Blog
/
OT
/
April 4, 2025

Darktrace Named as Market Leader in the 2025 Omdia Market Radar for OT Cybersecurity Platforms

Darktrace / OT is recognized as a Market Leader in the Omdia Market Radar. Read this blog to find out more about Darktrace's leadership in the market and a variety of other unique differentiators and innovations in the OT security industry.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
04
Apr 2025

We are pleased to announce that Darktrace / OT has been named a Market Leader in Omdia’s  2025 Market Radar for OT Cybersecurity Platforms. We believe this highlights our unique capabilities in the OT security market and follows similar recognition from Gartner who recently named Darktrace / OT as the sole Visionary in in the Magic Quadrant for Cyber Physical Systems (CPS) Protection Platforms market.

Historically, IT and OT systems have been managed separately, creating challenges due to the differences of priorities between the two domains. While both value availability, IT emphasizes confidentiality and integrity whereas OT focuses on safety and reliability. Organizations are increasingly converging these systems to reap the benefits of automation, efficiency, and productivity (1).

Omdia’s research highlights that decision makers are increasingly prioritizing comprehensive security coverage, centralized management, and advanced cybersecurity capabilities when selecting OT security solutions (1).

Rising productivity demands have driven the convergence of OT, IT, and cloud-connected systems, expanding attack surfaces and exposing vulnerabilities. Darktrace / OT provides a comprehensive OT security solution, purpose-built for critical infrastructure, offering visibility across OT, IoT, and IT assets, bespoke risk management, and industry-leading threat detection and response powered by Self-Learning AITM.

Figure 1: Omdia vendor overview for OT cybersecurity platforms
Figure 1: Omdia vendor overview for OT cybersecurity platforms

An AI-first approach to OT security  

Many OT security vendors have integrated AI into their offerings, often leveraging machine learning for anomaly detection and threat response. However, only a few have a deep-rooted history in AI, with longstanding expertise shaping their approach beyond surface-level adoption.

The Omdia Market Radar recognizes that Darktrace has extensive background in the AI space:

“Darktrace has invested extensively in AI research to fuel its capabilities since 2013 with 200-plus patent applications, providing anomaly detection with a significant level of customization, helping with SOC productivity and efficiency, streamlining to show what matters for OT.” (1)

Unlike other security approaches that rely on existing threat data, Darktrace / OT achieves this through Self-Learning AI that understands normal business operations, detecting and containing known and unknown threats autonomously, thereby reducing Sec Ops workload and ensuring minimal downtime

This approach extends to incident investigations where an industry-first Cyber AI AnalystTM automatically investigates all relevant threats across IT and OT, prioritizes critical incidents, and then summarizes findings in an easily understandable view—bringing production engineers and security analysts together to communicate and quickly take appropriate action.

Balancing autonomous response with human oversight

In OT environments where uptime is essential, autonomous response technology can be approached with apprehension. However, Darktrace offers customizable response actions that can be set to “human confirmation mode.”

Omdia recognizes that our approach provides customizable options for autonomous response:

“Darktrace’s autonomous response functionality enforces normal, expected behavior. This can be automated but does not need to be from the beginning, and it can be fine-tuned. Alternative step-by-step mitigations are clearly laid out step-by-step and updated based on organizational risk posture and current level of progress.” (1)

This approach allows security and production to keep humans-in-the-loop with pre-defined actions for potential attacks, enforcing normal to contain a threat, and allowing production to continue without disruption.  

Bespoke vulnerability and risk management

In the realm of OT security, asset management takes precedent as one of the key focus points for organizations. With a large quantity of assets to manage, practitioners are overwhelmed with information with no real way to prioritize or apply them to their unique environment.

Darktrace / OT is recognized by Omdia as having:

“Advanced risk management capabilities that showcase metrics on impact, exploit difficulty, and estimated cost of an attack […] Given the nascency of this capability (April 2024), it is remarkably granular in depth and insight.” (1)

Enabling this is Darktrace’s unique approach to AI extends to risk management capabilities for OT. Darktrace / OT understands customers’ unique risks by building a comprehensive and contextualized picture that goes beyond isolated CVE scoring. It combines attack path modeling with MITRE ATT&CK  techniques to provide hardening recommendations regardless of patching availability and gives you a clearer view of the potential impact of an attack from APT groups.

Modular, scalable security for industrial environments

Organizations need flexibility when it comes to OT security, some want a fully integrated IT-OT security stack, while others prefer a segregated approach due to compliance or operational concerns. The Darktrace ActiveAI Security Platform offers integrated security across multiple domains, allowing flexibility and unification across IT and OT security. The platform combines telemetry from all areas of your digital estate to detect and respond to threats, including OT, network, cloud, email, and user identities.

Omdia recognizes Darktrace’s expansive coverage across multiple domains as a key reason why organizations should consider Darktrace / OT:

“Darktrace’s modular and platform, approach offer’s integrated security across multiple domains. It offers the option of Darktrace / OT as a separate platform product for those that want to segregate IT and OT cybersecurity or are not yet in a position to secure both domains in tandem. The deployment of Darktrace’s platform is flexible—with nine different deployment options, including physical on-premises, virtual, cloud, and hybrid.” (1)

With flexible deployment options, Darktrace offers security teams the ability to choose a model that works best for their organization, ensuring that security doesn’t have to be a “one-size-fits-all” approach.

Conclusion: Why Darktrace / OT stands out in Omdia’s evaluation

Omdia’s 2025 Market Radar for OT Cybersecurity Platforms provides a technical-first, vendor-agnostic evaluation, offering critical insights for organizations looking to strengthen their OT security posture. Darktrace’s recognition as a Market Leader reinforces its unique AI-driven approach, flexible deployment options, and advanced risk management capabilities as key differentiators in an evolving threat landscape.

By leveraging Self-Learning AI, autonomous response, and real-world risk analysis, Darktrace / OT enables organizations to detect, investigate, and mitigate threats before they escalate, without compromising operational uptime.

Read the full report here!

References

  1. www.darktrace.com/resources/darktrace-named-a-market-leader-in-the-2025-omdia-market-radar-for-ot-cybersecurity-platforms
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Pallavi Singh
Product Marketing Manager, OT Security & Compliance

More in this series

No items found.

Blog

/

/

January 15, 2026

React2Shell Reflections: Cloud Insights, Finance Sector Impacts, and How Threat Actors Moved So Quickly

React2Shell Default blog imageDefault blog image

Introduction

Last month’s disclosure of CVE 2025-55812, known as React2Shell, provided a reminder of how quickly modern threat actors can operationalize newly disclosed vulnerabilities, particularly in cloud-hosted environments.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day. Within 30 hours of the patch, a publicly available proof-of-concept emerged that could be used to exploit any vulnerable server. This short timeline meant many systems remained unpatched when attackers began actively exploiting the vulnerability.  

Darktrace researchers rapidly deployed a new honeypot to monitor exploitation of CVE 2025-55812 in the wild.

Within two minutes of deployment, Darktrace observed opportunistic attackers exploiting this unauthenticated remote code execution flaw in React Server Components, leveraging a single crafted request to gain control of exposed Next.js servers. Exploitation quickly progressed from reconnaissance to scripted payload delivery, HTTP beaconing, and cryptomining, underscoring how automation and pre‑positioned infrastructure by threat actors now compress the window between disclosure and active exploitation to mere hours.

For cloud‑native organizations, particularly those in the financial sector, where Darktrace observed the greatest impact, React2Shell highlights the growing disconnect between patch availability and attacker timelines, increasing the likelihood that even short delays in remediation can result in real‑world compromise.

Cloud insights

In contrast to traditional enterprise networks built around layered controls, cloud architectures are often intentionally internet-accessible by default. When vulnerabilities emerge in common application frameworks such as React and Next.js, attackers face minimal friction.  No phishing campaign, no credential theft, and no lateral movement are required; only an exposed service and exploitable condition.

The activity Darktrace observed during the React2shell intrusions reflects techniques that are familiar yet highly effective in cloud-based attacks. Attackers quickly pivot from an exposed internet-facing application to abusing the underlying cloud infrastructure, using automated exploitation to deploy secondary payloads at scale and ultimately act on their objectives, whether monetizing access through cryptomining or to burying themselves deeper in the environment for sustained persistence.

Cloud Case Study

In one incident, opportunistic attackers rapidly exploited an internet-facing Azure virtual machine (VM) running a Next.js application, abusing the React/next.js vulnerability to gain remote command execution within hours of the service becoming exposed. The compromise resulted in the staged deployment of a Go-based remote access trojan (RAT), followed by a series of cryptomining payloads such as XMrig.

Initial Access

Initial access appears to have originated from abused virtual private network (VPN) infrastructure, with the source IP (146.70.192[.]180) later identified as being associated with Surfshark

The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.
Figure 1: The IP address above is associated with VPN abuse leveraged for initial exploitation via Surfshark infrastructure.

The use of commercial VPN exit nodes reflects a wider trend of opportunistic attackers leveraging low‑cost infrastructure to gain rapid, anonymous access.

Parent process telemetry later confirmed execution originated from the Next.js server, strongly indicating application-layer compromise rather than SSH brute force, misused credentials, or management-plane abuse.

Payload execution

Shortly after successful exploitation, Darktrace identified a suspicious file and subsequent execution. One of the first payloads retrieved was a binary masquerading as “vim”, a naming convention commonly used to evade casual inspection in Linux environments. This directly ties the payload execution to the compromised Next.js application process, reinforcing the hypothesis of exploit-driven access.

Command-and-Control (C2)

Network flow logs revealed outbound connections back to the same external IP involved in the inbound activity. From a defensive perspective, this pattern is significant as web servers typically receive inbound requests, and any persistent outbound callbacks — especially to the same IP — indicate likely post-exploitation control. In this case, a C2 detection model alert was raised approximately 90 minutes after the first indicators, reflecting the time required for sufficient behavioral evidence to confirm beaconing rather than benign application traffic.

Cryptominers deployment and re-exploitation

Following successful command execution within the compromised Next.js workload, the attackers rapidly transitioned to monetization by deploying cryptomining payloads. Microsoft Defender observed a shell command designed to fetch and execute a binary named “x” via either curl or wget, ensuring successful delivery regardless of which tooling was availability on the Azure VM.

The binary was written to /home/wasiluser/dashboard/x and subsequently executed, with open-source intelligence (OSINT) enrichment strongly suggesting it was a cryptominer consistent with XMRig‑style tooling. Later the same day, additional activity revealed the host downloading a static XMRig binary directly from GitHub and placing it in a hidden cache directory (/home/wasiluser/.cache/.sys/).

The use of trusted infrastructure and legitimate open‑source tooling indicates an opportunistic approach focused on reliability and speed. The repeated deployment of cryptominers strongly suggests re‑exploitation of the same vulnerable web application rather than reliance on traditional persistence mechanisms. This behavior is characteristic of cloud‑focused attacks, where publicly exposed workloads can be repeatedly compromised at scale more easily.

Financial sector spotlight

During the mass exploitation of React2Shell, Darktrace observed targeting by likely North Korean affiliated actors focused on financial organizations in the United Kingdom, Sweden, Spain, Portugal, Nigeria, Kenya, Qatar, and Chile.

The targeting of the financial sector is not unexpected, but the emergence of new Democratic People’s Republic of Korea (DPRK) tooling, including a Beavertail variant and EtherRat, a previously undocumented Linux implant, highlights the need for updated rules and signatures for organizations that rely on them.

EtherRAT uses Ethereum smart contracts for C2 resolution, polling every 500 milliseconds and employing five persistence mechanisms. It downloads its own Node.js runtime from nodejs[.]org and queries nine Ethereum RPC endpoints in parallel, selecting the majority response to determine its C2 URL. EtherRAT also overlaps with the Contagious Interview campaign, which has targeted blockchain developers since early 2025.

Read more finance‑sector insights in Darktrace’s white paper, The State of Cyber Security in the Finance Sector.

Threat actor behavior and speed

Darktrace’s honeypot was exploited just two minutes after coming online, demonstrating how automated scanning, pre-positioned infrastructure and staging, and C2 infrastructure traced back to “bulletproof” hosting reflects a mature, well‑resourced operational chain.

For financial organizations, particularly those operating cloud‑native platforms, digital asset services, or internet‑facing APIs, this activity demonstrates how rapidly geopolitical threat actors can weaponize newly disclosed vulnerabilities, turning short patching delays into strategic opportunities for long‑term access and financial gain. This underscores the need for a behavioral-anomaly-led security posture.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO) and Mark Turner (Specialist Security Researcher)

Edited by Ryan Traill (Analyst Content Lead)

Appendices

Indicators of Compromise (IoCs)

146.70.192[.]180 – IP Address – Endpoint Associated with Surfshark

References

https://www.darktrace.com/resources/the-state-of-cybersecurity-in-the-finance-sector

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

runtime, cloud security, cnaapDefault blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Your data. Our AI.
Elevate your network security with Darktrace AI