Blog
/
/
August 25, 2020

Emotet Resurgence: Email & Network Defense Insights

Explore how Darktrace's defense in depth strategy combats Emotet's resurgence in email and network layers, ensuring robust cybersecurity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Dan Fein
VP, Product
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Aug 2020

The Emotet banking malware first emerged in 2014, and has since undergone multiple iterations. Emotet seeks to financially profit from a range of organizations by spreading rapidly from device to device and stealing sensitive financial information.

Darktrace’s AI has detected the return of this botnet after a five month absence. The new Spamware campaign has hit multiple industries through highly sophisticated phishing emails, containing either URLs linking to the download of a macro-containing Microsoft Word document or an attachment of the document itself. This iteration uses new variants of infrastructure and malware that were unknown to threat intelligence lists – thus easily bypassing static, rule-based defenses.

In this blog post, we investigate the attack from two angles. The first documents a case where Emotet successfully infiltrated a company’s network, where it was promptly detected and alerted on by the Enterprise Immune System. We then explore two customers who had extended Darktrace’s Cyber AI coverage to the inbox. While these organizations were also targeted by this latest Emotet campaign, the malicious email containing the Emotet payload was identified and blocked by Antigena Email.

Case study one: Detecting Emotet in the network

Figure 1: A timeline of the attack

This first case study looks at a large European organization spanning multiple industries, including healthcare, pharmaceuticals, and manufacturing. Darktrace’s AI was monitoring over 2500 devices when the organization became a victim of this new wave of Emotet.

The attack entered the business via a phishing email that fell outside of Darktrace’s scope in this particular deployment, as the customer had not yet activated Antigena Email. Either a malicious link or a macro-embedded Word document in the email directed a device to the malicious payload.

Darktrace’s Enterprise Immune System witnessed SSL connections to a 100% rare external IP address, and detected a Kernel crash on the device shortly afterwards, indicating potential exploitation.

Following these actions, the desktop began to beacon to multiple external endpoints using self-signed or invalid SSL certificates. The observed endpoints had previously been associated with Trickbot C2 servers and the Emotet malware. The likely overall dwell time – that is the length of time an attacker has free reign in an environment before they are eradicated – was in this instance around 24 hours, with most of the activity taking place on July 23.

The device then made a large number of new and unusual internal connection attempts over SMB (port 445) to 97 internal devices during a one-hour period. The goal was likely lateral movement, possibly with the intention to infect other devices, download additional malware, and send out more spam emails.

Darktrace’s AI had promptly alerted the security team to the initial rare connections, but when the device attempted lateral movement it escalated the severity of the alert. The security team was able to remediate the situation before further damage was done, taking the desktop offline.

This overview of the infected device shows the extent of the anomalous behavior, with over a dozen Darktrace detections firing in quick succession.

Figure 2: A graph showing unusual activity in combination with the large number of model breaches on July 23

Figure 3: A list of all model breaches occurring over a small time on the compromised device

Case study two: Catching Emotet in the email environment

While Darktrace’s Enterprise Immune System allows us to visualize the attack within the network, Antigena Email has also identified the Emotet phishing campaign in many other customer environments and stopped the attack before the payload could be downloaded.

One European organization was hit by multiple phishing emails associated with Emotet. These emails use a number of tactics, including personalized subject lines, malicious attachments, and hidden malicious URLs. However, Darktrace’s AI recognized the emails as highly anomalous for the organization and prevented them from reaching employees’ inboxes.

Figure 4: A snapshot of Antigena Email’s user interface. The subject line reads ‘Notice of transfer.’

Despite claiming to be from CaixaBank, a Spanish financial services company, Antigena Email revealed that the email was actually sent from a Brazilian domain. The email also contained a link that was hidden behind text suggesting it would lead to a CaixaBank domain, but Darktrace recognized this as a deliberate attempt to mislead the recipient. Antigena Email is unique in its ability to gather insights from across the broader business, and it leveraged this ability to reveal that the link in fact led to a WordPress domain that Darktrace’s AI identified as 100% rare for the business. This would not have been possible without a unified security platform analyzing and comparing data across different parts of the organization.

Figure 5: The malicious links contained in the email

The three above links surfaced by Darktrace are all associated with the Emotet malware, and prompt the user to download a Word file. This document contains a macro with instructions for downloading the actual virus payload.

Another email targeting the same organization contained a header suggesting it was from Vietnam. The sender had never been in any previous correspondence across the business, and the single, isolated link within the email was also revealed to be a 100% rare domain. The website displayed when visiting the domain imitates a legitimate printing business, but appears hastily made and contained a similar malicious payload.

In both cases, Darktrace’s AI recognized these as phishing attempts due to its understanding of normal communication patterns and behavior for the business and held the emails back from the inbox, preventing Emotet from entering the next phase of the attack life cycle.

Case study three: A truly global campaign

Darktrace has seen Emotet in attacks targeting customers around the world, with one of the most recent campaigns aimed at a food production and distribution company in Japan. This customer received six Emotet emails across July 29 and July 30. The senders spoofed Japanese names and some existing Japanese companies, including Mitsubishi. Antigena Email successfully detected and actioned these emails, recognizing the spoofing indicators, ‘unspoofing’ the emails, and converting the attachments.

Figure 6: A second Emotet email targeting an organization in Japan

Revealing a phish

Both the subject line and the filename translate to “Regarding the invoice,” followed by a number and the date. The email imitated a well-known Japanese company (三菱食品(株)), with ‘藤沢 昭彦’ as a common Japanese name and the appended ‘様’ serving a similar function to ‘Sir’ or ‘Dr,’ in a clear attempt to mimic a legitimate business email.

A subsequent investigation revealed that the sender’s location was actually Portugal, and the hash values of Microsoft Word attachments were consistent with Emotet. Crucially, at the time of the attack, these file hashes were not publicly associated with any malicious behavior and so could not have been used for initial detection.

Figure 7: Antigena Email shows critical metrics revealing the true source of the email

Surfacing further key metrics behind the email, Antigena Email revealed that the true sender was using a GMO domain name. GMO is a Japanese cloud-hosting company that offers cheap web email services.

Figure 8: Antigena Email reveals the anomalous extensions and mimes

The details of the attachment show that both the extension and mime type is anomalous in comparison to documents this customer commonly exchanges by email.

Figure 9: Antigena Email detects the attempt at inducement

Antigena Email’s models are able to recognize topic anomalies and inducement attempts in emails, regardless of the language they are written in. Despite this email being written in Japanese, Darktrace’s AI was still able to reveal the attempt at inducement, giving the email a high score of 85.

Figure 10: The six successive Emotet emails

The close proximity in which these emails were sent and the fact they all contained URLs consistent with Emotet suggests that they are likely part of the same campaign. Different recipients received the emails from different senders in an attempt to bypass traditional security tools, which are trained to deny-list an individual sender once it is recognized as bad.

A defense in depth

This new campaign and the comeback of the Emotet malware has shown the need for defense in depth – or having multiple layers of security across the different areas of a business, including email, network, cloud and SaaS, and beyond.

Historically, defense in depth has led companies to adopt myriad point solutions, which can be both expensive and challenging to manage. Security leaders are increasingly abandoning point solutions in favor of a single security platform, which not only makes handling the security stack easier and more efficient, but creates synergies between different parts of the platform. Data can be analyzed across different sources and insights drawn from different areas of the organization, helping detect sophisticated attacks that might attempt to exploit a business’ siloed approach to security.

A single platform ultimately reduces the friction for security teams while allowing for effective, company-wide incident investigation. And when a platform approach leverages AI to understand normal behavior rather than looking for ‘known bad’, it can detect unknown and emerging threats – and help prevent damage from being done.

Thanks to Darktrace analyst Beverly McCann for her insights on the above threat find.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Written by
Dan Fein
VP, Product

More in this series

No items found.

Blog

/

Network

/

November 26, 2025

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery System

CastleLoader & CastleRAT: Behind TAG150’s Modular Malware Delivery SystemDefault blog imageDefault blog image

What is TAG-150?

TAG-150, a relatively new Malware-as-a-Service (MaaS) operator, has been active since March 2025, demonstrating rapid development and an expansive, evolving infrastructure designed to support its malicious operations. The group employs two custom malware families, CastleLoader and CastleRAT, to compromise target systems, with a primary focus on the United States [1]. TAG-150’s infrastructure included numerous victim-facing components, such as IP addresses and domains functioning as command-and-control (C2) servers associated with malware families like SecTopRAT and WarmCookie, in addition to CastleLoader and CastleRAT [2].

As of May 2025, CastleLoader alone had infected a reported 469 devices, underscoring the scale and sophistication of TAG-150’s campaign [1].

What are CastleLoader and CastleRAT?

CastleLoader is a loader malware, primarily designed to download and install additional malware, enabling chain infections across compromised systems [3]. TAG-150 employs a technique known as ClickFix, which uses deceptive domains that mimic document verification systems or browser update notifications to trick victims into executing malicious scripts. Furthermore, CastleLoader leverages fake GitHub repositories that impersonate legitimate tools as a distribution method, luring unsuspecting users into downloading and installing malware on their devices [4].

CastleRAT, meanwhile, is a remote access trojan (RAT) that serves as one of the primary payloads delivered by CastleLoader. Once deployed, CastleRAT grants attackers extensive control over the compromised system, enabling capabilities such as keylogging, screen capturing, and remote shell access.

TAG-150 leverages CastleLoader as its initial delivery mechanism, with CastleRAT acting as the main payload. This two-stage attack strategy enhances the resilience and effectiveness of their operations by separating the initial infection vector from the final payload deployment.

How are they deployed?

Castleloader uses code-obfuscation methods such as dead-code insertion and packing to hinder both static and dynamic analysis. After the payload is unpacked, it connects to its command-and-control server to retrieve and running additional, targeted components.

Its modular architecture enables it to function both as a delivery mechanism and a staging utility, allowing threat actors to decouple the initial infection from payload deployment. CastleLoader typically delivers its payloads as Portable Executables (PEs) containing embedded shellcode. This shellcode activates the loader’s core module, which then connects to the C2 server to retrieve and execute the next-stage malware.[6]

Following this, attackers deploy the ClickFix technique, impersonating legitimate software distribution platforms like Google Meet or browser update notifications. These deceptive sites trick victims into copying and executing PowerShell commands, thereby initiating the infection kill chain. [1]

When a user clicks on a spoofed Cloudflare “Verification Stepprompt, a background request is sent to a PHP script on the distribution domain (e.g., /s.php?an=0). The server’s response is then automatically copied to the user’s clipboard using the ‘unsecuredCopyToClipboard()’ function. [7].

The Python-based variant of CastleRAT, known as “PyNightShade,” has been engineered with stealth in mind, showing minimal detection across antivirus platforms [2]. As illustrated in Figure 1, PyNightShade communicates with the geolocation API service ip-api[.]com, demonstrating both request and response behavior

Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.
Figure 1: Packet Capture (PCAP) of PyNightShade, the Python-based variant of CastleRAT, communicating with the geolocation API service ip-api[.]com.

Darktrace Coverage

In mid-2025, Darktrace observed a range of anomalous activities across its customer base that appeared linked to CastleLoader, including the example below from a US based organization.

The activity began on June 26, when a device on the customer’s network was observed connecting to the IP address 173.44.141[.]89, a previously unseen IP for this network along with the use of multiple user agents, which was also rare for the user.  It was later determined that the IP address was a known indicator of compromise (IoC) associated with TAG-150’s CastleRAT and CastleLoader operations [2][5].

Figure 2: Darktrace’s detection of a device making unusual connections to the malicious endpoint 173.44.141[.]89.

The device was observed downloading two scripts from this endpoint, namely ‘/service/download/data_5x.bin’ and ‘/service/download/data_6x.bin’, which have both been linked to CastleLoader infections by open-source intelligence (OSINT) [8]. The archives contains embedded shellcode, which enables attackers to execute arbitrary code directly in memory, bypassing disk writes and making detection by endpoint detection and response (EDR) tools significantly more difficult [2].

 Darktrace’s detection of two scripts from the malicious endpoint.
Figure 3: Darktrace’s detection of two scripts from the malicious endpoint.

In addition to this, the affected device exhibited a high volume of internal connections to a broad range of endpoints, indicating potential scanning activity. Such behavior is often associated with reconnaissance efforts aimed at mapping internal infrastructure.

Darktrace / NETWORK correlated these behaviors and generated an Enhanced Monitoring model, a high-fidelity security model designed to detect activity consistent with the early stages of an attack. These high-priority models are continuously monitored and triaged by Darktrace’s Security Operations Center (SOC) as part of the Managed Threat Detection and Managed Detection & Response services, ensuring that subscribed customers are promptly alerted to emerging threats.

Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.
Figure 4: Darktrace detected an unusual ZIP file download alongside the anomalous script, followed by internal connectivity. This activity was correlated under an Enhanced Monitoring model.

Darktrace Autonomous Response

Fortunately, Darktrace’s Autonomous Response capability was fully configured, enabling it to take immediate action against the offending device by blocking any further connections external to the malicious endpoint, 173.44.141[.]89. Additionally, Darktrace enforced a ‘group pattern of life’ on the device, restricting its behavior to match other devices in its peer group, ensuring it could not deviate from expected activity, while also blocking connections over 443, shutting down any unwanted internal scanning.

Figure 5: Actions performed by Darktrace’s Autonomous Response to contain the ongoing attack.

Conclusion

The rise of the MaaS ecosystem, coupled with attackers’ growing ability to customize tools and techniques for specific targets, is making intrusion prevention increasingly challenging for security teams. Many threat actors now leverage modular toolkits, dynamic infrastructure, and tailored payloads to evade static defenses and exploit even minor visibility gaps. In this instance, Darktrace demonstrated its capability to counter these evolving tactics by identifying early-stage attack chain behaviors such as network scanning and the initial infection attempt. Autonomous Response then blocked the CastleLoader IP delivering the malicious ZIP payload, halting the attack before escalation and protecting the organization from a potentially damaging multi-stage compromise

Credit to Ahmed Gardezi (Cyber Analyst) Tyler Rhea (Senior Cyber Analyst)
Edited by Ryan Traill (Analyst Content Lead)

Appendices

Darktrace Model Detections

  • Anomalous Connection / Unusual Internal Connections
  • Anomalous File / Zip or Gzip from Rare External Location
  • Anomalous File / Script from Rare External Location
  • Initial Attack Chain Activity (Enhanced Monitoring Model)

MITRE ATT&CK Mapping

  • T15588.001 - Resource Development – Malware
  • TG1599 – Defence Evasion – Network Boundary Bridging
  • T1046 – Discovery – Network Service Scanning
  • T1189 – Initial Access

List of IoCs
IoC - Type - Description + Confidence

  • 173.44.141[.]89 – IP – CastleLoader C2 Infrastructure
  • 173.44.141[.]89/service/download/data_5x.bin – URI – CastleLoader Script
  • 173.44.141[.]89/service/download/data_6x.bin – URI  - CastleLoader Script
  • wsc.zip – ZIP file – Possible Payload

References

[1] - https://blog.polyswarm.io/castleloader

[2] - https://www.recordedfuture.com/research/from-castleloader-to-castlerat-tag-150-advances-operations

[3] - https://www.pcrisk.com/removal-guides/34160-castleloader-malware

[4] - https://www.scworld.com/brief/malware-loader-castleloader-targets-devices-via-fake-github-clickfix-phishing

[5] https://www.virustotal.com/gui/ip-address/173.44.141.89/community

[6] https://thehackernews.com/2025/07/castleloader-malware-infects-469.html

[7] https://www.cryptika.com/new-castleloader-attack-using-cloudflare-themed-clickfix-technique-to-infect-windows-computers/

[8] https://www.cryptika.com/castlebot-malware-as-a-service-deploys-range-of-payloads-linked-to-ransomware-attacks/

Continue reading
About the author

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Your data. Our AI.
Elevate your network security with Darktrace AI