Blog
/
Network
/
February 26, 2023

Prevent Cryptojacking Attacks with Darktrace AI Technology

Protect your business from cryptojackers with Darktrace AI! Discover how your business can benefit round-the-clock defense with AI Cybersecurity.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Victoria Baldie
Director of Analysis, ANZ
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
26
Feb 2023

Introduction: Crpyptojacking attacks

Despite the market value of cryptocurrency itself decreasing in the final quarter of 2022, the number of known cryptocurrency mining software variants had more than tripled compared to the previous year. The intensive resource demands of mining cryptocurrency has exacerbated the trend of malicious hijacking third-party computers causing slower processing speeds and higher energy bills for many companies.

Cryptomining is often overlooked by security teams but is indicative of a gap in an organization’s defense in depth technologies and represents unauthorized access to the digital estate. Ignoring cryptomining as a compliance issue can open the floodgates to further compromises and continued access to organizational resources by threat actors.

Although having a security team able to react to and investigate malicious resource hijacking attempts is essential, there will inevitably be occasions when relying on human response alone is not enough. Having a round-the-clock autonomous decision maker able to respond instantaneously is paramount to ensuring a 24/7 defense strategy.

In August 2022, Darktrace detected and responded to an ongoing incident of attempted cryptojacking on the network of a customer in the logistics sector, when a threat actor launched their attack outside of normal business hours in an effort to evade the detection of the human security team. This blog explores how Darktrace AI Analyst and the human SOC team worked in tandem to detect and contain this threat, while providing unparalleled visibility to the customer.

Darktrace coverage of cryptojacking

The initial compromise was detected when Darktrace / NETWORK observed a new user agent on a customer server attempting to connect to an external endpoint that was rarely visited outside of business hours. Darktrace AI Analyst autonomously investigated the endpoint and determined that it redirected to a domain which downloaded an executable file (.exe). Following this, the device began making connections to endpoints associated with mining the Monero cryptocurrency, which automatically triggered an Enhanced Monitoring model, whereupon the Darktrace SOC team sent a Proactive Threat Notification (PTN) to the customer, alerting their security team to this anomalous activity. 

The Darktrace SOC team liaised with the customer via the Ask the Expert (ATE) service, and confirmed the activity, initially reported by Darktrace’s AI Analyst investigation, was related to malicious cryptomining activity. Thereafter, Darktrace's Autonomous Response took immediate action by isolating six critical servers to contain the malicious cryptomining activity and prevent any further compromise.

Figure 1: Screenshot of AI Analyst detecting connections to a rare endpoint on port 9852 to URI //c/root /. Status code of 301 indicated a redirect.
Figure 2: Screenshot of AI Analyst’s detection and summary of a suspicious file, named ‘bean’, being downloaded via wget from a rare external endpoint.

The attack vector of the cryptomining malware was determined through a packet capture (PCAP) of the suspicious file detected by AI Analyst. The PCAP showed that following the initial download of the file, it modified its own permissions to become an executable. While the Darktrace SOC team continued its investigation, the customer was able to maintain contact with the team and gain full visibility over their network through the Darktrace Mobile App. 

Figure 3: Screenshot showing Darktrace’s AI Analyst detection of the cryptomining activity taking place on the customer network. 

Working in tandem, Darktrace was able to instantly identify and investigate the anomalous activity in real time and followed this up with an autonomous investigation with Darktrace AI Analyst, without the need for any human interaction. The Darktrace SOC team was then able supplement this autonomous response, providing precious reaction time for the customer to identify and mitigate this cryptojacking incident. 

Figure 4: Screenshot of the Packet Capture (PCAP) downloaded via the Darktrace UI during the SOC team’s deep packet inspection.

Interestingly, the IP addresses associated with this cryptomining had not been previously reported by open-source intelligence (OSINT) sources, with VirusTotal listing the first public scan as the same date as this attack. This reflects Darktrace’s ability to detect and respond to novel and previously undetected threats as soon as they arise directly through its AI capabilities.

Figure 5: Screenshot of VirusTotal results for the same file name, from the offending IP.
Figure 6: Screenshot of the URL portion of VirusTotal displaying the date, detections, HTTP status codes alongside the relevant URL.

Conclusion

The continued prevalence of malicious cryptomining software underlines the need for instantaneous and autonomous defenses. In addition to hardening an organization’s attack surface, responding to more compliance-focused threats like cryptomining will enable organizations to close gaps which lead to more damaging compromises. Darktrace’s suite of products offers both an AI-driven system which alerts users to malicious downloads and connections, and a dedicated SOC team which works in tandem with its AI to advise security teams and assist them in containing threats at their earliest stages.

In this case, the cryptomining malware was quickly identified and mitigated despite occurring outside of business hours, and there being a lack of OSINT information regarding its indicators of compromise. Leveraging AI gives security teams a round-the-clock defense that responds instantaneously to even novel threats. When combined with human SOC teams, Darktrace offers a formidable defense against an ever-growing sophisticated threat landscape.  

Credit to: Victoria Baldie, Director of Analysis.

Appendices

Darktrace Model Detections 

Below is a list of model breaches in order of trigger. 

  • Model Breach: Compromise / High Priority Crypto Currency Mining 
  • Model Breach: Device / Initial Breach Chain Compromise 
  • Model Breach: Compromise / Monero Mining 

IOCs

165.227.154[.]84 - IP Address - C2 Endpoint

c0136a24781c4ebcafb3c9fdeb22681f6df814b4 - SHA-256 - File downloaded

MITRE AT&CK Mapping

Lateral Movement:

T1210 - Exploit of Remote Services

Command and Control:

T1001 - Data Obfuscation 

T1571 - Non-Standard Port

T1095 – Non-Application Layer Port

T1071 – Web Protocols

Initial Access:

T1189 – Drive by Compromise

Resource Deployment:

T1588 – Malware

References

[1] https://securelist.com/cryptojacking-report-2022/107898/ 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Victoria Baldie
Director of Analysis, ANZ

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI