Blog
/
/
May 5, 2020

The Ongoing Threat of Dharma Ransomware Attacks

Stay informed about the dangers of Dharma ransomware and its methods of attack, ensuring your defenses are strong against potential intrusions.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
05
May 2020

Executive summary

  • In the past few weeks, Darktrace has observed an increase in attacks against internet-facing systems, such as RDP. The initial intrusions usually take place via existing vulnerabilities or stolen, legitimate credentials. The Dharma ransomware attack described in this blog post is one such example.
  • Old threats can be damaging – Dharma and its variants have been around for four years. This is a classic example of ‘legacy’ ransomware morphing and adapting to bypass traditional defenses.
  • The intrusion shows signs that indicate the threat-actors are aware of – and are actively exploiting – the COVID-19 situation.
  • In the current threat landscape surrounding COVID-19, Darktrace recommends monitoring internet-facing systems and critical servers closely – keeping track of administrative credentials and carefully considering security when rapidly deploying internet-facing infrastructure.

Introduction

In mid-April, Darktrace detected a targeted Dharma ransomware attack on a UK company. The initial point of intrusion was via RDP – this represents a very common attack method of infection that Darktrace has observed in the broader threat landscape over the past few weeks.

This blog post highlights every stage of the attack lifecycle and details the attacker’s techniques, tools and procedures (TTP) – all detected by Darktrace.

Dharma – a varient of the CrySIS malware family – first appeared in 2016 and uses multiple intrusion vectors. It distributes its malware as an attachment in a spam email, by disguising it as an installation file for legitimate software, or by exploiting an open RDP connection through internet-facing servers. When Dharma has finished encrypting files, it drops a ransom note with the contact email address in the encrypted SMB files.

Darktrace had strong, real-time detections of the attack – however the absence of eyes on the user interface prior to the encryption activity, and without Autonomous Response deployed in Active Mode, these alerts were only actioned after the ransomware was unleashed. Fortunately, it was unable to spread within the organization, thanks to human intervention at the peak of the attack. However, Darktrace Antigena in active mode would have significantly slowed down the attack.

Timeline

The timeline below provides a rough overview of the major attack phases over five days of activity.

Figure 1: A timeline of the attack

Technical analysis

Darktrace detected that the main device hit by the attack was an internet-facing RDP server (‘RDP server’). Dharma used network-level encryption here: the ransomware activity takes place over the network protocol SMB.

Below is a chronological overview of all Darktrace detections that fired during this attack: Darktrace detected and reported every single unusual or suspicious event occurring on the RDP server.

Figure 2: An overview of Darktrace detections

Initial compromise

On April 7, the RDP server began receiving a large number of incoming connections from rare IP addresses on the internet.

On April 7, the RDP server began receiving a large number of incoming connections from rare IP addresses on the internet. This means a lot of IP addresses on the internet that usually don’t connect to this company started connection attempts over RDP. The top five cookies used to authenticate show that the source IPs were located in Russia, the Netherlands, Korea, the United States, and Germany.

It is highly likely that the RDP credential used in this attack had been compromised prior to the attack – either via common brute-force methods, credential stuffing attacks, or phishing. Indeed, a TTP growing in popularity is to buy RDP credentials on marketplaces and skip to initial access.

Attempted privilege escalation

The following day, the malicious actor abused the SMB version 1 protocol, notorious for always-on null sessions which offer unauthenticated users’ information about the machine – such as password policies, usernames, group names, machine names, user and host SIDs. What followed was very unusual: the server connected externally to a rare IP address located in Morocco.

Next, the attacker attempted a failed SMB session to the external IP over an unusual port. Darktrace detected this activity as highly anomalous, as it had previously learned that SMB is usually not used in this fashion within this organization – and certainly not for external communication over this port.

Figure 3: Darktrace detecting the rare external IP address

Figure 4: The SMB session failure and the rare connection over port 1047

Command and control traffic

As the entire attack occurred over five days, this aligns with a smash-and-grab approach, rather than a highly covert, low-and-slow operation.

Two hours later, the server initiated a large number of anomalous and rare connections to external destinations located in India, China, and Italy – amongst other destinations the server had never communicated with before. The attacker was now attempting to establish persistence and create stronger channels for command and control (C2). As the entire attack occurred over five days, this aligns with a smash-and-grab approach, rather than a highly covert, low-and-slow operation.

Actions on target

Notwithstanding this approach, the malicious actor remained dormant for two days, biding their time until April 10 — a public holiday in the UK — when security teams would be notably less responsive. This pause in activity provides supporting evidence that the attack was human-driven.

Figure 5: The unusual RDP connections detected by Darktrace

The RDP server then began receiving incoming remote desktop connections from 100% rare IP addresses located in the Netherlands, Latvia, and Poland.

Internal reconnaissance

The IP address 85.93.20[.]6, hosted at the time of investigation in Panama, made two connections to the server, using an administrative credential. On April 12, as other inbound RDP connections scanned the network, the volume of data transferred by the RDP server to this IP address spiked. The RDP server never scans the internal network. Darktrace identified this as highly unusual activity.

Figure 6: Darktrace detects the anomalous external data transfer

Lateral movement and payload execution

Finally, on April 12, the attackers executed the Dharma payload at 13:45. The RDP server wrote a number of files over the SMB protocol, appended with a file extension containing a throwaway email account possibly evoking the current COVID-19 pandemic, ‘cov2020@aol[.]com’. The use of string ‘…@aol.com].ROGER’ and presence of a file named ‘FILES ENCRYPTED.txt’ resembles previous Dharma compromises.

Parallel to the encryption activity, the ransomware tried to spread and infect other machines by initiating successful SMB authentications using the same administrator credential seen during the internal reconnaissance. However, the destination devices did not encrypt any files themselves.

It was during the encryption activity that the internal IT staff pulled the plug from the compromised RDP server, thus ending the ransomware activity.

Conclusion

This incident supports the idea that ‘legacy’ ransomware may morph to resurrect itself to exploit vulnerabilities in remote working infrastructure during this pandemic.

Dharma executed here a fast-acting, planned, targeted, ransomware attack. The attackers used off-the-shelf tools (RDP, abusing SMB1 protocol) blurring detection and attribution by blending in with typical administrator activity.

Darktrace detected every stage of the attack without having to depend on threat intelligence or rules and signatures, and the internal security team acted on the malicious activity to prevent further damage.

This incident supports the idea that ‘legacy’ ransomware may morph to resurrect itself to exploit vulnerabilities in remote working infrastructure during this pandemic. Poorly-secured public-facing systems have been rushed out and security is neglected as companies prioritize availability – sacrificing security in the process. Financially-motivated actors weaponize these weak points.

The use of the COVID-related email ‘cov2020@aol[.]com’ during the attack indicates that the threat-actor is aware of and abusing the current global pandemic.

Recent attacks, such as APT41’s exploitation of the Zoho Manage Engine vulnerability last March, show that attacks against internet-facing infrastructure are gaining popularity as the initial intrusion vector. Indeed, as many as 85% of ransomware attacks use RDP as an entry vector. Ensuring that backups are isolated, configurations are hardened, and systems are patched is not enough – real-time detection of every anomalous action can help protect potential victims of ransomware.

Technical Details

Some of the detections on the RDP server:

  • Compliance / Internet Facing RDP server – exposure of critical server to Internet
  • Anomalous Connection / Application Protocol on Uncommon Port – external connections using an unusual port to rare endpoints
  • Device / Large Number of Connections to New Endpoints – indicative of peer-to-peer or scanning activity
  • Compliance / Incoming Remote Desktop – device is remotely controlled from an external source, increased rick of bruteforce
  • Compromise / Ransomware / Suspicious SMB Activity – reading and writing similar volumes of data to remote file shares, indicative of files being overwritten and encrypted
  • Anomalous File / Internal / Additional Extension Appended to SMB File – device is renaming network share files with an added extension, seen during ransomware activity

The graph below shows the timeline of Darktrace detections on the RDP server. The attack lifecycle is clearly observable.

Figure 7: The model breaches occurring over time

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author

Blog

/

/

September 9, 2025

Unpacking the Salesloft Incident: Insights from Darktrace Observations

solesloft incident Default blog imageDefault blog image

Introduction

On August 26, 2025, Google Threat intelligence Group released a report detailing a widespread data theft campaign targeting the sales automation platform Salesloft, via compromised OAuth tokens used by the third-party Drift AI chat agent [1][2].  The attack has been attributed to the threat actor UNC6395 by Google Threat Intelligence and Mandiant [1].

The attack is believed to have begun in early August 2025 and continued through until mid-August 2025 [1], with the threat actor exporting significant volumes of data from multiple Salesforce instances [1]. Then sifting through this data for anything that could be used to compromise the victim’s environments such as access keys, tokens or passwords. This had led to Google Threat Intelligence Group assessing that the primary intent of the threat actor is credential harvesting, and later reporting that it was aware of in excess of 700 potentially impacted organizations [3].

Salesloft previously stated that, based on currently available data, customers that do not integrate with Salesforce are unaffected by this campaign [2]. However, on August 28, Google Threat Intelligence Group announced that “Based on new information identified by GTIG, the scope of this compromise is not exclusive to the Salesforce integration with Salesloft Drift and impacts other integrations” [2]. Google Threat Intelligence has since advised that any and all authentication tokens stored in or connected to the Drift platform be treated as potentially compromised [1].

This campaign demonstrates how attackers are increasingly exploiting trusted Software-as-a-Service (SaaS) integrations as a pathway into enterprise environment.

By abusing these integrations, threat actors were able to exfiltrate sensitive business data at scale, bypassing traditional security controls. Rather than relying on malware or obvious intrusion techniques, the adversaries leveraged legitimate credentials and API traffic that resembled legitimate Salesforce activity to achieve their goals. This type of activity is far harder to detect with conventional security tools, since it blends in with the daily noise of business operations.

The incident underscores the escalating significance of autonomous coverage within SaaS and third-party ecosystems. As businesses increasingly depend on interconnected platforms, visibility gaps become evident that cannot be managed by conventional perimeter and endpoint defenses.

By developing a behavioral comprehension of each organization's distinct use of cloud services, anomalies can be detected, such as logins from unexpected locations, unusually high volumes of API requests, or unusual document activity. These indications serve as an early alert system, even when intruders use legitimate tokens or accounts, enabling security teams to step in before extensive data exfiltration takes place

What happened?

The campaign is believed to have started on August 8, 2025, with malicious activity continuing until at least August 18. The threat actor, tracked as UNC6395, gained access via compromised OAuth tokens associated with Salesloft Drift integrations into Salesforce [1]. Once tokens were obtained, the attackers were able to issue large volumes of Salesforce API requests, exfiltrating sensitive customer and business data.

Initial Intrusion

The attackers first established access by abusing OAuth and refresh tokens from the Drift integration. These tokens gave them persistent access into Salesforce environments without requiring further authentication [1]. To expand their foothold, the threat actor also made use of TruffleHog [4], an open-source secrets scanner, to hunt for additional exposed credentials. Logs later revealed anomalous IAM updates, including unusual UpdateAccessKey activity, which suggested attempts to ensure long-term persistence and control within compromised accounts.

Internal Reconnaissance & Data Exfiltration

Once inside, the adversaries began exploring the Salesforce environments. They ran queries designed to pull sensitive data fields, focusing on objects such as Cases, Accounts, Users, and Opportunities [1]. At the same time, the attackers sifted through this information to identify secrets that could enable access to other systems, including AWS keys and Snowflake credentials [4]. This phase demonstrated the opportunistic nature of the campaign, with the actors looking for any data that could be repurposed for further compromise.

Lateral Movement

Salesloft and Mandiant investigations revealed that the threat actor also created at least one new user account in early September. Although follow-up activity linked to this account was limited, the creation itself suggested a persistence mechanism designed to survive remediation efforts. By maintaining a separate identity, the attackers ensured they could regain access even if their stolen OAuth tokens were revoked.

Accomplishing the mission

The data taken from Salesforce environments included valuable business records, which attackers used to harvest credentials and identify high-value targets. According to Mandiant, once the data was exfiltrated, the actors actively sifted through it to locate sensitive information that could be leveraged in future intrusions [1]. In response, Salesforce and Salesloft revoked OAuth tokens associated with Drift integrations on August 20 [1], a containment measure aimed at cutting off the attackers’ primary access channel and preventing further abuse.

How did the attack bypass the rest of the security stack?

The campaign effectively bypassed security measures by using legitimate credentials and OAuth tokens through the Salesloft Drift integration. This rendered traditional security defenses like endpoint protection and firewalls ineffective, as the activity appeared non-malicious [1]. The attackers blended into normal operations by using common user agents and making queries through the Salesforce API, which made their activity resemble legitimate integrations and scripts. This allowed them to operate undetected in the SaaS environment, exploiting the trust in third-party connections and highlighting the limitations of traditional detection controls.

Darktrace Coverage

Anomalous activities have been identified across multiple Darktrace deployments that appear associated with this campaign. This included two cases on customers based within the United States who had a Salesforce integration, where the pattern of activities was notably similar.

On August 17, Darktrace observed an account belonging to one of these customers logging in from the rare endpoint 208.68.36[.]90, while the user was seen active from another location. This IP is a known indicator of compromise (IoC) reported by open-source intelligence (OSINT) for the campaign [2].

Cyber AI Analyst Incident summarizing the suspicious login seen for the account.
Figure 1: Cyber AI Analyst Incident summarizing the suspicious login seen for the account.

The login event was associated with the application Drift, further connecting the events to this campaign.

Advanced Search logs showing the Application used to login.
Figure 2: Advanced Search logs showing the Application used to login.

Following the login, the actor initiated a high volume of Salesforce API requests using methods such as GET, POST, and DELETE. The GET requests targeted endpoints like /services/data/v57.0/query and /services/data/v57.0/sobjects/Case/describe, where the former is used to retrieve records based on a specific criterion, while the latter provides metadata for the Case object, including field names and data types [5,6].

Subsequently, a POST request to /services/data/v57.0/jobs/query was observed, likely to initiate a Bulk API query job for extracting large volumes of data from the Ingest Job endpoint [7,8].

Finally, a DELETE request to remove an ingestion job batch, possibly an attempt to obscure traces of prior data access or manipulation.

A case on another US-based customer took place a day later, on August 18. This again began with an account logging in from the rare IP 208.68.36[.]90 involving the application Drift. This was followed by Salesforce GET requests targeting the same endpoints as seen in the previous case, and then a POST to the Ingest Job endpoint and finally a DELETE request, all occurring within one minute of the initial suspicious login.

The chain of anomalous behaviors, including a suspicious login and delete request, resulted in Darktrace’s Autonomous Response capability suggesting a ‘Disable user’ action. However, the customer’s deployment configuration required manual confirmation for the action to take effect.

An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 3: An example model alert for the user, triggered due to an anomalous API DELETE request.
Figure 4: Model Alert Event Log showing various model alerts for the account that ultimately led to an Autonomous Response model being triggered.

Conclusion

In conclusion, this incident underscores the escalating risks of SaaS supply chain attacks, where third-party integrations can become avenues for attacks. It demonstrates how adversaries can exploit legitimate OAuth tokens and API traffic to circumvent traditional defenses. This emphasizes the necessity for constant monitoring of SaaS and cloud activity, beyond just endpoints and networks, while also reinforcing the significance of applying least privilege access and routinely reviewing OAuth permissions in cloud environments. Furthermore, it provides a wider perspective into the evolution of the threat landscape, shifting towards credential and token abuse as opposed to malware-driven compromise.

Credit to Emma Foulger (Global Threat Research Operations Lead), Calum Hall (Technical Content Researcher), Signe Zaharka (Principal Cyber Analyst), Min Kim (Senior Cyber Analyst), Nahisha Nobregas (Senior Cyber Analyst), Priya Thapa (Cyber Analyst)

Appendices

Darktrace Model Detections

·      SaaS / Access / Unusual External Source for SaaS Credential Use

·      SaaS / Compromise / Login From Rare Endpoint While User Is Active

·      SaaS / Compliance / Anomalous Salesforce API Event

·      SaaS / Unusual Activity / Multiple Unusual SaaS Activities

·      Antigena / SaaS / Antigena Unusual Activity Block

·      Antigena / SaaS / Antigena Suspicious Source Activity Block

Customers should consider integrating Salesforce with Darktrace where possible. These integrations allow better visibility and correlation to spot unusual behavior and possible threats.

IoC List

(IoC – Type)

·      208.68.36[.]90 – IP Address

References

1.     https://cloud.google.com/blog/topics/threat-intelligence/data-theft-salesforce-instances-via-salesloft-drift

2.     https://trust.salesloft.com/?uid=Drift+Security+Update%3ASalesforce+Integrations+%283%3A30PM+ET%29

3.     https://thehackernews.com/2025/08/salesloft-oauth-breach-via-drift-ai.html

4.     https://unit42.paloaltonetworks.com/threat-brief-compromised-salesforce-instances/

5.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_query.htm

6.     https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/resources_sobject_describe.htm

7.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/get_job_info.htm

8.     https://developer.salesforce.com/docs/atlas.en-us.api_asynch.meta/api_asynch/query_create_job.htm

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead
Your data. Our AI.
Elevate your network security with Darktrace AI