Understanding the NERC-CIP015 Internal Network Security Monitoring (INSM) requirements
Learn about NERC CIP-015 and its internal network security monitoring requirements. Discover how to ensure compliance and enhance your security posture.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Daniel Simonds
Director of Operational Technology
Share
31
Oct 2024
Background: NERC CIP-015
In January of 2023 the Federal Energy Regulatory Commission (FERC) released FERC Order 887 which addresses a critical security gap in Critical Infrastructure Protection (CIP) standards, the lack of internal network security monitoring (INSM).
The current NERC CIP standards only require solutions that use traditional detection systems that identify malicious code based on known rules and signatures. The new legislation will now require electric cooperatives to implement INSMs to detect malicious activity in east-west network traffic. INSMs establish a baseline of network activity and detect anomalies that would bypass traditional detection systems, improving an organization’s ability to detect novel threats. Without INSM, organizations have limited visibility into malicious activities inside their networks, leaving them vulnerable if attackers breach initial defenses like firewalls and anti-virus software.
Implementation of NERC CIP-015
Once approved, Bulk Electronic Systems (BESs) will have 36 months to implement INSM, and medium-impact BESs with external routable connectivity (ERC) will have 60 months to do so.
While the approval of the NERC CIP-015 requirements have not been finalized, preparation on the part of electric cooperatives should start as soon as possible. Darktrace is committed to helping electric cooperatives meet the requirements for INSM and help reach compliance standards.
Why is internal network security monitoring important?
NERC CIP-015 aims to enhance the detection of anomalies or unauthorized network activity within CIP environments, underscoring the importance of monitoring East-West traffic within trust zones. This approach enables faster response and recovery times.
INSMs are essential to detecting threats that bypass traditional defenses. For example, insider threats, sophisticated new attack techniques, and threats that exploit compromised credentials—such as those obtained through phishing or other malicious activities—can easily bypass traditional firewalls and antivirus software. These threats either introduce novel methods or leverage legitimate access, making them difficult to detect.
INSMs don’t rely on rules and signatures to detect anomalous activity, they spot abnormalities in network traffic and create alerts based on this activity making them vital to detecting sophisticated threats. Additionally, INSM sits behind the firewall and provides detections utilizing the passive monitoring of east west and north south traffic within the enforcement boundary.
Buyers should be aware of the discrepancies between different INSMs. Some systems require constant tuning and updating, external connectivity forcing holes in segmentation or have intrusive deployments that put sensitive OT assets at risk.
What are the NERC CIP-015 requirements?
The goal of this directive is to ensure that cyber threats are identified early in the attack lifecycle by mandating implementation of security systems that detect and speed up mitigation of malicious activity.
The requirements are divided into three sections:
Network security monitoring
Data retention for anomalous activity
Data protection
NERC CIP-015 emphasizes the importance of having documented processes and evidence of implementation, with a focus on risk-based monitoring, anomaly detection, evaluation, retention of data, and protection against unauthorized access. Below is a breakdown of each requirement.
R1: Network Security Monitoring
The NERC CIP-015 requires the implementation of and a documented process for monitoring networks within Electronic Security Perimeters (ESPs) that contain high and medium impact BES Cyber Systems.
Key parts:
Part 1.1: Use a risk-based rationale to implement network data feeds that monitor connections, devices, and communications.
Part 1.2: Detect anomalous network activity using the data feeds.
Part 1.3: Evaluate the anomalous activity to determine necessary actions.
M1: Evidence for R1 Implementation: Documentation of processes, including risk-based rationale for data collection, detection events, configuration settings, and network baselines.
Incorporating automated solutions for network baselining is essential for effective internal monitoring, especially in diverse environments like substations and control centers. Each environment requires unique baselines—what’s typical for a substation may differ significantly from a control center, making manual monitoring impractical.
A continuous internal monitoring solution powered by artificial intelligence (AI) simplifies this challenge by instantly detecting all connected assets, dynamically learning the environment’s baseline behavior, and identifying anomalies in real-time. Unlike traditional methods, Darktrace’s AI-driven approach requires no external connectivity or repeated tuning, offering a seamless, adaptive solution for maintaining secure operations across all environments.
R2: Data Retention for Anomalous Activity
Documented processes must be in place to retain network security data related to detected anomalies until the required actions are completed.
Note: Data that does not relate to detected anomalies (Part 1.2) is not required to be retained.
M2: Evidence for Data Retention (R2): Documentation of data retention processes, system configurations, or reports showing compliance with R2.
R3: Data Protection: Implement documented processes to protect the collected security monitoring data from unauthorized deletion or modification.
M3: Evidence for Data Protection (R3): Documentation demonstrating how network security monitoring data is protected from unauthorized access or changes.
How to choose the right INSM for your organization?
Several vendors will offer INSM, but how do you choose the right solution for your organization?
Here are seven questions to help you get started evaluating potential INSM vendors:
How does the solution help with ongoing compliance and reporting including CIP-015? Or any other regulations we comply with?
Does the solution provide real-time monitoring of east-west traffic across critical systems? And what kind of threats has it proven capable of finding?
How deep is the traffic visibility—does it offer Layer 7 (application) insights, or is it limited to Layers 3-4?
Is the solution compatible with our existing infrastructure (firewalls, IDS/IPS, SIEM, OT networks)?
Is this solution inline, passive, or hybrid? What impact will it have on network latency?
Does the vendor have experience with electric utilities or critical infrastructure environments?
Where and how are logs and monitoring data stored?
How Darktrace helps electric utilities with INSM requirements
Darktrace's ActiveAI Security Platform is uniquely designed to continuously monitor network activity and detect anomalous activity across both IT and OT environments successfully detecting insider threats and novel ransomware, while accelerating time to detection and incident reporting.
Most INSM solutions require repeated baselining, which creates more work and increases the likelihood of false positives, as even minor deviations trigger alerts. Since networks are constantly changing, baselines need to adjust in real time. Unlike these solutions, Darktrace does not depend on external connectivity or cloud access over the public internet. Our passive network analysis requires no agents or intrusive scanning, minimizing disruptions and reducing risks to OT systems.
Darktrace's AI-driven threat detection, asset management, and incident response capabilities can help organizations comply with the requirements of NERC CIP-015 for internal network security monitoring and data protection. Built specifically to deploy in OT environments, Darktrace / OT comprehensively manages, detects, evaluates, and protects network activity and anomalous events across IT and OT environments, facilitating adherence to regulatory requirements like data retention and anomaly management.
See how INSM with Darktrace can enhance your security operations, schedule a personalized demo today.
Disclaimer
The information provided in this blog is intended for informational purposes only and reflects Darktrace’s understanding of the NERC CIP-015 INSM requirements as of the publication date. While every effort has been made to ensure the accuracy and reliability of the content, Darktrace makes no warranties or representations regarding its accuracy, completeness, or applicability to specific situations. This blog does not constitute legal or compliance advice and readers are encouraged to consult with qualified professionals for guidance specific to their circumstances. Darktrace disclaims any liability for actions taken or not taken based on the information contained herein.
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Proactive OT Security: Lessons on Supply Chain Risk Management from a Rogue Raspberry Pi
Darktrace detected a rogue Raspberry PI device that had been left by a Manufacturing customer’s vendor in the customer’s ICS network. The convergence between supply chain risk and insider risk highlights how important it is to implement continuous monitoring of the internal ICS network for proactive risk management.
Adapting to new USCG cybersecurity mandates: Darktrace for ports and maritime systems
Darktrace uses AI-led OT, IoT, and IT Network Security to help secure maritime transportation systems. This blog describes some of the new mandated requirements by the USCG and demonstrates Darktrace’s security capabilities.
Revolutionizing OT Risk Prioritization with Darktrace 6.3
Darktrace / OT introduces IEC-62443 compliance reporting, expanded protocol visibility, and dynamic risk modeling, redefining how OT teams prioritize risks with contextual insights now additionally powered by firewall rule analysis and KEV scoring, all purpose-built to protect industrial operations and safety.
Pallavi Singh
Product Marketing Manager, OT Security & Compliance
Defending the Cloud: Stopping Cyber Threats in Azure and AWS with Darktrace
Real-world intrusions across Azure and AWS
As organizations pursue greater scalability and flexibility, cloud platforms like Microsoft Azure and Amazon Web Services (AWS) have become essential for enabling remote operations and digitalizing corporate environments. However, this shift introduces a new set of security risks, including expanding attack surfaces, misconfigurations, and compromised credentials frequently exploited by threat actors.
This blog dives into three instances of compromise within a Darktrace customer’s Azure and AWS environment which Darktrace.
The first incident took place in early 2024 and involved an attacker compromising a legitimate user account to gain unauthorized access to a customer’s Azure environment.
The other two incidents, taking place in February and March 2025, targeted AWS environments. In these cases, threat actors exfiltrated corporate data, and in one instance, was able to detonate ransomware in a customer’s environment.
Case 1 - Microsoft Azure
Figure 1: Simplified timeline of the attack on a customer’s Azure environment.
In early 2024, Darktrace identified a cloud compromise on the Azure cloud environment of a customer in the Europe, the Middle East and Africa (EMEA) region.
Initial access
In this case, a threat actor gained access to the customer’s cloud environment after stealing access tokens and creating a rogue virtual machine (VM). The malicious actor was found to have stolen access tokens belonging to a third-party external consultant’s account after downloading cracked software.
With these stolen tokens, the attacker was able to authenticate to the customer’s Azure environment and successfully modified a security rule to allow inbound SSH traffic from a specific IP range (i.e., securityRules/AllowCidrBlockSSHInbound). This was likely performed to ensure persistent access to internal cloud resources.
Detection and investigation of the threat
Darktrace / IDENTITY recognized that this activity was highly unusual, triggering the “Repeated Unusual SaaS Resource Creation” alert.
Cyber AI Analyst launched an autonomous investigation into additional suspicious cloud activities occurring around the same time from the same unusual location, correlating the individual events into a broader account hijack incident.
Figure 2: Cyber AI Analyst’s investigation into unusual cloud activity performed by the compromised account.
Figure 3: Surrounding resource creation events highlighted by Cyber AI Analyst.
Figure 4: Surrounding resource creation events highlighted by Cyber AI Analyst.
“Create resource service limit” events typically indicate the creation or modification of service limits (i.e., quotas) for a specific Azure resource type within a region. Meanwhile, “Registers the Capacity Resource Provider” events refer to the registration of the Microsoft Capacity resource provider within an Azure subscription, responsible for managing capacity-related resources, particularly those related to reservations and service limits. These events suggest that the threat actor was looking to create new cloud resources within the environment.
Around ten minutes later, Darktrace detected the threat actor creating or modifying an Azure disk associated with a virtual machine (VM), suggesting an attempt to create a rogue VM within the environment.
Threat actors can leverage such rogue VMs to hijack computing resources (e.g., by running cryptomining malware), maintain persistent access, move laterally within the cloud environment, communicate with command-and-control (C2) infrastructure, and stealthily deliver and deploy malware.
Persistence
Several weeks later, the compromised account was observed sending an invitation to collaborate to an external free mail (Google Mail) address.
Darktrace deemed this activity as highly anomalous, triggering a compliance alert for the customer to review and investigate further.
The next day, the threat actor further registered new multi-factor authentication (MFA) information. These actions were likely intended to maintain access to the compromised user account. The customer later confirmed this activity by reviewing the corresponding event logs within Darktrace.
Case 2 – Amazon Web Services
Figure 5: Simplified timeline of the attack on a customer’s AWS environment
In February 2025, another cloud-based compromised was observed on a UK-based customer subscribed to Darktrace’s Managed Detection and Response (MDR) service.
How the attacker gained access
The threat actor was observed leveraging likely previously compromised credential to access several AWS instances within customer’s Private Cloud environment and collecting and exfiltrating data, likely with the intention of deploying ransomware and holding the data for ransom.
Darktrace alerting to malicious activity
This observed activity triggered a number of alerts in Darktrace, including several high-priority Enhanced Monitoring alerts, which were promptly investigated by Darktrace’s Security Operations Centre (SOC) and raised to the customer’s security team.
The earliest signs of attack observed by Darktrace involved the use of two likely compromised credentials to connect to the customer’s Virtual Private Network (VPN) environment.
Internal reconnaissance
Once inside, the threat actor performed internal reconnaissance activities and staged the Rclone tool “ProgramData\rclone-v1.69.0-windows-amd64.zip”, a command-line program to sync files and directories to and from different cloud storage providers, to an AWS instance whose hostname is associated with a public key infrastructure (PKI) service.
The threat actor was further observed accessing and downloading multiple files hosted on an AWS file server instance, notably finance and investment-related files. This likely represented data gathering prior to exfiltration.
Shortly after, the PKI-related EC2 instance started making SSH connections with the Rclone SSH client “SSH-2.0-rclone/v1.69.0” to a RockHoster Virtual Private Server (VPS) endpoint (193.242.184[.]178), suggesting the threat actor was exfiltrating the gathered data using the Rclone utility they had previously installed. The PKI instance continued to make repeated SSH connections attempts to transfer data to this external destination.
Darktrace’s Autonomous Response
In response to this activity, Darktrace’s Autonomous Response capability intervened, blocking unusual external connectivity to the C2 server via SSH, effectively stopping the exfiltration of data.
This activity was further investigated by Darktrace’s SOC analysts as part of the MDR service. The team elected to extend the autonomously applied actions to ensure the compromise remained contained until the customer could fully remediate the incident.
Continued reconissance
Around the same time, the threat actor continued to conduct network scans using the Nmap tool, operating from both a separate AWS domain controller instance and a newly joined device on the network. These actions were accompanied by further internal data gathering activities, with around 5 GB of data downloaded from an AWS file server.
The two devices involved in reconnaissance activities were investigated and actioned by Darktrace SOC analysts after additional Enhanced Monitoring alerts had triggered.
Lateral movement attempts via RDP connections
Unusual internal RDP connections to a likely AWS printer instance indicated that the threat actor was looking to strengthen their foothold within the environment and/or attempting to pivot to other devices, likely in response to being hindered by Autonomous Response actions.
This triggered multiple scanning, internal data transfer and unusual RDP alerts in Darktrace, as well as additional Autonomous Response actions to block the suspicious activity.
Suspicious outbound SSH communication to known threat infrastructure
Darktrace subsequently observed the AWS printer instance initiating SSH communication with a rare external endpoint associated with the web hosting and VPS provider Host Department (67.217.57[.]252), suggesting that the threat actor was attempting to exfiltrate data to an alternative endpoint after connections to the original destination had been blocked.
Further investigation using open-source intelligence (OSINT) revealed that this IP address had previously been observed in connection with SSH-based data exfiltration activity during an Akira ransomware intrusion [1].
Once again, connections to this IP were blocked by Darktrace’s Autonomous Response and subsequently these blocks were extended by Darktrace’s SOC team.
The above behavior generated multiple Enhanced Monitoring alerts that were investigated by Darktrace SOC analysts as part of the Managed Threat Detection service.
Figure 5: Enhanced Monitoring alerts investigated by SOC analysts as part of the Managed Detection and Response service.
Final containment and collaborative response
Upon investigating the unusual scanning activity, outbound SSH connections, and internal data transfers, Darktrace analysts extended the Autonomous Response actions previously triggered on the compromised devices.
As the threat actor was leveraging these systems for data exfiltration, all outgoing traffic from the affected devices was blocked for an additional 24 hours to provide the customer’s security team with time to investigate and remediate the compromise.
Additional investigative support was provided by Darktrace analysts through the Security Operations Service, after the customer's opened of a ticket related to the unfolding incident.
Figure 8: Simplified timeline of the attack
Around the same time of the compromise in Case 2, Darktrace observed a similar incident on the cloud environment of a different customer.
Initial access
On this occasion, the threat actor appeared to have gained entry into the AWS-based Virtual Private Cloud (VPC) networkvia a SonicWall SMA 500v EC2 instance allowing inbound traffic on any port.
The instance received HTTPS connections from three rare Vultr VPS endpoints (i.e., 45.32.205[.]52, 207.246.74[.]166, 45.32.90[.]176).
Lateral movement and exfiltration
Around the same time, the EC2 instance started scanning the environment and attempted to pivot to other internal systems via RDP, notably a DC EC2 instance, which also started scanning the network, and another EC2 instance.
The latter then proceeded to transfer more than 230 GB of data to the rare external GTHost VPS endpoint 23.150.248[.]189, while downloading hundreds of GBs of data over SMB from another EC2 instance.
Figure 7: Cyber AI Analyst incident generated following the unusual scanning and RDP connections from the initial compromised device.
The same behavior was replicated across multiple EC2 instances, whereby compromised instances uploaded data over internal RDP connections to other instances, which then started transferring data to the same GTHost VPS endpoint over port 5000, which is typically used for Universal Plug and Play (UPnP).
What Darktrace detected
Darktrace observed the threat actor uploading a total of 718 GB to the external endpoint, after which they detonated ransomware within the compromised VPC networks.
This activity generated nine Enhanced Monitoring alerts in Darktrace, focusing on the scanning and external data activity, with the earliest of those alerts triggering around one hour after the initial intrusion.
Darktrace’s Autonomous Response capability was not configured to act on these devices. Therefore, the malicious activity was not autonomously blocked and escalated to the point of ransomware detonation.
Conclusion
This blog examined three real-world compromises in customer cloud environments each illustrating different stages in the attack lifecycle.
The first case showcased a notable progression from a SaaS compromise to a full cloud intrusion, emphasizing the critical role of anomaly detection when legitimate credentials are abused.
The latter two incidents demonstrated that while early detection is vital, the ability to autonomously block malicious activity at machine speed is often the most effective way to contain threats before they escalate.
Together, these incidents underscore the need for continuous visibility, behavioral analysis, and machine-speed intervention across hybrid environments. Darktrace's AI-driven detection and Autonomous Response capabilities, combined with expert oversight from its Security Operations Center, give defenders the speed and clarity they need to contain threats and reduce operational disruption, before the situation spirals.
Credit to Alexandra Sentenac (Senior Cyber Analyst) and Dylan Evans (Security Research Lead)
Top Eight Threats to SaaS Security and How to Combat Them
The latest on the identity security landscape
Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.
As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.
What is SaaS security?
SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.
Below are the top eight threats that target SaaS security and user identities.
1. Account Takeover (ATO)
Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.
2. Privilege escalation
Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.
3. Lateral movement
Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.
4. Multi-Factor Authentication (MFA) bypass and session hijacking
Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.
5. OAuth token abuse
Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.
6. Insider threats
Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.
SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.
8. Business Email Compromise (BEC) via SaaS
Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.
BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.
Protecting against these SaaS threats
Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.
However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.
AI-powered SaaS security stays ahead of the threat landscape
New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.