /l/f/hv4inX8BFBZhxYvKFq3x/5e2a950c07979c670b1553b59b3a25c9c2bb899b
  • /l/f/hv4inX8BFBZhxYvKFq3x/2524214eeea6452eaad6ea1135ed69e98bf72979

After retrieving configuration data, the user’s device was seen making HTTP GET requests with the above URI strings to the C2 server. The C2 server responded to these requests with legitimate library files such as sqlite3.dll. Raccoon Stealer uses these libraries to extract data from targeted applications. 

Once the Raccoon Stealer sample had collected relevant data, it made an HTTP POST request with the URI string ‘/’ to the C2 server. This posted data likely included a ZIP file (named with the identifier string) containing stolen credentials [13]. 

The observed infection chain, which lasted around 20 minutes, consisted of the following steps:

1. User’s device installs Raccoon Stealer v1 samples from the user attempting to download cracked software

2. User’s device obtains the info-stealer’s C2 IP address from the description text of a Telegram channel

3. User’s device makes an HTTP POST request with the URI string ‘/’ to the C2 server. The request contains a Windows GUID,  a username, and a configuration ID. The response to the request contains configuration details, including an identifier string and URL paths for additional files

4. User’s device downloads library files from the C2 server

5. User’s device makes an HTTP POST request with the URI string ‘/’ to the C2 server. The request contains stolen data

Darktrace Coverage 

Although RESPOND/Network was not enabled on the customer’s deployment, DETECT picked up on several of the info-stealer’s activities. In particular, the device’s downloads of library files from the C2 server caused the following DETECT/Network models to breach:

  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / EXE from Rare External Location
  • Anomalous File / Multiple EXE from Rare External Locations
Figure 8: Event Log for the infected device shows 'Anomalous File / Masqueraded File Transfer' model breach after the device's download of a library file from the C2 server

Since the customer was subscribed to the Darktrace Proactive Threat Notification (PTN) service, they were proactively notified of the info-stealer’s activities. The quick response by Darktrace’s 24/7 SOC team helped the customer to contain the infection and to prevent further damage from being caused. Having been alerted to the info-stealer activity by the SOC team, the customer would also have been able to change the passwords for the accounts whose credentials were exfiltrated.

If RESPOND/Network had been enabled on the customer’s deployment, then it would have blocked the device’s connections to the C2 server, which would have likely prevented any stolen data from being exfiltrated.

Conclusion

Towards the end of March 2022, the team behind Raccoon Stealer announced that they would be suspending their operations. Recent developments suggest that the arrest of a core Raccoon Stealer developer was responsible for this suspension. Just before the Raccoon Stealer team were forced to shut down, Darktrace’s SOC team observed a Raccoon Stealer infection within a client’s network. In this post, we have provided details of the network-based behaviors displayed by the observed Raccoon Stealer sample. Since these v1 samples are no longer active, the details provided here are only intended to provide historical insight into the development of Raccoon Stealer’s operations and the activities carried out by Raccoon Stealer v1 just before its demise. In the next post of this series, we will discuss and provide details of Raccoon Stealer v2 — the new and highly prolific version of Raccoon Stealer. 

Thanks to Stefan Rowe and the Threat Research Team for their contributions to this blog.

References

[1] https://twitter.com/3xp0rtblog/status/1507312171914461188

[2] https://www.gartner.com/doc/reprints?id=1-29OTFFPI&ct=220411&st=sb

[3] https://www.cybereason.com/blog/research/hunting-raccoon-stealer-the-new-masked-bandit-on-the-block

[4] https://www.cyberark.com/resources/threat-research-blog/raccoon-the-story-of-a-typical-infostealer

[5] https://www.bleepingcomputer.com/news/security/raccoon-stealer-malware-suspends-operations-due-to-war-in-ukraine/

[6] https://www.justice.gov/usao-wdtx/pr/newly-unsealed-indictment-charges-ukrainian-national-international-cybercrime-operation

[7] https://www.youtube.com/watch?v=Fsz6acw-ZJY

[8] https://riskybiznews.substack.com/p/raccoon-stealer-dev-didnt-die-in

[9] https://medium.com/s2wblog/raccoon-stealer-is-back-with-a-new-version-5f436e04b20d

[10] https://blog.cyble.com/2021/10/21/raccoon-stealer-under-the-lens-a-deep-dive-analysis/

[11] https://decoded.avast.io/vladimirmartyanov/raccoon-stealer-trash-panda-abuses-telegram/

[12] https://blogs.blackberry.com/en/2021/09/threat-thursday-raccoon-infostealer

[13] https://cyberint.com/blog/research/raccoon-stealer/

Appendices

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Mark Turner
SOC Shift Supervisor
Written by
Sam Lister
Specialist Security Researcher

More in this series

No items found.

Blog

/

Network

/

November 26, 2025

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery System

Default blog imageDefault blog image

What is TAG-150?

TAG-150, a relatively new Malware-as-a-Service (MaaS) operator, has been active since March 2025, demonstrating rapid development and an expansive, evolving infrastructure designed to support its malicious operations. The group employs two custom malware families, CastleLoader and CastleRAT, to compromise target systems, with a primary focus on the United States [1]. TAG-150’s infrastructure included numerous victim-facing components, such as IP addresses and domains functioning as command-and-control (C2) servers associated with malware families like SecTopRAT and WarmCookie, in addition to CastleLoader and CastleRAT [2].

As of May 2025, CastleLoader alone had infected a reported 469 devices, underscoring the scale and sophistication of TAG-150’s campaign [1].

What are CastleLoader and CastleRAT?

CastleLoader is a loader malware, primarily designed to download and install additional malware, enabling chain infections across compromised systems [3]. TAG-150 employs a technique known as ClickFix, which uses deceptive domains that mimic document verification systems or browser update notifications to trick victims into executing malicious scripts. Furthermore, CastleLoader leverages fake GitHub repositories that impersonate legitimate tools as a distribution method, luring unsuspecting users into downloading and installing malware on their devices [4].

CastleRAT, meanwhile, is a remote access trojan (RAT) that serves as one of the primary payloads delivered by CastleLoader. Once deployed, CastleRAT grants attackers extensive control over the compromised system, enabling capabilities such as keylogging, screen capturing, and remote shell access.

TAG-150 leverages CastleLoader as its initial delivery mechanism, with CastleRAT acting as the main payload. This two-stage attack strategy enhances the resilience and effectiveness of their operations by separating the initial infection vector from the final payload deployment.

How are they deployed?

Castleloader uses code-obfuscation methods such as dead-code insertion and packing to hinder both static and dynamic analysis. After the payload is unpacked, it connects to its command-and-control server to retrieve and running additional, targeted components.

Its modular architecture enables it to function both as a delivery mechanism and a staging utility, allowing threat actors to decouple the initial infection from payload deployment. CastleLoader typically delivers its payloads as Portable Executables (PEs) containing embedded shellcode. This shellcode activates the loader’s core module, which then connects to the C2 server to retrieve and execute the next-stage malware.[6]

Following this, attackers deploy the ClickFix technique, impersonating legitimate software distribution platforms like Google Meet or browser update notifications. These deceptive sites trick victims into copying and executing PowerShell commands, thereby initiating the infection kill chain. [1]

When a user clicks on a spoofed Cloudflare “Verification Stepprompt, a background request is sent to a PHP script on the distribution domain (e.g., /s.php?an=0). The server’s response is then automatically copied to the user’s clipboard using the ‘unsecuredCopyToClipboard()’ function. [7].

The Python-based variant of CastleRAT, known as “PyNightShade,” has been engineered with stealth in mind, showing minimal detection across antivirus platforms [2]. As illustrated in Figure 1, PyNightShade communicates with the geolocation API service ip-api[.]com, demonstrating both request and response behavior

Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.
Figure 1: Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.

Darktrace Coverage

In mid-2025, Darktrace observed a range of anomalous activities across its customer base that appeared linked to CastleLoader, including the example below from a US based organization.

The activity began on June 26, when a device on the customer’s network was observed connecting to the IP address 173.44.141[.]89, a previously unseen IP for this network along with the use of multiple user agents, which was also rare for the user.  It was later determined that the IP address was a known indicator of compromise (IoC) associated with TAG-150’s CastleRAT and CastleLoader operations [2][5].

Figure 2: Darktrace’s detection of a device making unusual connections to the malicious endpoint 173.44.141[.]89.

The device was observed downloading two scripts from this endpoint, namely ‘/service/download/data_5x.bin’ and ‘/service/download/data_6x.bin’, which have both been linked to CastleLoader infections by open-source intelligence (OSINT) [8]. The archives contains embedded shellcode, which enables attackers to execute arbitrary code directly in memory, bypassing disk writes and making detection by endpoint detection and response (EDR) tools significantly more difficult [2].

 Darktrace’s detection of two scripts from the malicious endpoint.
Figure 3: Darktrace’s detection of two scripts from the malicious endpoint.

In addition to this, the affected device exhibited a high volume of internal connections to a broad range of endpoints, indicating potential scanning activity. Such behavior is often associated with reconnaissance efforts aimed at mapping internal infrastructure.

Darktrace / NETWORK correlated these behaviors and generated an Enhanced Monitoring model, a high-fidelity security model designed to detect activity consistent with the early stages of an attack. These high-priority models are continuously monitored and triaged by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection and Managed Detection & Response services, ensuring that subscribed customers are promptly alerted to emerging threats.

Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.
Figure 4: Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.

Darktrace Autonomous Response

Fortunately, Darktrace’s Autonomous Response capability was fully configured, enabling it to take immediate action against the offending device by blocking any further connections external to the malicious endpoint, 173.44.141[.]89. Additionally, Darktrace enforced a ‘group pattern of life’ on the device, restricting its behavior to match other devices in its peer group, ensuring it could not deviate from expected activity, while also blocking connections over 443, shutting down any unwanted internal scanning.

Figure 5: Actions performed by Darktrace’s Autonomous Response to contain the ongoing attack.

Conclusion

The rise of the MaaS ecosystem, coupled with attackers’ growing ability to customize tools and techniques for specific targets, is making intrusion prevention increasingly challenging for security teams. Many threat actors now leverage modular toolkits, dynamic infrastructure, and tailored payloads to evade static defenses and exploit even minor visibility gaps. In this instance, Darktrace demonstrated its capability to counter these evolving tactics by identifying early-stage attack chain behaviors such as network scanning and the initial infection attempt. Autonomous Response then blocked the CastleLoader IP delivering the malicious ZIP payload, halting the attack before escalation and protecting the organization from a potentially damaging multi-stage compromise

Credit to Ahmed Gardezi (Cyber Analyst) Tyler Rhea (Senior Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Unusual Internal Connections
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Initial Attack Chain Activity (Enhanced Monitoring Model)

MITRE ATT&CK Mapping

  • T15588.001 - Resource Development – Malware
  • TG1599 – Defence Evasion – Network Boundary Bridging
  • T1046 – Discovery – Network Service Scanning
  • T1189 – Initial Access

List of IoCs
IoC - Type - Description + Confidence

  • 173.44.141[.]89 – IP – CastleLoader C2 Infrastructure
  • 173.44.141[.]89/service/download/data_5x.bin – URI – CastleLoader Script
  • 173.44.141[.]89/service/download/data_6x.bin – URI  - CastleLoader Script
  • wsc.zip – ZIP file – Possible Payload

References

[1] - https://blog.polyswarm.io/castleloader

[2] - https://www.recordedfuture.com/research/from-castleloader-to-castlerat-tag-150-advances-operations

[3] - https://www.pcrisk.com/removal-guides/34160-castleloader-malware

[4] - https://www.scworld.com/brief/malware-loader-castleloader-targets-devices-via-fake-github-clickfix-phishing

[5] https://www.virustotal.com/gui/ip-address/173.44.141.89/community

[6] https://thehackernews.com/2025/07/castleloader-malware-infects-469.html

[7] https://www.cryptika.com/new-castleloader-attack-using-cloudflare-themed-clickfix-technique-to-infect-windows-computers/

[8] https://www.cryptika.com/castlebot-malware-as-a-service-deploys-range-of-payloads-linked-to-ransomware-attacks/

Continue reading
About the author

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

Default blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI