Blog
/
/
July 25, 2021

Detecting Lateral Movement in Crypto-Botnets

Explore how crypto botnets move laterally within networks and the implications for cybersecurity and threat detection.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jul 2021

Botnets have increasingly become the vehicle of choice to deliver crypto-mining malware. By infecting various corporate assets such as servers and IoT devices, cyber-criminals can use the collective processing power of hundreds – or thousands – of machines to mine cryptocurrency and spread to further devices.

This blog explores how an Internet-facing server was breached in a company in Singapore. The threat actors used the device to move laterally and deploy crypto-mining software. Within two days, several devices in the company had begun cryptocurrency mining.

Creating the botnet

Only a few days after Darktrace had been installed in a Proof of Value (POV) trial, it detected a server in the company downloading a malicious executable from a rare endpoint, 167.71.87[.]85.

Figure 1: Timeline of the attack.

The server was observed making HTTP connections to a range of rare external endpoints, without a user agent header. The main hostname was t[.]amynx[.]com, a domain on open-source intelligence (OSINT) associated with crypto-mining trojans.

The device initiated repeated external connections to a range of external IPs over the TCP port 445 (SMB). This was followed by an unusually large number of internal connection attempts to a wide range of devices, suggesting scanning activity.

Figure 2: Details for the TCP scanning activity in a similar incident — note the consolidation of six relevant events into one summary.

Growing the botnet

The malware began to move laterally from the initially infected server, predominantly by establishing chains of unsual RDP connections. Subsequently, the server started making external SMB and RPC connections to rare endpoints on the Internet, in an attempt to find further vulnerable hosts.

Other lateral movement activities included the repeated failing attempts to access multiple internal devices over the SMB file-sharing protocol, with a range of different usernames. This implies bruteforce network access, as the threat actor attempted to guess correct account details through trial and error.

Existing tools such as RDP and Windows Service Control reveal that the attacker was employing ‘Living off the Land’ techniques. This makes a system administrator’s job inherently harder, as they must distinguish the malicious use of built-in tools versus their legitimate application.

Crypto-mining begins

Finally, the compromised server completed the lateral movement by transferring suspicious executable files over SMB to multiple internal devices, with names that appear randomly generated (e.g. gMtWAvEc.exe, daSsZhPf.exe) to deploy crypto-mining malware using the Minergate protocol.

Minergate is a public mining pool utilized for several types of cryptocurrency including Bitcoin, Monero, Ethereum, Zcash, and Grin. In recent months, ransomware actors have begun shifting away from Bitcoin towards Monero and other more anonymous cryptocurrences – but crypto-miners have been using altcoins for years.

Figure 3: The graph shows a clear increase in model breaches on a similar device, which easily identifies the time frame for the compromise.

As this was part of a trial, Antigena – Darktrace’s Autonomous Response capability – was not in active mode and so could not take action to stop the initial vector of infection. However, the Antigena model “Antigena / Network / External Threat / Antigena Suspicious File Block” was breached on July 18 at 03:55:45. If active, Antigena would have instantly blocked connections to 167.71.87[.]85 on port 80 for two hours, allowing the security team enough time to remediate the breach.

Crypto-mining malware: All the rage

Crypto-mining attacks are extremely common. Although not as destructive as ransomware, they can have a serious impact on network latency and take a long time to detect and clean up. While the infection remains unnoticed, it provides a backdoor into the victim organization – and could switch from conducting crypto-mining to delivering ransomware at any moment. In this case, it is clear the attacker aimed to create maximum disruption by transferring malicious software with targets such as internal servers and domain controllers.

Darktrace detected every step of the attack without relying on known indicators of threat. Cyber AI Analyst automated the complete investigation process, saving the security team crucial time during the live incident.

Especially with the recent crackdowns on Bitcoin farms in China, underground botnets and cloud-based crypto-mining are likely to become more prominent. As we see more of these intrusions in the near future, AI-powered detection, investigation, and response, will prove critical in defending organizations of all sizes, at all times.

Learn more about crypto-mining malware

IoCs:

IoCComment167.71.87[.]85Malware Download — SHA1: 6a4c477ba19a7bb888540d02acdd9be0d5d3fd02VirusTotalt[.]amynx[.]comHTTP Command and Control – recently created domain with suspicious indicators on OSINT sites (associated with cryptomining trojans)AlienVaultVirusTotallplp[.]ackng[.]comCrypto Currency Mining Activity (Minergate)VirusTotalgMtWAvEc.exedaSsZhPf.exeyAElKPQi.exeExamples of malicious executables

Darktrace model breaches:

  • Antigena / Network / Insider Threat / Antigena Network Scan Block
  • Device / Suspicious Network Scan Activity
  • Device / Large Number of Model Breaches
  • Device / Multiple Lateral Movement Model Breaches (x2)
  • Unusual Activity / Successful Admin Bruteforce Activity
  • Anomalous Connection / SMB Enumeration
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach (x2)
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Compromise / Beacon to Young Endpoint (x4)
  • Device / Possible RPC Lateral Movement
  • Antigena / Network / Insider Threat / Antigena SMB Enumeration Block
  • Compromise / Beaconing Activity To External Rare (x5)
  • Anomalous Server Activity / Denial of Service Activity
  • Antigena / Network / External Threat / Antigena Suspicious Activity Block (x4)
  • Device / Large Number of Connections to New Endpoints
  • Device / Network Scan - Low Anomaly Score
  • Anomalous Connection / New or Uncommon Service Control (x3)
  • Device / New User Agent To Internal Server
  • Device / Anomalous RDP Followed By Multiple Model Breaches (x3)
  • Device / Anomalous SMB Followed By Multiple Model Breaches (x3)
  • Device / SMB Session Bruteforce (x2)
  • Device / Increased External Connectivity
  • Device / Network Scan
  • Compromise / High Volume of Connections with Beacon Score (x5)
  • Unusual Activity / Unusual External Activity (x3)
  • Anomalous Connection / Unusual Admin SMB Session
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Compliance / SMB Drive Write (x3)
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block (x14)
  • Compliance / Internet Facing RDP Server
  • Anomalous Connection / Multiple Failed Connections to Rare Endpoint (x5)
  • Compliance / Outbound RDP (x3)
  • Anomalous Server Activity / Rare External from Server (x5)
  • Compromise / Slow Beaconing Activity To External Rare (x8)
  • Anomalous Server Activity / Outgoing from Server (x2)
  • Device / New User Agent
  • Anomalous Connection / New Failed External Windows Connection (x5)
  • Compliance / External Windows Communications
  • Device / New Failed External Connections (x7)
  • Compliance / Crypto Currency Mining Activity (x9)
  • Compliance / Incoming Remote Desktop (x9)

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI