Blog
/
/
February 27, 2025

New Threat on the Prowl: Investigating Lynx Ransomware

Lynx ransomware, emerging in 2024, targets finance, architecture, and manufacturing sectors with phishing and double extortion. Read on for Darktrace's findings.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
27
Feb 2025

What is Lynx ransomware?

In mid-2024, a new ransomware actor named Lynx emerged in the threat landscape. This Ransomware-as-a-Service (RaaS) strain is known to target organizations in the finance, architecture, and manufacturing sectors [1] [2]. However, Darktrace’s Threat Research teams also identified Lynx incidents affecting energy and retail organizations in the Middle East and Asia-Pacific (APAC) regions. Despite being a relatively new actor, Lynx’s malware shares large portions of its source code with the INC ransomware variant, suggesting that the group may have acquired and repurposed the readily available INC code to develop its own strain [2].

What techniques does Lynx ransomware group use?

Lynx employs several common attack vectors, including phishing emails which result in the download and installation of ransomware onto systems upon user interaction. The group poses a sophisticated double extortion threat to organizations, exfiltrating sensitive data prior to encryption [1]. This tactic allows threat actors to pressure their targets by threatening to release sensitive information publicly or sell it if the ransom is not paid. The group has also been known to gradually release small batches of sensitive information (i.e., “drip” data) to increase pressure.

Once executed, the malware encrypts files and appends the extension ‘.LYNX’ to all encrypted files. It eventually drops a Base64 encoded text file as a ransom note (i.e., README.txt) [1]. Should initial file encryption attempts fail, the operators have been known to employ privilege escalation techniques to ensure full impact [2].

In the Annual Threat Report 2024, Darktrace’s Threat Research team identified Lynx ransomware as one of the top five most significant threats, impacting both its customers and the broader threat landscape.

Darktrace Coverage of Lynx Ransomware

In cases of Lynx ransomware observed across the Darktrace customer base, Darktrace / NETWORK identified and suggested Autonomous Response actions to contain network compromises from the onset of activity.  

Detection of lateral movement

One such Lynx compromise occurred in December 2024 when Darktrace observed multiple indicators of lateral movement on a customer network. The lateral movement activity started with a high volume of attempted binds to the service control endpoint of various destination devices, suggesting SMB file share enumeration. This activity also included repeated attempts to establish internal connections over destination port 445, as well as other privileged ports. Spikes in failed internal connectivity, such as those exhibited by the device in question, can indicate network scanning. Elements of the internal connectivity also suggested the use of the attack and reconnaissance tool, Nmap.

Indicators of compromised administrative credentials

Although an initial access point could not be confirmed, the widespread use of administrative credentials throughout the lateral movement process demonstrated the likely compromise of such privileged usernames and passwords. The operators of the malware frequently used both 'admin' and 'administrator' credentials throughout the incident, suggesting that attackers may have leveraged compromised default administrative credentials to gain access and escalate privileges. These credentials were observed on numerous devices across the network, triggering Darktrace models that detect unusual use of administrative usernames via methods like NTLM and Kerberos.

Data exfiltration

The lateral movement and reconnaissance behavior was then followed by unusual internal and external data transfers. One such device exhibited an unusual spike in internal data download activity, downloading around 150 GiB over port 3260 from internal network devices. The device then proceeded to upload large volumes of data to the external AWS S3 storage bucket: wt-prod-euwest1-storm.s3.eu-west-1.amazonaws[.]com. Usage of external cloud storage providers is a common tactic to avoid detection of exfiltration, given the added level of legitimacy afforded by cloud service provider domains.

Furthermore, Darktrace observed the device exhibiting behavior suggesting the use of the remote management tool AnyDesk when it made outbound TCP connections to hostnames such as:

relay-48ce591e[.]net[.]anydesk[.]com

relay-c9990d24[.]net[.]anydesk[.]com

relay-da1ad7b4[.]net[.]anydesk[.]com

Tools like AnyDesk can be used for legitimate administrative purposes. However, such tools are also commonly leveraged by threat actors to enable remote access and further compromise activity. The activity observed from the noted device during this time suggests the tool was used by the ransomware operators to advance their compromise goals.

The observed activity culminated in the encryption of thousands of files with the '.Lynx' extension. Darktrace detected devices performing uncommon SMB write and move operations on the drives of destination network devices, featuring the appending of the Lynx extension to local host files. Darktrace also identified similar levels of SMB read and write sizes originating from certain devices. Parallel volumes of SMB read and write activity strongly suggest encryption, as the malware opens, reads, and then encrypts local files on the hosted SMB disk share. This encryption activity frequently highlighted the use of the seemingly-default credential: "Administrator".

In this instance, Darktrace’s Autonomous Response capability was configured to only take action upon human confirmation, meaning the customer’s security team had to manually apply any suggested actions. Had the deployment been fully autonomous, Darktrace would have blocked connectivity to and from the affected devices, giving the customer additional time to contain the attack and enforce existing network behavior patterns while the IT team responded accordingly.

Conclusion

As reported by Darktrace’s Threat Research team in the Annual Threat Report 2024, both new and old ransomware strains were prominent across the threat landscape last year. Due to the continually improving security postures of organizations, ransomware actors are forced to constantly evolve and adopt new tactics to successfully carry out their attacks.

The Lynx group’s use of INC source code, for example, suggests a growing accessibility for threat actors to launch new ransomware strains based on existing code – reducing the cost, resources, and expertise required to build new malware and carry out an attack. This decreased barrier to entry will surely lead to an increased number of ransomware incidents, with attacks not being limited to experienced threat actors.

While Darktrace expects ransomware strains like Lynx to remain prominent in the threat landscape in 2025 and beyond, Darktrace’s ability to identify and respond to emerging ransomware incidents – as demonstrated here – ensures that customers can safeguard their networks and resume normal business operations as quickly as possible, even in an increasingly complex threat landscape.

Credit to Justin Torres (Senior Cyber Analyst) and Adam Potter (Senior Cyber Analyst).

[related-resource]

Appendices

References

1.     https://unit42.paloaltonetworks.com/inc-ransomware-rebrand-to-lynx/

2.     https://cybersecsentinel.com/lynx-ransomware-strikes-new-targets-unveiling-advanced-encryption-techniques/

Autonomous Response Model Alerts

·      Antigena::Network::Significant Anomaly::Antigena Alerts Over Time Block

·      Antigena::Network::Insider Threat::Antigena Active Threat SMB Write Block

·      Antigena::Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

·      Antigena::Network::Significant Anomaly::Antigena Significant Anomaly from Client Block

·      Antigena::Network::Insider Threat::Antigena Network Scan Block

·      Antigena::Network::Insider Threat::Antigena Internal Anomalous File Activity

·      Antigena::Network::Insider Threat::Antigena Unusual Privileged User Activities Block

·      Antigena::Network::Insider Threat::Antigena Unusual Privileged User Activities Pattern of Life Block

·      Antigena::Network::Insider Threat::Antigena Large Data Volume Outbound Block

Darktrace / NETWORK Model Alerts

·      Device::Multiple Lateral Movement Model Alerts

·      Device::Suspicious Network Scan Activity

·      Anomalous File::Internal::Additional Extension Appended to SMB File

·      Device::SMB Lateral Movement

·      Compliance::SMB Drive Write

·      Compromise::Ransomware::Suspicious SMB Activity

·      Anomalous File::Internal::Unusual SMB Script Write

·      Device::Network Scan

·      Device::Suspicious SMB Scanning Activity

·      Device::RDP Scan

·      Unusual Activity::Anomalous SMB Move & Write

·      Anomalous Connection::Sustained MIME Type Conversion

·      Compromise::Ransomware::SMB Reads then Writes with Additional Extensions

·      Unusual Activity::Sustained Anomalous SMB Activity

·      Device::ICMP Address Scan

·      Compromise::Ransomware::Ransom or Offensive Words Written to SMB

·      Anomalous Connection::Suspicious Read Write Ratio

·      Anomalous File::Internal::Masqueraded Executable SMB Write

·      Compliance::Possible Unencrypted Password File On Server

·      User::New Admin Credentials on Client

·      Compliance::Remote Management Tool On Server

·      User::New Admin Credentials on Server

·      Anomalous Connection::Unusual Admin RDP Session

·      Anomalous Connection::Download and Upload

·      Anomalous Connection::Uncommon 1 GiB Outbound

·      Unusual Activity::Unusual File Storage Data Transfer

List of IoCs

IoC - Type - Description + Confidence

- ‘. LYNX’ -  File Extension -  Lynx Ransomware file extension appended to encrypted files

MITRE ATT&CK Mapping  

(Technique Name - Tactic - ID - Sub-Technique of)

Taint Shared Content - LATERAL MOVEMENT - T1080

Data Encrypted for - Impact - IMPACT T1486

Rename System Utilities - DEFENSE EVASION - T1036.003 - T1036

Get the latest insights on emerging cyber threats

This report explores the latest trends shaping the cybersecurity landscape and what defenders need to know in 2025.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Justin Torres
Cyber Analyst

More in this series

No items found.

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

January 19, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI