Blog
/
Email
/
August 7, 2024

How Darktrace’s AI Applies a Zero-Trust Mentality within Critical Infrastructure Supply Chains

Darktrace prevented a Critical National Infrastructure organization from falling victim to a SharePoint phishing attack originating from one of its trusted suppliers. This blog discusses common perceptions of zero-trust in email security, how AI that uses anomaly-based threat detection embodies core zero-trust principles and the relevance of this approach to securing CNI bodies with complex but interdependent supply chains from Cloud account compromise. 
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
07
Aug 2024

Note: In order to name anonymity, real organization names have been replaced, all names used in this blog are fictitious.

What are critical national infrastructure sectors?

Critical National Infrastructure (CNI) sectors encompass of assets, systems, and networks essential to the functioning of society. Any disruption or destruction of these sectors could have wide-reaching and potentially disastrous effects on a country’s economy, security and/or healthcare services [1].

Cyber risks across Transportation Systems sector

Transportation Systems is one such CNI sector comprising of interconnected networks of fixed and mobile assets managed by both public and private operators. These systems are highly interdependent with other CNI sectors too. As such, the digital technologies this sector relies on – such as positioning and tracking, signaling, communications, industrial system controls, and data and business management – are often interconnected through different networks and remote access terminals. This interconnectedness creates multiple entry points that need to be security across the supply.

Digital transformation has swept through CNI sectors in recent years, including Transportation Systems. These organizations are now increasingly dependent on third-party and cloud providers for data storage and transmission, making their supply chains vulnerable to exploitation by malicious actors [2].

The exploitation of legitimate and popular cloud services mirrors the well-known “living-off-the-land” techniques, which are not being adapted to the cloud along with the resources they support. In one recent case previously discussed by Darktrace, for example, a phishing attack attempted to abuse Dropbox to deliver malicious payloads.

Zero-Trust within CNI Sectors

One recommended approach to secure an organization’s supply chain and cloud environments is the implementation of zero-trust strategies, which remove inherent trust within the network [3] [4]. The principle of “never trust, always verify” is widely recognized as an architectural design, with 63% of organizations surveyed by Gartner reportedly implementing a zero-trust strategy, but in most cases to less than 50% of their environments [5]

Although this figure reflects the reality and challenge of balancing operations and security, demands from the threat landscape and supply chain risks mean that organizations must adopt zero-trust principles in areas not traditionally considered part of network architecture, such as email and cloud environments.

Email is often the primary entry point for cyber-attacks with Business Email Compromise (BEC) being a major threat to CNI organizations. However, the application of zero-trust principles to secure email environments is still not well understood. Common misconceptions include:

  • “Positively identifying known and trusted senders” – Maintaining a list of “known and trusted senders” contradicts the zero-trust model, which assumes that no entity is inherently trustworthy.
  • “Using DMARC, DKIM and SPF” – While these protocols offer some protection, they are often insufficient on their own, as they can be bypassed and do not protect against email account takeovers. Research published from Darktrace’s last two threat reports consistently shows that at least 60% of phishing emails detected by Darktrace had bypassed Domain-based Message Authentication, Reporting & Conformance (DMARC) [6] [7].  
  • “Mapping transaction flows between internal and external users to determine what access is required/not required” – Although this aligns with the principles of least privilege, it is too static for today’s dynamic supply chains and evolving digital infrastructure. This approach also suggests the existence of “trusted” access routes into a network.

Attack Overview

In July 2024, Darktrace / EMAIL™ detected and contained a sophisticated phishing attack leveraging Microsoft SharePoint. This attack exploited the trusted relationship between a Darktrace customer in the public transport sector and a compromised supplier. Traditional methods, such as those detailed above, would likely have failed to defend against such an advanced threat. However, Darktrace’s behavioral analysis and zero-trust approach to email security allowed it to successfully identify and neutralize the attack, preventing any potential disruption.

Initial Intrusion Attempt

The observed phishing attack by Darktrace would suggest that the customer’s supplier was targeted by a similar campaign beforehand. This initial breach likely allowed the attacker to use the now compromised account as a vector to compromise additional accounts and networks.

On July 9, Darktrace / EMAIL identified a significant spike in inbound emails from “supplier@engineeringcompany[.]com”. The emails appeared to be legitimate notifications sent via SharePoint and contained a file named “Payment Applications Docs”.

Email correspondence in the weeks around the phishing attack.
Figure 1: Email correspondence in the weeks around the phishing attack. The sender is an established correspondent with ongoing communications prior to and after the attack, however there is a significant spike in incoming emails on the day of the attack.

This reflects a common technique in malicious social engineering attempts, where references to payment are used to draw attention and prompt a response. Darktrace observed a large number of recipients within the organization receiving the same file, suggesting that the motive was likely credential harvesting rather than financial gain. Financially motivated attacks typically require a more targeted, ‘under-the-radar’ approach to be successful.

These phishing emails were able to bypass the customer’s email gateways as they were sent from a trusted and authoritative source, SharePoint, and utilized an email address with which the customer had previously corresponded. The compromised account was likely whitelisted by traditional email security tools that rely on SPF, DKIM, and DMAC, allowing the malicious emails to evade detection.

Autonomous Response

Darktrace / EMAIL analysis of the unusual characteristics of the phishing email in relation to the supplier’s typical behaviour, despite the email originating from a legitimate SharePoint notification.
Figure 2: Darktrace / EMAIL analysis of the unusual characteristics of the phishing email in relation to the supplier’s typical behavior, despite the email originating from a legitimate SharePoint notification.

However, Darktrace / EMAIL did not use these static rules to automatically trust the email. Darktrace’s Self-Learning AI detected the following anomalies:

  • Although the sender was known, it was not normal for the supplier to share files with the customer via SharePoint.
  • The supplier initiated an unusually large number of file shares in a short period of time, indicating potential spam activity.
  • The SharePoint link had wide access permissions, which is unusual for a sensitive payment document legitimately shared between established contacts.

Darktrace understood that the email activity constituted a significant deviation in expected behavior between the sender and customer, regardless of the known sender and use of a legitimate filesharing platform like SharePoint.

As a result, Darktrace took action to hold more than 100 malicious emails connected to the phishing attack, preventing them from landing in recipient inboxes in the first instance.  By taking a behavioral approach to securing customer email environments, Darktrace’s Self-Learning AI embodies the principles of zero trust, assessing each interaction in real-time against a user’s dynamic baseline rather than relying on static and often inaccurate rules to define trust.

Conclusion

Cloud services, such as SharePoint, offer significant advantages to the transportation sector by streamlining data exchange with supply chain partners and facilitating access to information for analytics and planning. However, these benefits come with notable risks. If a cloud account is compromised, unauthorized access to sensitive information could lead to extortion and lateral movement into mission-critical systems for more damaging attacks on CNI. Even a brief disruption in cloud access can have severe economic repercussions due to the sector’s dependence on these services for resource coordination and the cascading impacts on other critical systems [9].

While supply chain resilience is often evaluated based on a supplier’s initial compliance with baseline standards, organizations must be wary of potential future threats and focus on post-implementation security. It is essential for organizations to employ strategies to protect their assets from attacks that would exploit vulnerabilities within the trusted supply chain. Given that CNI and the transportation sector are prime targets for state-sponsored actors and Advanced Persistent Threat (APT) groups, the complex and interconnected nature of their supply chains opens the door for opportunistic attackers.

Defenders face the challenge of ensuring secure access and collaboration across numerous, dynamic assets, often without full visibility. Therefore, security solutions must be as dynamic as the threats they face, avoiding reliance on static rules. Real-time assessment of devices behavior, even if deemed trusted by end-users and human security teams, is crucial for maintaining security.

Darktrace’s AI-driven threat detection aligns with the zero-trust principle of assuming the risk of a breach. By leveraging AI that learns an organization’s specific patterns of life, Darktrace provides a tailored security approach ideal for organizations with complex supply chains.

Credit to Nicole Wong, Senior Cyber Analyst Consultant and Ryan Traill, Threat Content Lead

Appendices

Darktrace Model Detections

Key model alerts:

  • Personalized Sharepoint Share + New Unknown Link
  • Personalized Sharepoint Share + Bad Display Text
  • Personalized Sharepoint Share + Distant Recipient Interaction with Domain
  • Personalized Sharepoint Share + Sender Surge
  • Personalized Sharepoint Share + Wide Access Sharepoint Link

MITRE ATT&CK Mapping

Resource Development • Compromise Accounts: Cloud Accounts • T1586.003

Initial Access • Supply Chain Compromise • T1195

References

[1] https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors

[2]  https://committees.parliament.uk/writtenevidence/126313/pdf/

[3] https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1.pdf

[4] https://cloudsecurityalliance.org/press-releases/2023/11/15/cloud-security-alliance-launches-the-industry-s-first-authoritative-zero-trust-training-and-credential-the-certificate-of-competence-in-zero-trust-cczt

[5] https://www.gartner.com/en/documents/5286863#:~:text=Summary,anticipate%20staffing%20and%20cost%20increases.

[6] https://darktrace.com/threat-report-2023

[7] https://darktrace.com/resources/first-6-half-year-threat-report-2024

[8] https://dfrlab.org/2023/07/10/critical-infrastructure-and-the-cloud-policy-for-emerging-risk/#transportation

[9] https://access-national-risk-register.service.cabinetoffice.gov.uk/risk-scenario/cyber-attack-transport-sector

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Nicole Wong
Cyber Security Analyst

More in this series

No items found.

Blog

/

/

August 11, 2025

Minimizing Permissions for Cloud Forensics: A Practical Guide to Tightening Access in the Cloud

Cloud permissions cloud forensicsDefault blog imageDefault blog image

Most cloud environments are over-permissioned and under-prepared for incident response.

Security teams need access to logs, snapshots, and configuration data to understand how an attack unfolded, but giving blanket access opens the door to insider threats, misconfigurations, and lateral movement.

So, how do you enable forensics without compromising your security posture?

The dilemma: balancing access and security

There is a tension between two crucial aspects of cloud security that create a challenge for cloud forensics.

One aspect is the need for Security Operations Center (SOC) and Incident Response (IR) teams to access comprehensive data for investigating and resolving security incidents.

The other conflicting aspect is the principle of least privilege and minimal manual access advocated by cloud security best practices.

This conflict is particularly pronounced in modern cloud environments, where traditional physical access controls no longer apply, and infrastructure-as-code and containerization have transformed the landscape.

There are several common but less-than-ideal approaches to this challenge:

  • Accepting limited data access, potentially leaving incidents unresolved
  • Granting root-level access during major incidents, risking further compromise

Relying on cloud or DevOps teams to retrieve data, causing delays and potential miscommunication

[related-resource]

Challenges in container forensics

Containers present unique challenges for forensic investigations due to their ephemeral and dynamic nature. The orchestration and management of containers, whether on private clusters or using services like AWS Elastic Kubernetes Service (EKS), introduce complexities in capturing and analyzing forensic data.

To effectively investigate containers, it's often necessary to acquire the underlying volume of a node or perform memory captures. However, these actions require specific Identity and Access Management (IAM) and network access to the node, as well as familiarity with the container environment, which may not always be straightforward.

An alternative method of collection in containerized environments is to utilize automated tools to collect this evidence. Since they can detect malicious activity and collect relevant data without needing human input, they can act immediately, securing evidence that might be lost by the time a human analyst is available to collect it manually.

Additionally, automation can help significantly with access and permissions. Instead of analysts needing the correct permissions for the account, service, and node, as well as deep knowledge of the container service itself, for any container from which they wish to collect logs. They can instead collect them, and have them all presented in one place, at the click of a button.

A better approach: practical strategies for cloud forensics

It's crucial to implement strategies that strike a balance between necessary access and stringent security controls.

Here are several key approaches:

1. Dedicated cloud forensics accounts

Establishing a separate cloud account or subscription specifically for forensic activities is foundational. This approach isolates forensic activities from regular operations, preventing potential contamination from compromised environments. Dedicated accounts also enable tighter control over access policies, ensuring that forensic operations do not inadvertently expose sensitive data to unauthorized users.

A separate account allows for:

  • Isolation: The forensic investigation environment is isolated from potentially compromised environments, reducing the risk of cross-contamination.
  • Tighter access controls: Policies and controls can be more strictly enforced in a dedicated account, reducing the likelihood of unauthorized access.
  • Simplified governance: A clear and simplified chain of custody for digital evidence is easier to maintain, ensuring that forensic activities meet legal and regulatory requirements.

For more specifics:

2. Cross-account roles with least privilege

Using cross-account IAM roles, the forensics account can access other accounts, but only with permissions that are strictly necessary for the investigation. This ensures that the principle of least privilege is upheld, reducing the risk of unauthorized access or data exposure during the forensic process.

3. Temporary credentials for just-in-time access

Leveraging temporary credentials, such as AWS STS tokens, allows for just-in-time access during an investigation. These credentials are short-lived and scoped to specific resources, ensuring that access is granted only when absolutely necessary and is automatically revoked after the investigation is completed. This reduces the window of opportunity for potential attackers to exploit elevated permissions.

For AWS, you can use commands such as:

aws sts get-session-token --duration-seconds 43200

aws sts assume-role --role-arn role-to-assume --role-session-name "sts-session-1" --duration-seconds 43200

For Azure, you can use commands such as:

az ad app credential reset --id <appId> --password <sp_password> --end-date 2024-01-01

For more details for Google Cloud environments, see “Create short-lived credentials for a service account” and the request.time parameter.

4. Tag-based access control

Pre-deploying access control based on resource tags is another effective strategy. By tagging resources with identifiers like "Forensics," access can be dynamically granted only to those resources that are relevant to the investigation. This targeted approach minimizes the risk of overexposure and ensures that forensic teams can quickly and efficiently access the data they need.

For example, in AWS:

Condition: StringLike: aws:ResourceTag/Name: ForensicsEnabled

Condition: StringLike: ssm:resourceTag/SSMEnabled: True

For example, in Azure:

"Condition": "StringLike(Resource[Microsoft.Resources/tags.example_key], '*')"

For example, in Google Cloud:

expression: > resource.matchTag('tagKeys/ForensicsEnabled', '*')

Tighten access, enhance security

The shift to cloud environments demands a rethinking of how we approach forensic investigations. By implementing strategies like dedicated cloud forensic accounts, cross-account roles, temporary credentials, and tag-based access control, organizations can strike the right balance between access and security. These practices not only enhance the effectiveness of forensic investigations but also ensure that access is tightly controlled, reducing the risk of exacerbating an incident or compromising the investigation.

Find the right tools for your cloud security

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

In addition to having these forensics capabilities, Darktrace / CLOUD is a real-time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Continue reading
About the author

Blog

/

Network

/

August 11, 2025

Ivanti Under Siege: Investigating the Ivanti Endpoint Manager Mobile Vulnerabilities (CVE-2025-4427 & CVE-2025-4428)

ivanti cve exploitation edge infrastructure Default blog imageDefault blog image

Ivanti & Edge infrastructure exploitation

Edge infrastructure exploitations continue to prevail in today’s cyber threat landscape; therefore, it was no surprise that recent Ivanti Endpoint Manager Mobile (EPMM) vulnerabilities CVE-2025-4427 and CVE-2025-4428 were exploited targeting organizations in critical sectors such as healthcare, telecommunications, and finance across the globe, including across the Darktrace customer base in May 2025.

Exploiting these types of vulnerabilities remains a popular choice for threat actors seeking to enter an organization’s network to perform malicious activity such as cyber espionage, data exfiltration and ransomware detonation.

Vulnerabilities in Ivanti EPMM

Ivanti EPMM allows organizations to manage and configure enterprise mobile devices. On May 13, 2025, Ivanti published a security advisory [1] for their Ivanti Endpoint Manager Mobile (EPMM) devices addressing a medium and high severity vulnerability:

  • CVE-2025-4427, CVSS: 5.6: An authentication bypass vulnerability
  • CVE-2025-4428, CVSS: 7.2: Remote code execution vulnerability

Successfully exploiting both vulnerabilities at the same time could lead to unauthenticated remote code execution from an unauthenticated threat actor, which could allow them to control, manipulate, and compromise managed devices on a network [2].

Shortly after the disclosure of these vulnerabilities, external researchers uncovered evidence that they were being actively exploited in the wild and identified multiple indicators of compromise (IoCs) related to post-exploitation activities for these vulnerabilities [2] [3]. Research drew particular attention to the infrastructure utilized in ongoing exploitation activity, such as leveraging the two vulnerabilities to eventually deliver malware contained within ELF files from Amazon Web Services (AWS) S3 bucket endpoints and to deliver KrustyLoader malware for persistence. KrustyLoader is a Rust based malware that was discovered being downloaded in compromised Ivanti Connect Secure systems back in January 2024 when the zero-day critical vulnerabilities; CVE-2024-21887 and CVE-2023-46805 [10].

This suggests the involvement of the threat actor UNC5221, a suspected China-nexus espionage actor [3].

In addition to exploring the post-exploit tactics, techniques, and procedures (TTPs) observed for these vulnerabilities across Darktrace’s customer base, this blog will also examine the subtle changes and similarities in the exploitation of earlier Ivanti vulnerabilities—specifically Ivanti Connect Secure (CS) and Policy Secure (PS) vulnerabilities CVE-2023-46805 and CVE-2024-21887 in early 2024, as well as CVE-2025-0282 and CVE-2025-0283, which affected CS, PS, and Zero Trust Access (ZTA) in January 2025.

Darktrace Coverage

In May 2025, shortly after Ivanti disclosed vulnerabilities in their EPMM product, Darktrace’s Threat Research team identified attack patterns potentially linked to the exploitation of these vulnerabilities across multiple customer environments. The most noteworthy attack chain activity observed included exploit validation, payload delivery via AWS S3 bucket endpoints, subsequent delivery of script-based payloads, and connections to dpaste[.]com, possibly for dynamic payload retrieval. In a limited number of cases, connections were also made to an IP address associated with infrastructure linked to SAP NetWeaver vulnerability CVE-2025-31324, which has been investigated by Darktrace in an earlier case.

Exploit Validation

Darktrace observed devices within multiple customer environments making connections related to Out-of-Band Application Security Testing (OAST). These included a range of DNS requests and connections, most of which featured a user agent associated with the command-line tool cURL, directed toward associated endpoints. The hostnames of these endpoints consisted of a string of randomly generated characters followed by an OAST domain, such as 'oast[.]live', 'oast[.]pro', 'oast[.]fun', 'oast[.]site', 'oast[.]online', or 'oast[.]me'. OAST endpoints can be leveraged by malicious actors to trigger callbacks from targeted systems, such as for exploit validation. This activity, likely representing the initial phase of the attack chain observed across multiple environments, was also seen in the early stages of previous investigations into the exploitation of Ivanti vulnerabilities [4]. Darktrace also observed similar exploit validation activity during investigations conducted in January 2024 into the Ivanti CS vulnerabilities CVE-2023-46805 and CVE-2024-21887.

Payload Delivery via AWS

Devices across multiple customer environments were subsequently observed downloading malicious ELF files—often with randomly generated filenames such as 'NVGAoZDmEe'—from AWS S3 bucket endpoints like 's3[.]amazonaws[.]com'. These downloads occurred over HTTP connections, typically using wget or cURL user agents. Some of the ELF files were later identified to be KrustyLoader payloads using open-source intelligence (OSINT). External researchers have reported that the KrustyLoader malware is executed in cases of Ivanti EPMM exploitation to gain and maintain a foothold in target networks [2].

In one customer environment, after connections were made to the endpoint fconnect[.]s3[.]amazonaws[.]com, Darktrace observed the target system downloading the ELF file mnQDqysNrlg via the user agent Wget/1.14 (linux-gnu). Further investigation of the file’s SHA1 hash (1dec9191606f8fc86e4ae4fdf07f09822f8a94f2) linked it to the KrustyLoader malware [5]. In another customer environment, connections were instead made to tnegadge[.]s3[.]amazonaws[.]com using the same user agent, from which the ELF file “/dfuJ8t1uhG” was downloaded. This file was also linked to KrustyLoader through its SHA1 hash (c47abdb1651f9f6d96d34313872e68fb132f39f5) [6].

The pattern of activity observed so far closely mirrors previous exploits associated with the Ivanti vulnerabilities CVE-2023-46805 and CVE-2024-21887 [4]. As in those cases, Darktrace observed exploit validation using OAST domains and services, along with the use of AWS endpoints to deliver ELF file payloads. However, in this instance, the delivered payload was identified as KrustyLoader malware.

Later-stage script file payload delivery

In addition to the ELF file downloads, Darktrace also detected other file downloads across several customer environments, potentially representing the delivery of later-stage payloads.

The downloaded files included script files with the .sh extension, featuring randomly generated alphanumeric filenames. One such example is “4l4md4r.sh”, which was retrieved during a connection to the IP address 15.188.246[.]198 using a cURL-associated user agent. This IP address was also linked to infrastructure associated with the SAP NetWeaver remote code execution vulnerability CVE-2025-31324, which enables remote code execution on NetWeaver Visual Composer. External reporting has attributed this infrastructure to a China-nexus state actor [7][8][9].

In addition to the script file downloads, devices on some customer networks were also observed making connections to pastebin[.]com and dpaste[.]com, two sites commonly used to host or share malicious payloads or exploitation instructions [2]. Exploits, including those targeting Ivanti EPMM vulnerabilities, can dynamically fetch malicious commands from sites like dpaste[.]com, enabling threat actors to update payloads. Unlike the previously detailed activity, this behavior was not identified in any prior Darktrace investigations into Ivanti-related vulnerabilities, suggesting a potential shift in the tactics used in post-exploitation stages of Ivanti attacks.

Conclusion

Edge infrastructure vulnerabilities, such as those found in Ivanti EPMM and investigated across customer environments with Darktrace / NETWORK, have become a key tool in the arsenal of attackers in today’s threat landscape. As highlighted in this investigation, while many of the tactics employed by threat actors following successful exploitation of vulnerabilities remain the same, subtle shifts in their methods can also be seen.

These subtle and often overlooked changes enable threat actors to remain undetected within networks, highlighting the critical need for organizations to maintain continuous extended visibility, leverage anomaly based behavioral analysis, and deploy machine speed intervention across their environments.

Credit to Nahisha Nobregas (Senior Cyber Analyst) and Anna Gilbertson (Senior Cyber Analyst)

Appendices

Mid-High Confidence IoCs

(IoC – Type - Description)

-       trkbucket.s3.amazonaws[.]com – Hostname – C2 endpoint

-       trkbucket.s3.amazonaws[.]com/NVGAoZDmEe – URL – Payload

-       tnegadge.s3.amazonaws[.]com – Hostname – C2 endpoint

-       tnegadge.s3.amazonaws[.]com/dfuJ8t1uhG – URL – Payload

-       c47abdb1651f9f6d96d34313872e68fb132f39f5 - SHA1 File Hash – Payload

-       4abfaeadcd5ab5f2c3acfac6454d1176 - MD5 File Hash - Payload

-       fconnect.s3.amazonaws[.]com – Hostname – C2 endpoint

-       fconnect.s3.amazonaws[.]com/mnQDqysNrlg – URL - Payload

-       15.188.246[.]198 – IP address – C2 endpoint

-       15.188.246[.]198/4l4md4r.sh?grep – URL – Payload

-       185.193.125[.]65 – IP address – C2 endpoint

-       185.193.125[.]65/c4qDsztEW6/TIGHT_UNIVERSITY – URL – C2 endpoint

-       d8d6fe1a268374088fb6a5dc7e5cbb54 – MD5 File Hash – Payload

-       64.52.80[.]21 – IP address – C2 endpoint

-       0d8da2d1.digimg[.]store – Hostname – C2 endpoint

-       134.209.107[.]209 – IP address – C2 endpoint

Darktrace Model Detections

-       Compromise / High Priority Tunnelling to Bin Services (Enhanced Monitoring Model)

-       Compromise / Possible Tunnelling to Bin Services

-       Anomalous Server Activity / New User Agent from Internet Facing System

-       Compliance / Pastebin

-       Device / Internet Facing Device with High Priority Alert

-       Anomalous Connection / Callback on Web Facing Device

-       Anomalous File / Script from Rare External Location

-       Anomalous File / Incoming ELF File

-       Device / Suspicious Domain

-       Device / New User Agent

-       Anomalous Connection / Multiple Connections to New External TCP Port

-       Anomalous Connection / New User Agent to IP Without Hostname

-       Anomalous File / EXE from Rare External Location

-       Anomalous File / Internet Facing System File Download

-       Anomalous File / Multiple EXE from Rare External Locations

-       Compromise / Suspicious HTTP and Anomalous Activity

-       Device / Attack and Recon Tools

-       Device / Initial Attack Chain Activity

-       Device / Large Number of Model Alerts

-       Device / Large Number of Model Alerts from Critical Network Device

References

1.     https://forums.ivanti.com/s/article/Security-Advisory-Ivanti-Endpoint-Manager-Mobile-EPMM?language=en_US

2.     https://blog.eclecticiq.com/china-nexus-threat-actor-actively-exploiting-ivanti-endpoint-manager-mobile-cve-2025-4428-vulnerability

3.     https://www.wiz.io/blog/ivanti-epmm-rce-vulnerability-chain-cve-2025-4427-cve-2025-4428

4.     https://www.darktrace.com/blog/the-unknown-unknowns-post-exploitation-activities-of-ivanti-cs-ps-appliances

5.     https://www.virustotal.com/gui/file/ac91c2c777c9e8638ec1628a199e396907fbb7dcf9c430ca712ec64a6f1fcbc9/community

6.     https://www.virustotal.com/gui/file/f3e0147d359f217e2aa0a3060d166f12e68314da84a4ecb5cb205bd711c71998/community

7.     https://www.virustotal.com/gui/ip-address/15.188.246.198

8.     https://blog.eclecticiq.com/china-nexus-nation-state-actors-exploit-sap-netweaver-cve-2025-31324-to-target-critical-infrastructures

9.     https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure

10.  https://www.synacktiv.com/en/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises

The content provided in this blog is published by Darktrace for general informational purposes only and reflects our understanding of cybersecurity topics, trends, incidents, and developments at the time of publication. While we strive to ensure accuracy and relevance, the information is provided “as is” without any representations or warranties, express or implied. Darktrace makes no guarantees regarding the completeness, accuracy, reliability, or timeliness of any information presented and expressly disclaims all warranties.

Nothing in this blog constitutes legal, technical, or professional advice, and readers should consult qualified professionals before acting on any information contained herein.

Any references to third-party organizations, technologies, threat actors, or incidents are for informational purposes only and do not imply affiliation, endorsement, or recommendation.

Darktrace, its affiliates, employees, or agents shall not be held liable for any loss, damage, or harm arising from the use of or reliance on the information in this blog.

The cybersecurity landscape evolves rapidly, and blog content may become outdated or superseded. We reserve the right to update, modify, or remove any content without notice.

Continue reading
About the author
Nahisha Nobregas
SOC Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI