Blog
/
/
July 11, 2024

GuLoader: Evolving Tactics in Latest Campaign Targeting European Industry

Cado Security Labs identified a GuLoader campaign targeting European industrial companies via spearphishing emails with compressed batch files. This malware uses obfuscated PowerShell scripts and shellcode with anti-debugging techniques to establish persistence and inject into legitimate processes, to deliver Remote Access Trojans. GuLoader's ongoing evolution highlights the need for robust security.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
Jul 2024

Introduction: GuLoader

Researchers from Cado Security Labs (now part of Darktrace) recently discovered a  campaign targeting European industrial and engineering companies. GuLoader is an evasive shellcode downloader used to deliver Remote Access Trojans (RAT) that has been used by threat actors since 2019 and continues to advance. 

Figure 1

Initial access

Cado identified a number of spearphishing emails sent to electronic manufacturing, engineering and industrial companies in European countries including Romania, Poland, Germany and Kazakhstan. The emails typically include order inquiries and contain an archive file attachment (iso, 7z, gzip, rar). The emails are sent from various email addresses including from fake companies and compromised accounts. The emails typically hijack an existing email thread or request information about an order. 

PowerShell  

The first stage of GuLoader is a batch file that is compressed in the archive from the email attachment. As shown in Image 2, the batch file contains an obfuscated PowerShell script, which is done to evade detection.

Batch file
Figure 2: Obfuscated PowerShell

The obfuscated script contains strings that are deobfuscated through a function “Boendes” (in this sample) that contains a for loop that takes every fifth character, with the rest of the characters being junk. After deobfuscating, the functionality of the script is clearer. These values can be retrieved by debugging the script, however deobfuscating with Script 1 in the Scripts section, makes it easier to read for static analysis.

Deobfuscated Powershell
Figure 3 - Deobfuscated PowerShell

This Powershell script contains the function “Aromastofs” that is used to invoke the provided expressions. A secondary file is downloaded from careerfinder[.]ro and saved as “Knighting.Pro” in the user’s AppData/Roaming folder. The content retrieved from “Kighting.Pro” is decoded from Base64, converted to ASCII and selected from position 324537, with the length 29555. This is stored as “$Nongalactic” and contains more Powershell. 

Second Powershell script
Figure 4 - Second PowerShell script
Deobfuscated Secondary Powershell
Figure 5 - Deobfuscated Secondary PowerShell

As seen in Image 5, the secondary PowerShell is obfuscated in the same manner as before with the function “Boendes”. The script begins with checking which PowerShell is being used 32 or 64 bit. If 64 bit is in use, a 32 bit PowerShell process is spawned to execute the script, and to enable 32 bit processes later in the chain. 

The function named “Brevsprkkernes” is a secondary obfuscation function. The function takes the obfuscated hex string, converts to a byte array, applies XOR with a key of 173 and converts to ASCII. This obfuscation is used to evade detection and analysis more difficult. Again, these values can be retrieved with debugging; however for readability, using Script 2 in the Scripts section makes it easier to read. 

Obfuscated Hex Strings
Figure 6: Obfuscated Hex Strings
Deobfuscated PowersShell Strings
Figure 7 - Deobfuscated PowerShell Strings
Deobfuscated Process Injection
Figure 8: Deobfuscated Process Injection

The second PowerShell script contains functionality to allocate memory via VirtualAlloc and to execute shellcode. VirtualAlloc is a native Windows API function that allows programs to allocate, reserve, or commit memory in a specified process. Threat actors commonly use VirtualAlloc to allocate memory for malicious code execution, making it harder for security solutions to detect or prevent code injection. The variable “$Bakteriekulturs” contains the bytes that were stored in “AppData/Roaming/Knighting.Pro” and converted from Base64 in the first part of the PowerShell Script. Marshall::Copy is used to copy the first 657 bytes of that file, which is the first shellcode. Marshall.Copy is a method that enables the transfer of data between unmanaged memory and managed arrays, allowing data exchange between managed and unmanaged code. Marshal.Copy is typically abused to inject or manipulate malicious payloads in memory, bypassing traditional detection by directly accessing and modifying memory regions used by applications. Marshall::Copy is used again to copy bytes 657 to 323880 as a second shellcode. 

First Shellcode
Figure 9: First Shellcode

The first shellcode includes multiple anti-debugging techniques that make static and dynamic analysis difficult. There have been multiple evolutions of GuLoader’s evasive techniques that have been documented [1]. The main functionality of the first shellcode is to load and decrypt the second shellcode. The second shellcode adds the original PowerShell script as a Registry Key “Mannas” in HKCU/Software/Procentagiveless for persistence, with the path to PowerShell 32 bit executable stored as “Frenetic” in HKCU\Environment; however, these values change per sample. 

Registry Key created for PowerShell Script
Figure 10 - Registry Key created for PowerShell Script
PowerShell bit added to Registry
Figure 11 - PowerShell 32 bit added to Registry

The second shellcode is injected into the legitimate “msiexec.exe” process and appears to be reaching out to a domain to retrieve an additional payload, however at the time of analysis this request returns a 404. Based on previous research of GuLoader, the final payload is usually a RAT including Remcos, NetWire, and AgentTesla.[2]

msiexec abused to retrieve additional payload
Figure 12  - msiexec abused to retrieve additional payload

Key Takeaway

Guloader malware continues to adapt its techniques to evade detection to deliver RATs. Threat actors are continually targeting specific industries in certain countries. Its resilience highlights the need for proactive security measures. To counter Guloader and other threats, organizations must stay vigilant and employ a robust security plan.

Scripts

Script 1 to deobfuscate junk characters 

import re 
import argparse 
import os 
 
def deobfuscate_powershell(input_file, output_file): 
  try: 
      with open(input_file, 'r', encoding='utf-8') as f: 
          text = f.read() 
 
      function_name_match = re.search(r"function\s+(\w+)\s*\(", text) 
      if not function_name_match: 
          print("Could not find the obfuscation function name in the file.") 
          return 
      
      function_name = function_name_match.group(1) 
      print(f"Detected obfuscation function name: {function_name}") 
 
      obfuscated_pattern = rf"(?<={function_name} ')(.*?)(?=')" 
      matches = re.findall(obfuscated_pattern, text) 
 
      for match in matches: 
          deobfuscated = match[4::5] 
          full_obfuscated_call = f"{function_name} '{match}'" 
          text = text.replace(full_obfuscated_call, deobfuscated) 
 
      with open(output_file, 'w', encoding='utf-8') as f: 
          f.write(text) 
 
      print(f"Deobfuscation complete. Output saved to {output_file}") 
 
  except Exception as e: 
      print(f"An error occurred!: {e}") 
 
if __name__ == "__main__": 
  parser = argparse.ArgumentParser(description="Deobfuscate an obfuscated PowerShell file.") 
  parser.add_argument("input_file", help="Path to the obfuscated PowerShell file.") 
  parser.add_argument("output_file", nargs='?', help="Path to save the deobfuscated file. Default is 'deobfuscated_powershell.ps1' in the same directory.", default=None) 
 
  args = parser.parse_args() 
 
  if args.output_file is None: 
      output_file = os.path.splitext(args.input_file)[0] + "_deobfuscated.ps1" 
  else: 
      output_file = args.output_file 
 
  deobfuscate_powershell(args.input_file, output_file) 

Script 2 to deobfuscate hex strings obfuscation (note this will need values changed based on sample)

import re 
import argparse 
 
def brevsprkkernes(spackle): 
  if not all(c in'0123456789abcdefABCDEF'for c in spackle): 
      return f"Invalid hex: {spackle}" 
  paronomasian = 2 
  polyurethane = bytearray(len(spackle) // 2) 
 
  for forstyrrets in range(0, len(spackle), paronomasian): 
      try: 
          polyurethane[forstyrrets // 2] = int(spackle[forstyrrets:forstyrrets + 2], 16) 
          polyurethane[forstyrrets // paronomasian] ^= 173 
      except ValueError: 
          return f"Error processing hex: {spackle}" 
 
  return polyurethane.decode('ascii', errors='ignore') 
 
def process_file(input_file, output_file): 
  with open(input_file, 'r') as infile: 
      content = infile.read() 
 
  def replace_function(match): 
      hex_string = match.group(1).strip() 
      result = brevsprkkernes(hex_string) 
      return f"Brevsprkkernes '{result}'" 
 
  updated_content = re.sub(r"Brevsprkkernes\s*['\"]?([0-9A-Fa-f]+)['\"]?", replace_function, content) 
 
  with open(output_file, 'w') as outfile: 
      outfile.write(updated_content) 
 
if __name__ == "__main__": 
  parser = argparse.ArgumentParser(description="Process a PowerShell file and replace hex strings.") 
  parser.add_argument("input_file", help="Path to the input file.") 
  parser.add_argument("output_file", help="Path to save the deobufuscated file.") 
  args = parser.parse_args() 
 
  process_file(args.input_file, args.output_file) 

Indicators of compromise (IoCs)

GuLoader scripts

ZW_PCCE-010023024001.bat  36a9a24404963678edab15248ca95a4065bdc6a84e32fcb7a2387c3198641374  

ORDER_1ST.bat  26500af5772702324f07c58b04ff703958e7e0b57493276ba91c8fa87b7794ff  

IMG465244247443 GULF ORDER Opmagasinering.cmd  40b46bae5cca53c55f7b7f941b0a02aeb5ef5150d9eff7258c48f92de5435216  

EXSP 5634 HISP9005 ST MSDS DOKUME74247linierelet.bat  e0d9ebe414aca4f6d28b0f1631a969f9190b6fb2cf5599b99ccfc6b7916ed8b3  

LTEXSP 5634 HISP9005 ST MSDS DOKUME74247liniereletbrunkagerne.bat 4c697bdcbe64036ba8a79e587462960e856a37e3b8c94f9b3e7875aeb2f91959  

Quotation_final_buy_order_list_2024_po_nos_ART125673211020240000000000024.bat661f5870a5d8675719b95f123fa27c46bfcedd45001ce3479a9252b653940540  

MEC20241022001.bat  33ed102236533c8b01a224bd5ffb220cecc32900285d2984d4e41803f1b2b58d  

nMEC20241022001.iso  9617fa7894af55085e09a06b1b91488af37b8159b22616dfd5c74e6b9a081739  

Gescanneerde lijst met artikelen nr. 654398.bat  f5feabf1c367774dc162c3e29b88bf32e48b997a318e8dd03a081d7bfe6d3eb5  

DHL_Shipping_Invoices_Awb_BL_000000000102220242247820020031808174Global180030010222024.cmd f78319fcb16312d69c6d2e42689254dff3cb875315f7b2111f5c3d2b4947ab50  

Order Confirmation.bat  949cdd89ed5fb2da03c53b0e724a4d97c898c62995e03c48cbd8456502e39e57  

SKM_0001810-01-2024-GL-3762.bat  9493ad437ea4b55629ee0a8d18141977c2632de42349a995730112727549f40e  

21102024_0029_18102024_SKM_0001810-01-2024-GL-3762.iso  535dd8d9554487f66050e2f751c9f9681dadae795120bb33c3db9f71aafb472c  

\Device\CdRom1\MARSS-FILTRY_ZW015010024.BAT  e5ebe4d8925853fc1f233a5a6f7aa29fd8a7fa3a8ad27471c7d525a70f4461b6  

Myologist.cmd  51244e77587847280079e7db8cfdff143a16772fb465285b9098558b266c6b3f  

SKU_0001710-1-2024-SX-3762.bat  643cd5ba1ac50f5aa2a4c852b902152ffc61916dc39bd162f20283a0ecef39fe  

Stamcafeernes.cmd  54b8b9c01ce6f58eb6314c67f3acb32d7c3c96e70c10b9d35effabb7e227952e  

C:\Users\user\AppData\Local\Temp\j4phhdbc.lti\Bank details Form.bat  c1f810194395ff53044e3ef87829f6dff63a283c568be4a83088483b6c043ec8  

SKGCRO COMANDA FAB SRL M60_647746748846748347474.bat  8dd5fd174ee703a43ab5084fdaba84d074152e46b84d588bf63f9d5cd2f673d1  

DHL_Shipping_Invoices_Awb_BL_000000000101620242247820020031808174Global180030010162024.bat bde5f995304e327d522291bf9886c987223a51a299b80ab62229fcc5e9d09f62  

Ciwies.cmd  b1be65efa06eb610ae0426ba7ac7f534dcb3090cd763dc8642ca0ede7a339ce7  

Zamówienie Agotech Begyndelsesord.cmd  18c0a772f0142bc8e5fb0c8931c0ba4c9e680ff97d7ceb8c496f68dea376f9da  

SKM_0001810-01-2024-GL-3762.iso  4a4c0918bdacd60e792a814ddacc5dc7edb83644268611313cb9b453991ac628  

C:\Users\user\AppData\Local\Temp\Stemmeslugerens.bat  8bedbdaa09eefac7845278d83a08b17249913e484575be3a9c61cf6c70837fd2  

Agotech Zamówienie Fjeldkammes325545235562377.bat  ff6c4c8d899df66b551c84124e73c1f3ffa04a4d348940f983cf73b2709895d3  

Agotech Zamówienie Fjeldkammes3255452355623.bat  f3e046a7769b9c977053dd32ebc1b0e1bbfe3c61789d2b8d54e51083c3d0bed5  

SKU_0001710-1-2024-SX-3762.iso  0546b035a94953d33a5c6d04bdc9521b49b2a98a51d38481b1f35667f5449326  

SKU_0001710-1-2024-SX-3762.bat  4f1b5d4bb6d0a7227948fb7ebb7765f3eb4b26288b52356453b74ea530111520  

DOKUMENTEN_TOBIAS.bat  038113f802ef095d8036e86e5c6b2cb8bc1529e18f34828bcf5f99b4cc012d6a  

IMEG238668289485293885823085802835025Urfjeld.bat  6977043d30d8c1c5024669115590b8fd154905e01ab1f2832b2408d1dc811164  

SKM_C250i24100408500.iso  6370cbcb1ac3941321f93dd0939d5daba0658fb8c85c732a6022cc0ec8f0f082  

SKU_0001710-1-2024-SX-3762.iso  7f06382b781a8ba0d3f46614f8463f8857f0ade67e0f77606b8d918909ad37c2  

\Device\CdRom1\ORDINE ELECTRICAS BC CORP PO EDC0969388.BAT  e98fa3828fa02209415640c41194875c1496bc6f0ca15902479b012243d37c47  

Quote Request #2359 Bogota.msg  0f0dfe8c5085924e5ab722fa01ea182569872532a6162547a2e87a1d2780f902  

ORDER.1ST.bat  48dca5f3a12d3952531b05b556c30accafbf9a3c6cda3ec517e4700d5845ab61  

Fortryl105.cmd  f43b78e4dc3cba2ee9c6f0f764f97841c43419059691d670ca930ce84fb7143b  

SMX-0002607-1-2024-UP-3762.iso  a60dbbe88a1c4857f009a3c06a2641332d41dfd89726dd5f2c6e500f7b25b751

Quotation_final_buy_order_list_2024_po_nos_ART1256731610202400000000000.cmd efd80337104f2acde5c8f3820549110ad40f1aa9b494da9a356938103bda82e7

a60dbbe88a1c4857f009a3c06a2641332d41dfd89726dd5f2c6e500f7b25b751.iso 0327db7b754a16a7ae29265e7d8daed7a1caa4920d5151d779e96cd1536f2fbe  

MARSS-FILTRY_ZW015010024.iso c415127bde80302a851240a169fff0592e864d2f93e9a21c7fd775fdb4788145

SKM_C250i24100408500.bat 36c464519a4cce8d0fcdb22a8974923fd51d915075eba9e62ade54a9c396844d  

UPM-0002607-1-2024-UP-3762.iso  e9fc754844df1a7196a001ac3dfbcf28b80397a718a3ceb8d397378a6375ff62  

Comanda KOMARON TRADE SRL 435635Lukketid.bat 1bf09bcb5bfa440fc6ce5c1d3f310fb274737248bf9acdd28bea98c9163a745a  

311861751714730477170144.bat f87448d722e160584e40feaad0769e170056a21588679094f7d58879cdb23623  

Estimate_buy_product_purchase_order_import_list_10_10_2024_000000101024.cmd f20670ed0cdc2d9a2a75884548e6e6a3857bbf66cfbfb4afe04a3354da9067c9  

PAYMENT TERM.bat 4c90504c86f1e77b0a75a1c7408adf1144f2a0e3661c20f2bf28d168e3408429  

Arbitrre.cmd  8ef4cb5ad7d5053c031690b9d04d64ba5d0d90f7bf8ba5e74cb169b5388e92c5  

KZЗапрос продукта SKM_32532667622352352Arvehygiejnikernes.bat 4ddd3369a51621b0009b6d993126fcb74b52e72f8cacd71fcbc401cda03108cb  

Order_AP568.bat fda4e04894089be87f520144d8a6141074d63d33b29beb28fd042b0ecc06fbbc  

C:\Users\user\Documents\ConnectWiseControl\Temp\Blodprocenternes.cmd e5f5d9855be34b44ad4c9b1c5722d1a6dff2f4a6878a874df1209d813aea7094  

Productivenesses.cmd a7268e906b86f7c1bb926278bf88811cb12189de0db42616e5bbb3dc426a4ef5  

Doktriner.cmd 74d468acd0493a6c5d72387c8e225cc0243ae1a331cd1e2d38f75ed8812347dd  

final_buy_product_purchase_order_import_list_11_10_2024_000000111024.cmd a2127d63bc0204c17d4657e5ae6930cab6ab33ae3e65b82e285a8757f39c4da9  

ORDER_U769.bat b45d9b5dbe09b2ca45d66432925842b0f698c9d269d3c7b5148cc26bdc2a92d0  

Beschwerde-Rechtsanwalt.bat 229c4ce294708561801b16eed5a155c8cfe8c965ea99ac3cfb4717a35a1492f3  

upit nr5634 10_08_2024.cmd 5854d9536371389fb0f1152ebc1479266d36ec4e06b174619502a6db1b593d71  

C:\Users\user\AppData\Local\Temp\Doktriner.cmd 140dcb39308d044e3e90610c65a08e0abc6a3ac22f0c9797971f0c652bb29add  

Fedtsyresammenstning.cmd 0b1c44b202ede2e731b2d9ee64c2ce333764fbff17273af831576a09fc9debfa  

HENIKENPLANT PROJECT PROPOSAL BID_24-0976·pdf.cmd 31a72d94b14bf63b07d66d023ced28092b9253c92b6e68397469d092c2ffb4a6  

MAIN ORDER.bat 85d1877ceda7c04125ca6383228ee158062301ae2b4e4a4a698ef8ed94165c7c  

Narudzba ACH0036173.bat 8d7324d66484383eba389bc2a8a6d4e9c4cb68bfec45d887b7766573a306af68  

Sludger.cmd 45b7b8772d9fe59d7df359468e3510df1c914af41bd122eeb5a408d045399a14  

Glasmester.bat b0e69f895f7b0bc859df7536d78c2983d7ed0ac1d66c243f44793e57d346049d  

PERMINTAAN ANGGARAN (Universitas IPB) ID177888·pdf.cmd 09a3bb4be0a502684bd37135a9e2cbaa3ea0140a208af680f7019811b37d28d6  

C:\Users\user\Documents\ConnectWiseControl\Temp\Bidcock.cmd 0996e7b37e8b41ff0799996dd96b5a72e8237d746c81e02278d84aa4e7e8534e  

PO++380.101483.bat a9af33c8a9050ee6d9fe8ce79d734d7f28ebf36f31ad8ee109f9e3f992a8d110  

Network IOCs

91[.]109.20.161

137[.]184.191.215

185[.]248.196.6

hxxps://filedn[.]com/lK8iuOs2ybqy4Dz6sat9kSz/Frihandelsaftalen40.fla

hxxps://careerfinder[.]ro/vn/Traurigheder[.]sea

hxxp://inversionesevza[.]com/wp-includes/blocks_/Dekupere.pcz

hxxps://rareseeds[.]zendesk[.]com/attachments/token/G9SQnykXWFAnrmBcy8MzhciEs/?name=PO++380.101483.bat

Detection

Yara rule

rule GuLoader_Obfuscated_Powershell 
{ 
   meta: 
       description = "Detects Obfuscated GuLoader Powershell Scripts" 
       author = "tgould@cadosecurity.com" 
       date = "2024-10-14" 
   strings: 
      $hidden_window = { 7374617274202f6d696e20706f7765727368656c6c2e657865202d77696e646f777374796c652068696464656e2022 } 
      $for_loop = /for\s*\(\s*\$[a-zA-Z0-9_]+\s*=\s*\d+;\s*\$[a-zA-Z0-9_]+\s*-lt\s*\$[a-zA-Z0-9_]+\s*;\s*\$[a-zA-Z0-9_]+\s*\+=\s*\d+\s*\)/ 
   condition: 
      $for_loop and $hidden_window 

MITRE ATT&CK

T1566.001  Phishing: Malicious Attachment  

T1055 Process Injection  

T1204.002  User Execution: Malicious File  

T1547.001  Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder  

T1140  Deobfuscate/Decode Files or Information  

T1622  Debugger Evasion  

T1001.001  Junk Code  

T1105  Ingress Tool Transfer  

T1059.001  Command and Scripting Interpreter: Powershell  

T1497.003  Virtualization/Sandbox Evasion: Time Based Evasion  

T1071.001  Application Layer Protocol: Web Protocols

References:

[1] https://www.crowdstrike.com/en-us/blog/guloader-dissection-reveals-new-anti-analysis-techniques-and-code-injection-redundancy/  

[2] https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/guloader-malware/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Tara Gould
Threat Researcher

More in this series

No items found.

Blog

/

OT

/

November 20, 2025

Managing OT Remote Access with Zero Trust Control & AI Driven Detection

managing OT remote access with zero trust control and ai driven detectionDefault blog imageDefault blog image

The shift toward IT-OT convergence

Recently, industrial environments have become more connected and dependent on external collaboration. As a result, truly air-gapped OT systems have become less of a reality, especially when working with OEM-managed assets, legacy equipment requiring remote diagnostics, or third-party integrators who routinely connect in.

This convergence, whether it’s driven by digital transformation mandates or operational efficiency goals, are making OT environments more connected, more automated, and more intertwined with IT systems. While this convergence opens new possibilities, it also exposes the environment to risks that traditional OT architectures were never designed to withstand.

The modernization gap and why visibility alone isn’t enough

The push toward modernization has introduced new technology into industrial environments, creating convergence between IT and OT environments, and resulting in a lack of visibility. However, regaining that visibility is just a starting point. Visibility only tells you what is connected, not how access should be governed. And this is where the divide between IT and OT becomes unavoidable.

Security strategies that work well in IT often fall short in OT, where even small missteps can lead to environmental risk, safety incidents, or costly disruptions. Add in mounting regulatory pressure to enforce secure access, enforce segmentation, and demonstrate accountability, and it becomes clear: visibility alone is no longer sufficient. What industrial environments need now is precision. They need control. And they need to implement both without interrupting operations. All this requires identity-based access controls, real-time session oversight, and continuous behavioral detection.

The risk of unmonitored remote access

This risk becomes most evident during critical moments, such as when an OEM needs urgent access to troubleshoot a malfunctioning asset.

Under that time pressure, access is often provisioned quickly with minimal verification, bypassing established processes. Once inside, there’s little to no real-time oversight of user actions whether they’re executing commands, changing configurations, or moving laterally across the network. These actions typically go unlogged or unnoticed until something breaks. At that point, teams are stuck piecing together fragmented logs or post-incident forensics, with no clear line of accountability.  

In environments where uptime is critical and safety is non-negotiable, this level of uncertainty simply isn’t sustainable.

The visibility gap: Who’s doing what, and when?

The fundamental issue we encounter is the disconnect between who has access and what they are doing with it.  

Traditional access management tools may validate credentials and restrict entry points, but they rarely provide real-time visibility into in-session activity. Even fewer can distinguish between expected vendor behavior and subtle signs of compromise, misuse or misconfiguration.  

As a result, OT and security teams are often left blind to the most critical part of the puzzle, intent and behavior.

Closing the gaps with zero trust controls and AI‑driven detection

Managing remote access in OT is no longer just about granting a connection, it’s about enforcing strict access parameters while continuously monitoring for abnormal behavior. This requires a two-pronged approach: precision access control, and intelligent, real-time detection.

Zero Trust access controls provide the foundation. By enforcing identity-based, just-in-time permissions, OT environments can ensure that vendors and remote users only access the systems they’re explicitly authorized to interact with, and only for the time they need. These controls should be granular enough to limit access down to specific devices, commands, or functions. By applying these principles consistently across the Purdue Model, organizations can eliminate reliance on catch-all VPN tunnels, jump servers, and brittle firewall exceptions that expose the environment to excess risk.

Access control is only one part of the equation

Darktrace / OT complements zero trust controls with continuous, AI-driven behavioral detection. Rather than relying on static rules or pre-defined signatures, Darktrace uses Self-Learning AI to build a live, evolving understanding of what’s “normal” in the environment, across every device, protocol, and user. This enables real-time detection of subtle misconfigurations, credential misuse, or lateral movement as they happen, not after the fact.

By correlating user identity and session activity with behavioral analytics, Darktrace gives organizations the full picture: who accessed which system, what actions they performed, how those actions compared to historical norms, and whether any deviations occurred. It eliminates guesswork around remote access sessions and replaces it with clear, contextual insight.

Importantly, Darktrace distinguishes between operational noise and true cyber-relevant anomalies. Unlike other tools that lump everything, from CVE alerts to routine activity, into a single stream, Darktrace separates legitimate remote access behavior from potential misuse or abuse. This means organizations can both audit access from a compliance standpoint and be confident that if a session is ever exploited, the misuse will be surfaced as a high-fidelity, cyber-relevant alert. This approach serves as a compensating control, ensuring that even if access is overextended or misused, the behavior is still visible and actionable.

If a session deviates from learned baselines, such as an unusual command sequence, new lateral movement path, or activity outside of scheduled hours, Darktrace can flag it immediately. These insights can be used to trigger manual investigation or automated enforcement actions, such as access revocation or session isolation, depending on policy.

This layered approach enables real-time decision-making, supports uninterrupted operations, and delivers complete accountability for all remote activity, without slowing down critical work or disrupting industrial workflows.

Where Zero Trust Access Meets AI‑Driven Oversight:

  • Granular Access Enforcement: Role-based, just-in-time access that aligns with Zero Trust principles and meets compliance expectations.
  • Context-Enriched Threat Detection: Self-Learning AI detects anomalous OT behavior in real time and ties threats to access events and user activity.
  • Automated Session Oversight: Behavioral anomalies can trigger alerting or automated controls, reducing time-to-contain while preserving uptime.
  • Full Visibility Across Purdue Layers: Correlated data connects remote access events with device-level behavior, spanning IT and OT layers.
  • Scalable, Passive Monitoring: Passive behavioral learning enables coverage across legacy systems and air-gapped environments, no signatures, agents, or intrusive scans required.

Complete security without compromise

We no longer have to choose between operational agility and security control, or between visibility and simplicity. A Zero Trust approach, reinforced by real-time AI detection, enables secure remote access that is both permission-aware and behavior-aware, tailored to the realities of industrial operations and scalable across diverse environments.

Because when it comes to protecting critical infrastructure, access without detection is a risk and detection without access control is incomplete.

Continue reading
About the author
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

Blog

/

Network

/

November 21, 2025

Xillen Stealer Updates to Version 5 to Evade AI Detection

xillen stealer updates to version 5 to evade ai detectionDefault blog imageDefault blog image

Introduction

Python-based information stealer “Xillen Stealer” has recently released versions 4 and 5, expanding its targeting and functionality. The cross-platform infostealer, originally reported by Cyfirma in September 2025, targets sensitive data including credentials, cryptocurrency wallets, system information, browser data and employs anti-analysis techniques.  

The update to v4/v5 includes significantly more functionality, including:

  • Persistence
  • Ability to steal credentials from password managers, social media accounts, browser data (history, cookies and passwords) from over 100 browsers, cryptocurrency from over 70 wallets
  • Kubernetes configs and secrets
  • Docker scanning
  • Encryption
  • Polymorphism
  • System hooks
  • Peer-to-Peer (P2P) Command-and-Control (C2)
  • Single Sign-On (SSO) collector
  • Time-Based One-Time Passwords (TOTP) and biometric collection
  • EDR bypass
  • AI evasion
  • Interceptor for Two-Factor Authentication (2FA)
  • IoT scanning
  • Data exfiltration via Cloud APIs

Xillen Stealer is marketed on Telegram, with different licenses available for purchase. Users who deploy the malware have access to a professional-looking GUI that enables them to view exfiltrated data, logs, infections, configurations and subscription information.

Screenshot of the Xillen Stealer portal.
Figure 1: Screenshot of the Xillen Stealer portal.

Technical analysis

The following technical analysis examines some of the interesting functions of Xillen Stealer v4 and v5. The main functionality of Xillen Stealer is to steal cryptocurrency, credentials, system information, and account information from a range of stores.

Xillen Stealer specifically targets the following wallets and browsers:

AITargetDectection

Screenshot of Xillen Stealer’s AI Target detection function.
Figure 2: Screenshot of Xillen Stealer’s AI Target detection function.

The ‘AITargetDetection’ class is intended to use AI to detect high-value targets based on weighted indicators and relevant keywords defined in a dictionary. These indicators include “high value targets”, like cryptocurrency wallets, banking data, premium accounts, developer accounts, and business emails. Location indicators include high-value countries such as the United States, United Kingdom, Germany and Japan, along with cryptocurrency-friendly countries and financial hubs. Wealth indicators such as keywords like CEO, trader, investor and VIP have also been defined in a dictionary but are not in use at this time, pointing towards the group’s intent to develop further in the future.

While the class is named ‘AITargetDetection’ and includes placeholder functions for initializing and training a machine learning model, there is no actual implementation of machine learning. Instead, the system relies entirely on rule-based pattern matching for detection and scoring. Even though AI is not actually implemented in this code, it shows how malware developers could use AI in future malicious campaigns.

Screenshot of dead code function.
Figure 3: Screenshot of dead code function.

AI Evasion

Screenshot of AI evasion function to create entropy variance.
Figure 4: Screenshot of AI evasion function to create entropy variance.

‘AIEvasionEngine’ is a module designed to help malware evade AI-based or behavior-based detection systems, such as EDRs and sandboxes. It mimics legitimate user and system behavior, injects statistical noise, randomizes execution patterns, and camouflages resource usage. Its goal is to make the malware appear benign to machine learning detectors. The techniques used to achieve this are:

  • Behavioral Mimicking: Simulates user actions (mouse movement, fake browser use, file/network activity)
  • Noise Injection: Performs random memory, CPU, file, and network operations to confuse behavioral classifiers
  • Timing Randomization: Introduces irregular delays and sleep patterns to avoid timing-based anomaly detection
  • Resource Camouflage: Adjusts CPU and memory usage to imitate normal apps (such as browsers, text editors)
  • API Call Obfuscation: Random system API calls and pattern changes to hide malicious intent
  • Memory Access Obfuscation: Alters access patterns and entropy to bypass ML models monitoring memory behavior

PolymorphicEngine

As part of the “Rust Engine” available in Xillen Stealer is the Polymorphic Engine. The ‘PolymorphicEngine’ struct implements a basic polymorphic transformation system designed for obfuscation and detection evasion. It uses predefined instruction substitutions, control-flow pattern replacements, and dead code injection to produce varied output. The mutate_code() method scans input bytes and replaces recognized instruction patterns with randomized alternatives, then applies control flow obfuscation and inserts non-functional code to increase variability. Additional features include string encryption via XOR and a stub-based packer.

Collectors

DevToolsCollector

Figure 5: Screenshot of Kubernetes data function.

The ‘DevToolsCollector’ is designed to collect sensitive data related to a wide range of developer tools and environments. This includes:

IDE configurations

  • VS Code, VS Code Insiders, Visual Studio
  • JetBrains: Intellij, PyCharm, WebStorm
  • Sublime
  • Atom
  • Notepad++
  • Eclipse

Cloud credentials and configurations

  • AWS
  • GCP
  • Azure
  • Digital Ocean
  • Heroku

SSH keys

Docker & Kubernetes configurations

Git credentials

Database connection information

  • HeidiSQL
  • Navicat
  • DBeaver
  • MySQL Workbench
  • pgAdmin

API keys from .env files

FTP configs

  • FileZilla
  • WinSCP
  • Core FTP

VPN configurations

  • OpenVPN
  • WireGuard
  • NordVPN
  • ExpressVPN
  • CyberGhost

Container persistence

Screenshot of Kubernetes inject function.
Figure 6: Screenshot of Kubernetes inject function.

Biometric Collector

Screenshot of the ‘BiometricCollector’ function.
Figure 7: Screenshot of the ‘BiometricCollector’ function.

The ‘BiometricCollector’ attempts to collect biometric information from Windows systems by scanning the C:\Windows\System32\WinBioDatabase directory, which stores Windows Hello and other biometric configuration data. If accessible, it reads the contents of each file, encodes them in Base64, preparing them for later exfiltration. While the data here is typically encrypted by Windows, its collection indicates an attempt to extract sensitive biometric data.

Password Managers

The ‘PasswordManagerCollector’ function attempts to steal credentials stored in password managers including, OnePass, LastPass, BitWarden, Dashlane, NordPass and KeePass. However, this function is limited to Windows systems only.

SSOCollector

The ‘SSOCollector’ class is designed to collect authentication tokens related to SSO systems. It targets three main sources: Azure Active Directory tokens stored under TokenBroker\Cache, Kerberos tickets obtained through the klist command, and Google Cloud authentication data in user configuration folders. For each source, it checks known directories or commands, reads partial file contents, and stores the results as in a dictionary. Once again, this function is limited to Windows systems.

TOTP Collector

The ‘TOTP Collector’ class attempts to collect TOTPs from:

  • Authy Desktop by locating and reading from Authy.db SQLite databases
  • Microsoft Authenticator by scanning known application data paths for stored binary files
  • TOTP-related Chrome extensions by searching LevelDB files for identifiable keywords like “gauth” or “authenticator”.

Each method attempts to locate relevant files, parse or partially read their contents, and store them in a dictionary under labels like authy, microsoft_auth, or chrome_extension. However, as before, this is limited to Windows, and there is no handling for encrypted tokens.

Enterprise Collector

The ‘EnterpriseCollector’ class is used to extract credentials related to an enterprise Windows system. It targets configuration and credential data from:

  • VPN clients
    • Cisco AnyConnect, OpenVPN, Forticlient, Pulse Secure
  • RDP credentials
  • Corporate certificates
  • Active Directory tokens
  • Kerberos tickets cache

The files and directories are located based on standard environment variables with their contents read in binary mode and then encoded in Base64.

Super Extended Application Collector

The ‘SuperExtendedApplication’ Collector class is designed to scan an environment for 160 different applications on a Windows system. It iterates through the paths of a wide range of software categories including messaging apps, cryptocurrency wallets, password managers, development tools, enterprise tools, gaming clients, and security products. The list includes but is not limited to Teams, Slack, Mattermost, Zoom, Google Meet, MS Office, Defender, Norton, McAfee, Steam, Twitch, VMWare, to name a few.

Bypass

AppBoundBypass

This code outlines a framework for bypassing App Bound protections, Google Chrome' s cookie encryption. The ‘AppBoundBypass’ class attempts several evasion techniques, including memory injection, dynamic-link library (DLL) hijacking, process hollowing, atom bombing, and process doppelgänging to impersonate or hijack browser processes. As of the time of writing, the code contains multiple placeholders, indicating that the code is still in development.

Steganography

The ‘SteganographyModule’ uses steganography (hiding data within an image) to hide the stolen data, staging it for exfiltration. Multiple methods are implemented, including:

  • Image steganography: LSB-based hiding
  • NTFS Alternate Data Streams
  • Windows Registry Keys
  • Slack space: Writing into unallocated disk cluster space
  • Polyglot files: Appending archive data to images
  • Image metadata: Embedding data in EXIF tags
  • Whitespace encoding: Hiding binary in trailing spaces of text files

Exfiltration

CloudProxy

Screenshot of the ‘CloudProxy’ class.
Figure 8: Screenshot of the ‘CloudProxy’ class.

The CloudProxy class is designed for exfiltrating data by routing it through cloud service domains. It encodes the input data using Base64, attaches a timestamp and SHA-256 signature, and attempts to send this payload as a JSON object via HTTP POST requests to cloud URLs including AWS, GCP, and Azure, allowing the traffic to blend in. As of the time of writing, these public facing URLs do not accept POST requests, indicating that they are placeholders meant to be replaced with attacker-controlled cloud endpoints in a finalized build.

P2PEngine

Screenshot of the P2PEngine.
Figure 9: Screenshot of the P2PEngine.

The ‘P2PEngine’ provides multiple methods of C2, including embedding instructions within blockchain transactions (such as Bitcoin OP_RETURN, Ethereum smart contracts), exfiltrating data via anonymizing networks like Tor and I2P, and storing payloads on IPFS (a distributed file system). It also supports domain generation algorithms (DGA) to create dynamic .onion addresses for evading detection.

After a compromise, the stealer creates both HTML and TXT reports containing the stolen data. It then sends these reports to the attacker’s designated Telegram account.

Xillen Killers

 Xillen Killers.
FIgure 10: Xillen Killers.

Xillen Stealer appears to be developed by a self-described 15-year-old “pentest specialist” “Beng/jaminButton” who creates TikTok videos showing basic exploits and open-source intelligence (OSINT) techniques. The group distributing the information stealer, known as “Xillen Killers”, claims to have 3,000 members. Additionally, the group claims to have been involved in:

  • Analysis of Project DDoSia, a tool reportedly used by the NoName057(16) group, revealing that rather functioning as a distributed denial-of-service (DDos) tool, it is actually a remote access trojan (RAT) and stealer, along with the identification of involved individuals.
  • Compromise of doxbin.net in October 2025.
  • Discovery of vulnerabilities on a Russian mods site and a Ukrainian news site

The group, which claims to be part of the Russian IT scene, use Telegram for logging, marketing, and support.

Conclusion

While some components of XillenStealer remain underdeveloped, the range of intended feature set, which includes credential harvesting, cryptocurrency theft, container targeting, and anti-analysis techniques, suggests that once fully developed it could become a sophisticated stealer. The intention to use AI to help improve targeting in malware campaigns, even though not yet implemented, indicates how threat actors are likely to incorporate AI into future campaigns.  

Credit to Tara Gould (Threat Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Appendicies

Indicators of Compromise (IoCs)

395350d9cfbf32cef74357fd9cb66134 - confid.py

F3ce485b669e7c18b66d09418e979468 - stealer_v5_ultimate.py

3133fe7dc7b690264ee4f0fb6d867946 - xillen_v5.exe

https://github[.]com/BengaminButton/XillenStealer

https://github[.]com/BengaminButton/XillenStealer/commit/9d9f105df4a6b20613e3a7c55379dcbf4d1ef465

MITRE ATT&CK

ID Technique

T1059.006 - Python

T1555 - Credentials from Password Stores

T1555.003 - Credentials from Password Stores: Credentials from Web Browsers

T1555.005 - Credentials from Password Stores: Password Managers

T1649 - Steal or Forge Authentication Certificates

T1558 - Steal or Forge Kerberos Tickets

T1539 - Steal Web Session Cookie

T1552.001 - Unsecured Credentials: Credentials In Files

T1552.004 - Unsecured Credentials: Private Keys

T1552.005 - Unsecured Credentials: Cloud Instance Metadata API

T1217 - Browser Information Discovery

T1622 - Debugger Evasion

T1082 - System Information Discovery

T1497.001 - Virtualization/Sandbox Evasion: System Checks

T1115 - Clipboard Data

T1001.002 - Data Obfuscation: Steganography

T1567 - Exfiltration Over Web Service

T1657 - Financial Theft

Continue reading
About the author
Tara Gould
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI