Blog
/
OT
/
October 31, 2024

Understanding the NERC-CIP015 Internal Network Security Monitoring (INSM) requirements

Learn about NERC CIP-015 and its internal network security monitoring requirements. Discover how to ensure compliance and enhance your security posture.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Daniel Simonds
Director of Operational Technology
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Oct 2024

Background: NERC CIP-015

In January of 2023 the Federal Energy Regulatory Commission (FERC) released FERC Order 887 which addresses a critical security gap in Critical Infrastructure Protection (CIP) standards, the lack of internal network security monitoring (INSM).

The current NERC CIP standards only require solutions that use traditional detection systems that identify malicious code based on known rules and signatures. The new legislation will now require electric cooperatives to implement INSMs to detect malicious activity in east-west network traffic. INSMs establish a baseline of network activity and detect anomalies that would bypass traditional detection systems, improving an organization’s ability to detect novel threats. Without INSM, organizations have limited visibility into malicious activities inside their networks, leaving them vulnerable if attackers breach initial defenses like firewalls and anti-virus software.

Implementation of NERC CIP-015

Once approved, Bulk Electronic Systems (BESs) will have 36 months to implement INSM, and medium-impact BESs with external routable connectivity (ERC) will have 60 months to do so.

While the approval of the NERC CIP-015 requirements have not been finalized, preparation on the part of electric cooperatives should start as soon as possible. Darktrace is committed to helping electric cooperatives meet the requirements for INSM and help reach compliance standards.

Why is internal network security monitoring important?

NERC CIP-015 aims to enhance the detection of anomalies or unauthorized network activity within CIP environments, underscoring the importance of monitoring East-West traffic within trust zones. This approach enables faster response and recovery times.

INSMs are essential to detecting threats that bypass traditional defenses. For example, insider threats, sophisticated new attack techniques, and threats that exploit compromised credentials—such as those obtained through phishing or other malicious activities—can easily bypass traditional firewalls and antivirus software. These threats either introduce novel methods or leverage legitimate access, making them difficult to detect.

INSMs don’t rely on rules and signatures to detect anomalous activity, they spot abnormalities in network traffic and create alerts based on this activity making them vital to detecting sophisticated threats. Additionally, INSM sits behind the firewall and provides detections utilizing the passive monitoring of east west and north south traffic within the enforcement boundary.

Buyers should be aware of the discrepancies between different INSMs. Some systems require constant tuning and updating, external connectivity forcing holes in segmentation or have intrusive deployments that put sensitive OT assets at risk.

What are the NERC CIP-015 requirements?

The goal of this directive is to ensure that cyber threats are identified early in the attack lifecycle by mandating implementation of security systems that detect and speed up mitigation of malicious activity.

The requirements are divided into three sections:

  • Network security monitoring
  • Data retention for anomalous activity
  • Data protection

NERC CIP-015 emphasizes the importance of having documented processes and evidence of implementation, with a focus on risk-based monitoring, anomaly detection, evaluation, retention of data, and protection against unauthorized access. Below is a breakdown of each requirement.

R1: Network Security Monitoring

The NERC CIP-015 requires the implementation of and a documented process for monitoring networks within Electronic Security Perimeters (ESPs) that contain high and medium impact BES Cyber Systems.

Key parts:

Part 1.1: Use a risk-based rationale to implement network data feeds that monitor connections, devices, and communications.

Part 1.2: Detect anomalous network activity using the data feeds.

Part 1.3: Evaluate the anomalous activity to determine necessary actions.

M1: Evidence for R1 Implementation: Documentation of processes, including risk-based rationale for data collection, detection events, configuration settings, and network baselines.

Incorporating automated solutions for network baselining is essential for effective internal monitoring, especially in diverse environments like substations and control centers. Each environment requires unique baselines—what’s typical for a substation may differ significantly from a control center, making manual monitoring impractical.

A continuous internal monitoring solution powered by artificial intelligence (AI) simplifies this challenge by instantly detecting all connected assets, dynamically learning the environment’s baseline behavior, and identifying anomalies in real-time. Unlike traditional methods, Darktrace’s AI-driven approach requires no external connectivity or repeated tuning, offering a seamless, adaptive solution for maintaining secure operations across all environments.

R2: Data Retention for Anomalous Activity

Documented processes must be in place to retain network security data related to detected anomalies until the required actions are completed.

Note: Data that does not relate to detected anomalies (Part 1.2) is not required to be retained.

M2: Evidence for Data Retention (R2): Documentation of data retention processes, system configurations, or reports showing compliance with R2.

R3: Data Protection: Implement documented processes to protect the collected security monitoring data from unauthorized deletion or modification.

M3: Evidence for Data Protection (R3): Documentation demonstrating how network security monitoring data is protected from unauthorized access or changes.

How to choose the right INSM for your organization?

Several vendors will offer INSM, but how do you choose the right solution for your organization?

Here are seven questions to help you get started evaluating potential INSM vendors:

  1. How does the solution help with ongoing compliance and reporting including CIP-015? Or any other regulations we comply with?
  2. Does the solution provide real-time monitoring of east-west traffic across critical systems? And what kind of threats has it proven capable of finding?
  3. How deep is the traffic visibility—does it offer Layer 7 (application) insights, or is it limited to Layers 3-4?
  4. Is the solution compatible with our existing infrastructure (firewalls, IDS/IPS, SIEM, OT networks)?
  5. Is this solution inline, passive, or hybrid? What impact will it have on network latency?
  6. Does the vendor have experience with electric utilities or critical infrastructure environments?
  7. Where and how are logs and monitoring data stored?

How Darktrace helps electric utilities with INSM requirements

Darktrace's ActiveAI Security Platform is uniquely designed to continuously monitor network activity and detect anomalous activity across both IT and OT environments successfully detecting insider threats and novel ransomware, while accelerating time to detection and incident reporting.

Most INSM solutions require repeated baselining, which creates more work and increases the likelihood of false positives, as even minor deviations trigger alerts. Since networks are constantly changing, baselines need to adjust in real time. Unlike these solutions, Darktrace does not depend on external connectivity or cloud access over the public internet. Our passive network analysis requires no agents or intrusive scanning, minimizing disruptions and reducing risks to OT systems.

Darktrace's AI-driven threat detection, asset management, and incident response capabilities can help organizations comply with the requirements of NERC CIP-015 for internal network security monitoring and data protection. Built specifically to deploy in OT environments, Darktrace / OT comprehensively manages, detects, evaluates, and protects network activity and anomalous events across IT and OT environments, facilitating adherence to regulatory requirements like data retention and anomaly management.

See how INSM with Darktrace can enhance your security operations, schedule a personalized demo today.

Disclaimer

The information provided in this blog is intended for informational purposes only and reflects Darktrace’s understanding of the NERC CIP-015 INSM requirements as of the publication date. While every effort has been made to ensure the accuracy and reliability of the content, Darktrace makes no warranties or representations regarding its accuracy, completeness, or applicability to specific situations. This blog does not constitute legal or compliance advice and readers are encouraged to consult with qualified professionals for guidance specific to their circumstances. Darktrace disclaims any liability for actions taken or not taken based on the information contained herein.

References

1.     https://www.nerc.com/pa/Stand/Reliability%20Standards/CIP-015-1.pdf

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Daniel Simonds
Director of Operational Technology

More in this series

No items found.

Blog

/

/

December 22, 2025

The Year Ahead: AI Cybersecurity Trends to Watch in 2026

Default blog imageDefault blog image

Each year, we ask some of our experts to step back from the day-to-day pace of incidents, vulnerabilities, and headlines to reflect on the forces reshaping the threat landscape. The goal is simple:  to identify and share the trends we believe will matter most in the year ahead, based on the real-world challenges our customers are facing, the technology and issues our R&D teams are exploring, and our observations of how both attackers and defenders are adapting.  

In 2025, we saw generative AI and early agentic systems moving from limited pilots into more widespread adoption across enterprises. Generative AI tools became embedded in SaaS products and enterprise workflows we rely on every day, AI agents gained more access to data and systems, and we saw glimpses of how threat actors can manipulate commercial AI models for attacks. At the same time, expanding cloud and SaaS ecosystems and the increasing use of automation continued to stretch traditional security assumptions.

Looking ahead to 2026, we’re already seeing the security of AI models, agents, and the identities that power them becoming a key point of tension – and opportunity -- for both attackers and defenders. Long-standing challenges and risks such as identity, trust, data integrity, and human decision-making will not disappear, but AI and automation will increase the speed and scale of the cyber risk.  

Here's what a few of our experts believe are the trends that will shape this next phase of cybersecurity, and the realities organizations should prepare for.  

Agentic AI is the next big insider risk: In 2026, organizations may experience their first large-scale security incidents driven by agentic AI behaving in unintended ways—not necessarily due to malicious intent, but because of how easily agents can be influenced. AI agents are designed to be helpful, lack judgment, and operate without understanding context or consequence. This makes them highly efficient—and highly pliable. Unlike human insiders, agentic systems do not need to be socially engineered, coerced, or bribed. They only need to be prompted creatively, misinterpret legitimate prompts, or be vulnerable to indirect prompt injection. Without strong controls around access, scope, and behavior, agents may over-share data, misroute communications, or take actions that introduce real business risk. Securing AI adoption will increasingly depend on treating agents as first-class identities—monitored, constrained, and evaluated based on behavior, not intent.

-- Nicole Carignan, SVP of Security & AI Strategy


Prompt Injection Moves from Theory to Front-Page Breach: We’ll see the first major story of an indirect prompt injection attack against companies adopting AI either through an accessible chatbot or an agentic system ingesting a hidden prompt. In practice, this may result in unauthorized data exposure or unintended malicious behavior by AI systems, such as over-sharing information, misrouting communications, or acting outside their intended scope. Recent attention on this risk—particularly in the context of AI-powered browsers and additional safety layers being introduced to guide agent behavior—highlights a growing industry awareness of the challenge.  

-- Collin Chapleau, Senior Director of Security & AI Strategy

Humans are even more outpaced, but not broken: When it comes to cyber, people aren’t failing; the system is moving faster than they can. Attackers exploit the gap between human judgment and machine-speed operations. The rise of deepfakes and emotion-driven scams that we’ve seen in the last few years reduce our ability to spot the familiar human cues we’ve been taught to look out for. Fraud now spans social platforms, encrypted chat, and instant payments in minutes. Expecting humans to be the last line of defense is unrealistic.

Defense must assume human fallibility and design accordingly. Automated provenance checks, cryptographic signatures, and dual-channel verification should precede human judgment. Training still matters, but it cannot close the gap alone. In the year ahead, we need to see more of a focus on partnership: systems that absorb risk so humans make decisions in context, not under pressure.

-- Margaret Cunningham, VP of Security & AI Strategy

AI removes the attacker bottleneck—smaller organizations feel the impact: One factor that is currently preventing more companies from breaches is a bottleneck on the attacker side: there’s not enough human hacker capital. The number of human hands on a keyboard is a rate-determining factor in the threat landscape. Further advancements of AI and automation will continue to open that bottleneck. We are already seeing that. The ostrich approach of hoping that one’s own company is too obscure to be noticed by attackers will no longer work as attacker capacity increases.  

-- Max Heinemeyer, Global Field CISO

SaaS platforms become the preferred supply chain target: Attackers have learned a simple lesson: compromising SaaS platforms can have big payouts. As a result, we’ll see more targeting of commercial off-the-shelf SaaS providers, which are often highly trusted and deeply integrated into business environments. Some of these attacks may involve software with unfamiliar brand names, but their downstream impact will be significant. In 2026, expect more breaches where attackers leverage valid credentials, APIs, or misconfigurations to bypass traditional defenses entirely.

-- Nathaniel Jones, VP of Security & AI Strategy


Increased commercialization of generative AI and AI assistants in cyber attacks: One trend we’re watching closely for 2026 is the commercialization of AI-assisted cybercrime. For example, cybercrime prompt playbooks sold on the dark web—essentially copy-and-paste frameworks that show attackers how to misuse or jailbreak AI models. It’s an evolution of what we saw in 2025, where AI lowered the barrier to entry. In 2026, those techniques become productized, scalable, and much easier to reuse.  

 

-- Toby Lewis, Global Head of Threat Analysis


Taken together, these trends underscore that the core challenges of cybersecurity are not changing dramatically -- identity, trust, data, and human decision-making still sit at the core of most incidents. What is changing quickly is the environment in which these challenges play out. AI and automation are accelerating everything: how quickly attackers can scale, how widely risk is distributed, and how easily unintended behavior can create real impact. And as technology like cloud services and SaaS platforms become even more deeply integrated into businesses, the potential attack surface continues to expand.  

Predictions are not guarantees. But the patterns emerging today suggest that 2026 will be a year where securing AI becomes inseparable from securing the business itself. The organizations that prepare now—by understanding how AI is used, how it behaves, and how it can be misused—will be best positioned to adopt these technologies with confidence in the year ahead.

Learn more about how to secure AI adoption in the enterprise without compromise by registering to join our live launch webinar on February 3, 2026.  

Continue reading
About the author

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI