Blog
/
OT
/
December 16, 2024

Breaking Down Nation State Attacks on Supply Chains

Explore how nation-state supply chain attacks like 3CX, NotPetya, and SolarWinds exploited trusted providers to cause global disruption, highlighting the urgent need for robust security measures.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Benjamin Druttman
Cyber Security AI Technical Instructor
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Dec 2024

Introduction: Nation state attacks on supply chains

In recent years, supply chain attacks have surged in both frequency and sophistication, evolving into one of the most severe threats to organizations across almost every industry. By exploiting third-party vendors and service providers, these attacks can inflict widespread disruption with a single breach. They have become a go-to choice for nation state actors and show no signs of slowing down. According to Gartner, the costs from these attacks will skyrocket “from $46 billion in 2023 to $138 billion by 2031” [1].  

But why are supply chains specifically such an irresistible target for threat actors? Dwight D. Eisenhower, the General of the US Army in World War II and former US President, once said, “you won’t find it difficult to prove that battles, campaigns, and even wars have been won or lost primarily because of logistics.”

The same is true in cyberspace and cyberwarfare. We live in an increasingly interconnected world. The provision of almost every service integral to our daily lives relies on a complex web of interdependent third parties.  

Naturally, threat actors gravitate towards these service providers. By compromising just one of them, they can spread through supply chains downstream to other organizations and raise the odds of winning their battle, campaign, or war.  

software supply chain sequence
Figure 1: Software supply chain attack cycle

A house built on open-source sand

Software developers face immense pressure to produce functional code quickly, often under tight deadlines. Adding to this challenge is the need to comply with stringent security requirements set by their DevSecOps counterparts, who aim to ensure that code is safe from vulnerabilities.  

Open-source repositories alleviate some of this pressure by providing pre-built packages of code and fully functioning tools that developers can freely access and integrate. These highly accessible resources enhance productivity and boost innovation. As a result, they have a huge, diverse user base spanning industries and geographies. However, given their extensive adoption, any security lapse can result in widespread compromise across businesses.

Cautionary tales for open-source dependencies

This is exactly what happened in December 2021 when a remote code execution vulnerability was discovered in Log4J’s software. In simple terms, it exposed an alarmingly straightforward way for attackers to take control of any system using Log4J.  

The scope for potential attack was unprecedented. Some estimates say up to 3 billion devices were affected worldwide, in what was quickly labelled the “single biggest, most critical vulnerability of the last decade” [2].

What ensued was a race between opportunistic nefarious actors and panicked security professionals. The astronomical number of vulnerable devices laid expansive groundwork for attackers, who quickly began probing potentially exploitable systems. 48% of corporate networks globally were scanned for the vulnerability, while security teams scrambled to apply the remediating patch [3].

The vulnerability attracted nation states like a moth to a flame, who, unsurprisingly, beat many security teams to it. According to the FBI and the US Cybersecurity and Infrastructure Agency (CISA), Iranian government-sponsored threat groups were found using the Log4J vulnerability to install cryptomining software, credential stealers and Ngrok reverse proxies onto no less than US Federal networks [4].  

Research from Microsoft and Mandiant revealed nation state groups from China, North Korea and Turkey also taking advantage of the Log4J vulnerability to deploy malware on target systems [5].  

If Log4j taught us anything, it’s that vulnerabilities in open-source technologies can be highly attractive target for nation states. When these technologies are universally adopted, geopolitical adversaries have a much wider net of opportunity to successfully weaponize them.  

It therefore comes as no surprise that nation states have ramped up their operations targeting the open-source link of the supply chain in recent years.  

Since 2020, there has been a 1300% increase in malicious threats circulating on open-source repositories. PyPI is the official open-source code repository for programming done in the Python language and used by over 800,000 developers worldwide. In the first 9 months of 2023 alone, 7,000 malicious packages were found on PyPI, some of which were linked to the North Korea state-sponsored threat group, Lazarus [6].  

Most of them were found using a technique called typosquatting, in which the malicious payloads are disguised with names that very closely resemble those of legitimate packages, ready for download by an unwitting software developer. This trickery of the eye is an example of social engineering in the supply chain.  

A hop, skip, and a jump into the most sensitive networks on earth

One of the most high-profile supply chain attacks in recent history occurred in 2023, targeting 3CX’s Desktop App – a widely used video communications by over 600,000 customers in various sectors such as aerospace, healthcare and hospitality.

The incident gained notoriety as a double supply chain attack. The initial breach originated from financial trading software called X_Trader, which had been infected with a backdoor.  A 3CX employee unknowingly downloaded the compromised X_Trader software onto a corporate device. This allowed attackers to steal the employee’s credentials and use them to gain access to 3CX’s network, spread laterally and compromising Windows and Mac systems.  

The attack moved along another link of the supply chain to several of 3CX’s customers, impacting critical national infrastructure like energy sector in US and Europe.  

For the average software provider, this attack shed more light on how a compromise of their technology could cause chaos for their customers.  

But nation states already knew this. The 3CX attack was attributed, yet again, to Lazarus, the same North Korean nation state blamed for implanting malicious packages in the Python repository.  

It’s also worth mentioning the astounding piece of evidence in a separate social engineering campaign which linked the 3CX hack to North Korea. It was an attack worthy of a Hollywood cyber block buster. The threat group, Lazarus, lured hopeful job candidates on LinkedIn into clicking on malicious ZIP file disguised as an attractive PDF offer for a position as a Developer at HSBC. The malware’s command and control infrastructure, journalide[.]org, was the same one discovered in the 3CX campaign.  

Though not strictly a supply chain attack, the LinkedIn campaign illustrates how nation states employ a diverse array of methods that span beyond the supply chain to achieve their goals. These sophisticated and well-resourced adversaries are adaptable and capable of repurposing their command-and-control infrastructure to orchestrate a range of attacks. This attack, along with the typosquatting attacks found in PyPI, serve as a critical reminder for security teams: supply chain attacks are often coupled with another powerful tactic – social engineering of human teams.

When the cure is worse than the disease

Updates to the software are a core pillar of cybersecurity, designed to patch vulnerabilities like Log4J and ensure it is safe. However, they have also proven to serve as alarmingly efficient delivery vessels for nation states to propagate their cyberattacks.  

Two of the most prolific supply chain breaches in recent history have been deployed through malicious updates, illustrating how they can be a double-edged sword when it comes to cyber defense.  

NotPetya (2017) and Solarwinds (2020)

The 2017 NotPetya ransomware attack exemplified the mass spread of ransomware via a single software update. A Russian military group injected malware on accounting software used by Ukrainian businesses for tax reporting. Via an automatic update, the ransomware was pushed out to thousands of customers within hours, crippled Ukrainian infrastructure including airports, financial institutions and government agencies.  

Some of the hardest hit victims were suppliers themselves. Maersk, the global shipping giant responsible for shipping one fifth of the world’s goods, had their entire global operations brought to a halt and their 76 ports temporarily shut down. The interruptions to global trade were then compounded when a FedEx subsidiary was hit by the same ransomware. Meanwhile, Merck, a pharmaceutical company, was unable to supply vaccines to the Center for Disease Control and Prevention due to the attack.  

In 2020, another devastating supply chain attack unfolded in a similar way. Threat actors tied to Russian intelligence embedded malicious code into Solarwinds’ Orion IT software, which was then distributed as an update to 18,000 organizations. Victims included at least eight U.S. government agencies, as well as several major tech companies.  

These two attacks highlighted two key lessons. First, in a hyperconnected digital world, nation states will exploit the trust organizations place in software updates to cause a ripple effect of devastation downstream. Secondly, the economies of scale for the threat actor themselves are staggering: a single malicious update provided the heavy lifting work of dissemination to the attacker. A colossal number of originations were infected, and they obtained the keys to the world’s most sensitive networks.

The conclusion is obvious, albeit challenging to implement; organizations must rigorously scrutinize the authenticity and security of updates to prevent far-reaching consequences.  

Some of the biggest supply chain attacks in recent history and the nation state actor they are attributed to
Figure 2: Some of the biggest supply chain attacks in recent history and the nation state actor they are attributed to

Geopolitics and nation States in 2024: Beyond the software supply chain

The threat to our increasingly complex web of global supply is real. But organizations must look beyond their software to successfully mitigate supply chain disruption. Securing hardware and logistics is crucial, as these supply chain links are also in the crosshairs of nation states.  

In July 2024, suspicious packages caused a warehouse fire at a depot belonging to courier giant DHL in Birmingham, UK. British counter-terrorism authorities investigated Russian involvement in this fire, which was linked to a very similar incident that same month at a DHL facility in Germany.  

In September 2024, camouflaged explosives were hidden in walkie talkies and pagers in Lebanon and Syria – a supply chain attack widely believed to be carried out by Israel.

While these attacks targeted hardware and logistics rather than software, the underlying rule of thumb remained the same: the compromise of a single distributor can provide the attackers with considerable economies of scale.

These attacks sparked growing concerns of coordinated efforts to sabotage the supply chain. This sentiment was reflected in a global survey carried out by HP in August 2024, in which many organisations reported “nation-state threat actors targeting physical supply chains and tampering with device hardware and firmware integrity” [7].

More recently, in November 2024, the Russian military unit 29155 vowed to “turn the lights out for millions” by threatening to launch cyberattacks on the blood supply of NATO countries, critical national infrastructure (CNI). Today, CNI encompasses more than the electric grid and water supply; it includes ICT services and IT infrastructure – the digital systems that underpin the foundations of modern society.    

This is nothing new. The supply and logistics-focused tactic has been central to warfare throughout history. What’s changed is that cyberspace has merely expanded the scale and efficiency of these tactics, turning single software compromises into attack multipliers. The supply chain threat is now more multi-faceted than ever before.  

Learnings from the supply chain threat landscape

Consider some of the most disastrous nation-state supply chain attacks in recent history – 3CX, NotPetya and Solarwinds. They share a remarkable commonality: the attackers only needed to compromise a single piece of software to cause rampant disruption. By targeting a technology provider whose products were deeply embedded across industries, threat actors leveraged the trust inherent in the supply chain to infiltrate networks at scale.

From a nation-state’s perspective, targeting a specific technology, device or service used by vast swathes of society amplifies operational efficiency. For software, hardware and critical service suppliers, these examples serve as an urgent wake-up call. Without rigorous security measures, they risk becoming conduits for global disruption. Sanity-checking code, implementing robust validation processes, and fostering a culture of security throughout the supply chain are no longer optional—they are essential.  

The stakes are clear: in the interconnected digital age, the safety of countless systems, industries and society at large depends on their vigilance.  

Screenshot of supply chain security whitepaper

Gain a deeper understanding of the evolving risks in supply chain security and explore actionable strategies to protect your organization against emerging threats. Download the white paper to empower your decision-making with expert insights tailored for CISOs

Download: Securing the Supply Chain White Paper

References

  1. https://www.gartner.com/en/documents/5524495
  1. CISA Insights “Remediate Vulnerabilities for Internet-Accessible Systems.”
  1. https://blog.checkpoint.com/security/the-numbers-behind-a-cyber-pandemic-detailed-dive/
  1. https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-320a  
  1. https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/  
  1. https://content.reversinglabs.com/state-of-sscs-report/the-state-of-sscs-report-24  
  1. https://www.hp.com/us-en/newsroom/press-releases/2024/hp-wolf-security-study-supply-chains.html
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Benjamin Druttman
Cyber Security AI Technical Instructor

More in this series

No items found.

Blog

/

/

October 24, 2025

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents

Patch Smarter, Not Harder: Now Empowering Security Teams with Business-Aligned Threat Context Agents Default blog imageDefault blog image

Most risk management programs remain anchored in enumeration: scanning every asset, cataloging every CVE, and drowning in lists that rarely translate into action. Despite expensive scanners, annual pen tests, and countless spreadsheets, prioritization still falters at two critical points.

Context gaps at the device level: It’s hard to know which vulnerabilities actually matter to your business given existing privileges, what software it runs, and what controls already reduce risk.

Business translation: Even when the technical priority is clear, justifying effort and spend in financial terms—especially across many affected devices—can delay action. Especially if it means halting other areas of the business that directly generate revenue.

The result is familiar: alert fatigue, “too many highs,” and remediation that trails behind the threat landscape. Darktrace / Proactive Exposure Management addresses this by pairing precise, endpoint‑level context with clear, financial insight so teams can prioritize confidently and mobilize faster.

A powerful combination: No-Telemetry Endpoint Agent + Cost-Benefit Analysis

Darktrace / Proactive Exposure Management now uniquely combines technical precision with business clarity in a single workflow.  With this release, Darktrace / Proactive Exposure Management delivers a more holistic approach, uniting technical context and financial insight to drive proactive risk reduction. The result is a single solution that helps security teams stay ahead of threats while reducing noise, delays, and complexity.

  • No-Telemetry Endpoint: Collects installed software data and maps it to known CVEs—without network traffic—providing device-level vulnerability context and operational relevance.
  • Cost-Benefit Analysis for Patching: Calculates ROI by comparing patching effort with potential exploit impact, factoring in headcount time, device count, patch difficulty, and automation availability.

Introducing the No-Telemetry Endpoint Agent

Darktrace’s new endpoint agent inventories installed software on devices and maps it to known CVEs without collecting network data so you can prioritize using real device context and available security controls.

By grounding vulnerability findings in the reality of each endpoint, including its software footprint and existing controls, teams can cut through generic severity scores and focus on what matters most. The agent is ideal for remote devices, BYOD-adjacent fleets, or environments standardizing on Darktrace, and is available without additional licensing cost.

Darktrace / Proactive Exposure Management user interface
Figure 1: Darktrace / Proactive Exposure Management user interface

Built-In Cost-Benefit Analysis for Patching

Security teams often know what needs fixing but stakeholders need to understand why now. Darktrace’s new cost-benefit calculator compares the total cost to patch against the potential cost of exploit, producing an ROI for the patch action that expresses security action in clear financial terms.

Inputs like engineer time, number of affected devices, patch difficulty, and automation availability are factored in automatically. The result is a business-aligned justification for every patching decision—helping teams secure buy-in, accelerate approvals, and move work forward with one-click ticketing, CSV export, or risk acceptance.

Darktrace / Proactive Exposure Management Cost Benefit Analysis
Figure 2: Darktrace / Proactive Exposure Management Cost Benefit Analysis

A Smarter, Faster Approach to Exposure Management

Together, the no-telemetry endpoint and Cost–Benefit Analysis advance the CTEM motion from theory to practice. You gain higher‑fidelity discovery and validation signals at the device level, paired with business‑ready justification that accelerates mobilization. The result is fewer distractions, clearer priorities, and faster measurable risk reduction. This is not from chasing every alert, but by focusing on what moves the needle now.

  • Smarter Prioritization: Device‑level context trims noise and spotlights the exposures that matter for your business.
  • Faster Decisions: Built‑in ROI turns technical urgency into executive clarity—speeding approvals and action.
  • Practical Execution: Privacy‑conscious endpoint collection and ticketing/export options fit neatly into existing workflows.
  • Better Outcomes: Close the loop faster—discover, prioritize, validate, and mobilize—on the same operating surface.

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author

Blog

/

/

October 24, 2025

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web

Darktrace Announces Extended Visibility Between Confirmed Assets and Leaked Credentials from the Deep and Dark Web Default blog imageDefault blog image

Why exposure management needs to evolve beyond scans and checklists

The modern attack surface changes faster than most security programs can keep up. New assets appear, environments change, and adversaries are increasingly aided by automation and AI. Traditional approaches like periodic scans, static inventories, or annual pen tests are no longer enough. Without a formal exposure program, many businesses are flying blind, unaware of where the next threat may emerge.

This is where Continuous Threat Exposure Management (CTEM) becomes essential. Introduced by Gartner, CTEM helps organizations continuously assess, validate, and improve their exposure to real-world threats. It reframes the problem: scope your true attack surface, prioritize based on business impact and exploitability, and validate what attackers can actually do today, not once a year.

With two powerful new capabilities, Darktrace / Attack Surface Management helps organizations evolve their CTEM programs to meet the demands of today’s threat landscape. These updates make CTEM a reality, not just a strategy.

Too much data, not enough direction

Modern Attack Surface Management tools excel at discovering assets such as cloud workloads, exposed APIs, and forgotten domains. But they often fall short when it comes to prioritization. They rely on static severity scores or generic CVSS ratings, which do not reflect real-world risk or business impact.

This leaves security teams with:

  • Alert fatigue from hundreds of “critical” findings
  • Patch paralysis due to unclear prioritization
  • Blind spots around attacker intent and external targeting

CISOs need more than visibility. They need confidence in what to fix first and context to justify those decisions to stakeholders.

Evolving Attack Surface Management

Attack Surface Management (ASM) must evolve from static lists and generic severity scores to actionable intelligence that helps teams make the right decision now.

Joining the recent addition of Exploit Prediction Assessment, which debuted in late June 2025, today we’re introducing two capabilities that push ASM into that next era:

  • Exploit Prediction Assessment: Continuously validates whether top-priority exposures are actually exploitable in your environment without waiting for patch cycles or formal pen tests.  
  • Deep & Dark Web Monitoring: Extends visibility across millions of sources in the deep and dark web to detect leaked credentials linked to your confirmed domains.
  • Confidence Score: our newly developed AI classification platform will compare newly discovered assets to assets that are known to belong to your organization. The more these newly discovered assets look similar to assets that belong to your organization, the higher the score will be.

Together, these features compress the window from discovery to decision, so your team can act with precision, not panic. The result is a single solution that helps teams stay ahead of attackers without introducing new complexities.

Exploit Prediction Assessment

Traditional penetration tests are invaluable, but they’re often a snapshot of that point-in-time, are potentially disruptive, and compliance frameworks still expect them. Not to mention, when vulnerabilities are present, teams can act immediately rather than relying solely on information from CVSS scores or waiting for patch cycles.  

Unlike full pen tests which can be obtrusive and are usually done only a couple times per year, Exploit Prediction Assessment is surgical, continuous, and focused only on top issues Instead of waiting for vendor patches or the next pen‑test window. It helps confirm whether a top‑priority exposure is actually exploitable in your environment right now.  

For more information on this visit our blog: Beyond Discovery: Adding Intelligent Vulnerability Validation to Darktrace / Attack Surface Management

Deep and Dark Web Monitoring: Extending the scope

Customers have been asking for this for years, and it is finally here. Defense against the dark web. Darktrace / Attack Surface Management’s reach now spans millions of sources across the deep and dark web including forums, marketplaces, breach repositories, paste sites, and other hard‑to‑reach communities to detect leaked credentials linked to your confirmed domains.  

Monitoring is continuous, so you’re alerted as soon as evidence of compromise appears. The surface web is only a fraction of the internet, and a sizable share of risk hides beyond it. Estimates suggest the surface web represents roughly ~10% of all online content, with the rest gated or unindexed—and the TOR-accessible dark web hosts a high proportion of illicit material (a King’s College London study found ~57% of surveyed onion sites contained illicit content), underscoring why credential leakage and brand abuse often appear in places traditional monitoring doesn’t reach. Making these spaces high‑value for early warning signals when credentials or brand assets appear. Most notably, this includes your company’s reputation, assets like servers and systems, and top executives and employees at risk.

What changes for your team

Before:

  • Hundreds of findings, unclear what to start with
  • Reactive investigations triggered by incidents

After:

  • A prioritized backlog based on confidence score or exploit prediction assessment verification
  • Proactive verification of exposure with real-world risk without manual efforts

Confidence Score: Prioritize based on the use-case you care most about

What is it?

Confidence Score is a metric that expresses similarity of newly discover assets compared to the confirmed asset inventory. Several self-learning algorithms compare features of assets to be able to calculate a score.

Why it matters

Traditional Attack Surface Management tools treat all new discovery equally, making it unclear to your team how to identify the most important newly discovered assets, potentially causing you to miss a spoofing domain or shadow IT that could impact your business.

How it helps your team

We’re dividing newly discovered assets into separate insight buckets that each cover a slightly different business case.

  • Low scoring assets: to cover phishing & spoofing domains (like domain variants) that are just being registered and don't have content yet.
  • Medium scoring assets: have more similarities to your digital estate, but have better matching to HTML, brand names, keywords. Can still be phishing but probably with content.
  • High scoring assets: These look most like the rest of your confirmed digital estate, either it's phishing that needs the highest attention, or the asset belongs to your attack surface and requires asset state confirmation to enable the platform to monitor it for risks.

Smarter Exposure Management for CTEM Programs

Recent updates to Darktrace / Attack Surface Management directly advance the core phases of Continuous Threat Exposure Management (CTEM): scope, discover, prioritize, validate, and mobilize. The new Exploit Prediction Assessment helps teams validate and prioritize vulnerabilities based on real-world exploitability, while Deep & Dark Web Monitoring extends discovery into hard-to-reach areas where stolen data and credentials often surface. Together, these capabilities reduce noise, accelerate remediation, and help organizations maintain continuous visibility over their expanding attack surface.

Building on these innovations, Darktrace / Attack Surface Management empowers security teams to focus on what truly matters. By validating exploitability, it cuts through the noise of endless vulnerability lists—helping defenders concentrate on exposures that represent genuine business risk. Continuous monitoring for leaked credentials across the deep and dark web further extends visibility beyond traditional asset discovery, closing critical blind spots where attackers often operate. Crucially, these capabilities complement, not replace, existing security controls such as annual penetration tests, providing continuous, low-friction validation between formal assessments. The result is a more adaptive, resilient security posture that keeps pace with an ever-evolving threat landscape.

If you’re building or maturing a CTEM program—and want fewer open exposures, faster remediation, and better outcomes, Darktrace / Attack Surface Management’s new Exploit Prediction Assessment and Deep & Dark Web Monitoring are ready to help.

  • Want a more in-depth look at how Exploit Prediction Assessment functions? Read more here

Committed to innovation

These updates are part of the broader Darktrace release, which also included:

1. Major innovations in cloud security with the launch of the industry’s first fully automated cloud forensics solution, reinforcing Darktrace’s leadership in AI-native security.

2. Darktrace Network Endpoint eXtended Telemetry (NEXT) is revolutionizing NDR with the industry’s first mixed-telemetry agent using Self-Learning AI.

3. Improvements to our OT product, purpose built for industrial infrastructure, Darktrace / OT now brings dedicated OT dashboard, segmentation-aware risk modeling, and expanded visibility into edge assets and automation protocols.

Join our Live Launch Event

When? 

December 9, 2025

What will be covered?

Join our live broadcast to experience how Darktrace is eliminating blind spots for detection and response across your complete enterprise with new innovations in Agentic AI across our ActiveAI Security platform. Industry leaders from IDC will join Darktrace customers to discuss challenges in cross-domain security, with a live walkthrough reshaping the future of Network Detection & Response, Endpoint Detection & Response, Email Security, and SecOps in novel threat detection and autonomous investigations.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI