Blog
/
OT
/
May 11, 2023

Securing OT Systems: The Limits of the Air Gap Approach

Air-gapped security measures are not enough for resilience against cyber attacks. Read about how to gain visibility & reduce your cyber vulnerabilities.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Lesser
Head of U.S. Policy Analysis and Engagement
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
11
May 2023

At a Glance:

  • Air gaps reduce cyber risk, but they do not prevent modern cyber attacks
  • Having visibility into an air-gapped network is better than assuming your defenses are impenetrable and having zero visibility
  • Darktrace can provide visibility and resiliency without jeopardizing the integrity of the air gap

What is an 'Air Gap'?

Information technology (IT) needs to fluidly connect with the outside world in order channel a flow of digital information across everything from endpoints and email systems to cloud and hybrid infrastructures. At the same time, this high level of connectivity makes IT systems particularly vulnerable to cyber-attacks.  

Operational technology (OT), which controls the operations of physical processes, are considerably more sensitive. OT often relies on a high degree of regularity to maintain continuity of operations. Even the slightest disturbance can lead to disastrous results. Just a few seconds of delay on a programmable logic controller (PLC), for example, can significantly disrupt a manufacturing assembly line, leading to downtime at a considerable cost. In worst-case scenarios, disruptions to OT can even threaten human safety. 

An air gap is a ‘digital moat’ where data cannot enter or leave OT environments unless it is transferred manually.

Organizations with OT have traditionally tried to reconcile this conflict between IT and OT by attempting to separate them completely. Essentially, the idea is to let IT do what IT does best — facilitate activities like communication and data transfer at rapid speeds, thus allowing people to connect with each other and access information and applications in an efficient capacity. But at the same time, erect an air gap between IT and OT so that any cyber threats that slip into IT systems do not then spread laterally into highly sensitive, mission-critical OT systems. This air gap is essentially a ‘digital moat’ where data cannot enter or leave OT environments unless it is transferred manually.

Limitations of the Air Gap

The air gap approach makes sense, but it is far from perfect. First, many organizations that believe they have completely air-gapped systems in fact have unknown points of IT/OT convergence, that is, connections between IT and OT networks of which they are unaware. 

Many organizations today are also intentionally embracing IT/OT convergence to reap the benefits of digital transformation of their OT, in what is often called Industry 4.0. Examples include the industrial cloud (or ICSaaS), the industrial internet of things (IIoT), and other types of cyber-physical systems that offer increased efficiency and expanded capabilities when compared to more traditional forms of OT. Organizations may also embrace IT/OT convergence due to a lack of human capital, as convergence can make processes simpler and more efficient.

Even when an organization does have a true air gap (which is nearly impossible to confirm without full visibility across IT and OT environments), the fact is that there are a variety of ways for attackers to ‘jump the air gap'. Full visibility across IT and OT ecosystems in a single pane of glass is thus essential for organizations seeking to secure their OT. This is not only to illuminate any points of IT/OT convergence and validate the fact that an air gap exists in the first place, but also to see when an attack slips through the air gap.

Figure 1: Darktrace/OT's unified view of IT and OT environments.

Air Gap Attack Vectors

Even a perfect air gap will be vulnerable to a variety of different attack vectors, including (but not limited to) the following: 

  • Physical compromise: An adversary bypasses physical security and gains access directly to the air-gapped network devices. Physical access is by far the most effective and obvious technique.
  • Insider threats: Someone who is part of an organization and has access to air-gapped secure systems intentionally or unintentionally compromises a system.
  • Supply chain compromise: A vendor with legitimate access to air-gapped systems unwittingly is compromised and brings infected devices into a network. 
  • Misconfiguration: Misconfiguration of access controls or permissions allows an attacker to access the air-gapped system through a separate device on the network.
  • Social engineering (media drop): If an attacker was able to successfully conduct a malicious USB/media drop and an employee was to use that media within the air-gapped system, the network could be compromised. 
  • Other advanced tactics: Thermal manipulation, covert surface vibrations, LEDs, ultrasonic transmissions, radio signals, and magnetic fields are among a range of advanced tactics documented and demonstrated by researchers at Ben Gurion University. 

Vulnerabilities of Air-Gapped Systems

Aside from susceptibility to advanced techniques, tactics, and procedures (TTPs) such as thermal manipulation and magnetic fields, more common vulnerabilities associated with air-gapped environments include factors such as unpatched systems going unnoticed, lack of visibility into network traffic, potentially malicious devices coming on the network undetected, and removable media being physically connected within the network. 

Once the attack is inside OT systems, the consequences can be disastrous regardless of whether there is an air gap or not. However, it is worth considering how the existence of the air gap can affect the time-to-triage and remediation in the case of an incident. For example, the existence of an air gap may seriously limit an incident response vendor’s ability to access the network for digital forensics and response. 

Kremlin Hackers Jumping the Air Gap 

In 2018, the U.S. Department of Homeland Security (DHS) issued an alert documenting the TTPs used by Russian threat actors known as Dragonfly and Energetic Bear. Further reporting alleged that these groups ‘jumped the air gap,’ and, concerningly, gained the ability to disable the grid at the time of their choosing. 

These attackers successfully gained access to sensitive air-gapped systems across the energy sector and other critical infrastructure sectors by targeting vendors and suppliers through spear-phishing emails and watering hole attacks. These vendors had legitimate access to air-gapped systems, and essentially brought the infection into these systems unintentionally when providing support services such as patch deployment.

This incident reveals that even if a sensitive OT system has complete digital isolation, this robust air gap still cannot fully eliminate one of the greatest vulnerabilities of any system—human error. Human error would still hold if an organization went to the extreme of building a faraday cage to eliminate electromagnetic radiation. Air-gapped systems are still vulnerable to social engineering, which exploits human vulnerabilities, as seen in the tactics that Dragonfly and Energetic Bear used to trick suppliers, who then walked the infection right through the front door. 

Ideally, a technology would be able to identify an attack regardless of whether it is caused by a compromised supplier, radio signal, or electromagnetic emission. By spotting subtle deviations from a device, human, or network’s normal ‘pattern of life’, Self-Learning AI detects even the most nuanced forms of threatening behavior as they emerge — regardless of the source or cause of the threat.

Darktrace/OT for Air-Gapped Environments

Darktrace/OT for air-gapped environments is a physical appliance that deploys directly to the air-gapped system. Using raw digital data from an OT network to understand the normal pattern of life, Darktrace/OT does not need any data or threat feeds from external sources because the AI builds an innate understanding of self without third-party support. 

Because all data-processing and analytics are performed locally on the Darktrace appliance, there is no requirement for Darktrace to have a connection out to the internet. As a result, Darktrace/OT provides visibility and threat detection to air-gapped or highly segmented networks without jeopardizing their integrity. If a human or machine displays even the most nuanced forms of threatening behavior, the solution can illuminate this in real time. 

Security professionals can then securely access Darktrace alerts from anywhere within the network, using a web browser and encrypted HTTPS, and in line with your organization’s network policies.

Figure 2: Darktrace/OT detecting anomalous connections to a SCADA ICS workstation.

With this deployment, Darktrace offers all the critical insights demonstrated in other Darktrace/OT deployments, including (but not limited to) the following:

Organizations seeking to validate whether they have an air gap in the first place and maintain the air gap as their IT and OT environments evolve will greatly benefit from the comprehensive visibility and continuous situational awareness offered by Darktrace’s Self-Learning AI. Also, organizations looking to poke holes in their air gap to embrace the benefits of IT/OT convergence will find that Self-Learning AI’s vigilance spots cyber-attacks that slip through. 

Whatever your organizations goals—be it embracing IIoT or creating a full-blown DMZ—by learning ‘you’, Darktrace’s Self-Learning AI can help you achieve them safely and securely. 

Learn more about Darktrace/OT

Credit to: Daniel Simonds and Oakley Cox for their contribution to this blog.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Lesser
Head of U.S. Policy Analysis and Engagement

More in this series

No items found.

Blog

/

/

July 17, 2025

Introducing the AI Maturity Model for Cybersecurity

AI maturity model for cybersecurityDefault blog imageDefault blog image

AI adoption in cybersecurity: Beyond the hype

Security operations today face a paradox. On one hand, artificial intelligence (AI) promises sweeping transformation from automating routine tasks to augmenting threat detection and response. On the other hand, security leaders are under immense pressure to separate meaningful innovation from vendor hype.

To help CISOs and security teams navigate this landscape, we’ve developed the most in-depth and actionable AI Maturity Model in the industry. Built in collaboration with AI and cybersecurity experts, this framework provides a structured path to understanding, measuring, and advancing AI adoption across the security lifecycle.

Overview of AI maturity levels in cybersecurity

Why a maturity model? And why now?

In our conversations and research with security leaders, a recurring theme has emerged:

There’s no shortage of AI solutions, but there is a shortage of clarity and understanding of AI uses cases.

In fact, Gartner estimates that “by 2027, over 40% of Agentic AI projects will be canceled due to escalating costs, unclear business value, or inadequate risk controls. Teams are experimenting, but many aren’t seeing meaningful outcomes. The need for a standardized way to evaluate progress and make informed investments has never been greater.

That’s why we created the AI Security Maturity Model, a strategic framework that:

  • Defines five clear levels of AI maturity, from manual processes (L0) to full AI Delegation (L4)
  • Delineating the outcomes derived between Agentic GenAI and Specialized AI Agent Systems
  • Applies across core functions such as risk management, threat detection, alert triage, and incident response
  • Links AI maturity to real-world outcomes like reduced risk, improved efficiency, and scalable operations

[related-resource]

How is maturity assessed in this model?

The AI Maturity Model for Cybersecurity is grounded in operational insights from nearly 10,000 global deployments of Darktrace's Self-Learning AI and Cyber AI Analyst. Rather than relying on abstract theory or vendor benchmarks, the model reflects what security teams are actually doing, where AI is being adopted, how it's being used, and what outcomes it’s delivering.

This real-world foundation allows the model to offer a practical, experience-based view of AI maturity. It helps teams assess their current state and identify realistic next steps based on how organizations like theirs are evolving.

Why Darktrace?

AI has been central to Darktrace’s mission since its inception in 2013, not just as a feature, but the foundation. With over a decade of experience building and deploying AI in real-world security environments, we’ve learned where it works, where it doesn’t, and how to get the most value from it. This model reflects that insight, helping security leaders find the right path forward for their people, processes, and tools

Security teams today are asking big, important questions:

  • What should we actually use AI for?
  • How are other teams using it — and what’s working?
  • What are vendors offering, and what’s just hype?
  • Will AI ever replace people in the SOC?

These questions are valid, and they’re not always easy to answer. That’s why we created this model: to help security leaders move past buzzwords and build a clear, realistic plan for applying AI across the SOC.

The structure: From experimentation to autonomy

The model outlines five levels of maturity :

L0 – Manual Operations: Processes are mostly manual with limited automation of some tasks.

L1 – Automation Rules: Manually maintained or externally-sourced automation rules and logic are used wherever possible.

L2 – AI Assistance: AI assists research but is not trusted to make good decisions. This includes GenAI agents requiring manual oversight for errors.

L3 – AI Collaboration: Specialized cybersecurity AI agent systems  with business technology context are trusted with specific tasks and decisions. GenAI has limited uses where errors are acceptable.

L4 – AI Delegation: Specialized AI agent systems with far wider business operations and impact context perform most cybersecurity tasks and decisions independently, with only high-level oversight needed.

Each level reflects a shift, not only in technology, but in people and processes. As AI matures, analysts evolve from executors to strategic overseers.

Strategic benefits for security leaders

The maturity model isn’t just about technology adoption it’s about aligning AI investments with measurable operational outcomes. Here’s what it enables:

SOC fatigue is real, and AI can help

Most teams still struggle with alert volume, investigation delays, and reactive processes. AI adoption is inconsistent and often siloed. When integrated well, AI can make a meaningful difference in making security teams more effective

GenAI is error prone, requiring strong human oversight

While there is a lot of hype around GenAI agentic systems, teams will need to account for inaccuracy and hallucination in Agentic GenAI systems.

AI’s real value lies in progression

The biggest gains don’t come from isolated use cases, but from integrating AI across the lifecycle, from preparation through detection to containment and recovery.

Trust and oversight are key initially but evolves in later levels

Early-stage adoption keeps humans fully in control. By L3 and L4, AI systems act independently within defined bounds, freeing humans for strategic oversight.

People’s roles shift meaningfully

As AI matures, analyst roles consolidate and elevate from labor intensive task execution to high-value decision-making, focusing on critical, high business impact activities, improving processes and AI governance.

Outcome, not hype, defines maturity

AI maturity isn’t about tech presence, it’s about measurable impact on risk reduction, response time, and operational resilience.

[related-resource]

Outcomes across the AI Security Maturity Model

The Security Organization experiences an evolution of cybersecurity outcomes as teams progress from manual operations to AI delegation. Each level represents a step-change in efficiency, accuracy, and strategic value.

L0 – Manual Operations

At this stage, analysts manually handle triage, investigation, patching, and reporting manually using basic, non-automated tools. The result is reactive, labor-intensive operations where most alerts go uninvestigated and risk management remains inconsistent.

L1 – Automation Rules

At this stage, analysts manage rule-based automation tools like SOAR and XDR, which offer some efficiency gains but still require constant tuning. Operations remain constrained by human bandwidth and predefined workflows.

L2 – AI Assistance

At this stage, AI assists with research, summarization, and triage, reducing analyst workload but requiring close oversight due to potential errors. Detection improves, but trust in autonomous decision-making remains limited.

L3 – AI Collaboration

At this stage, AI performs full investigations and recommends actions, while analysts focus on high-risk decisions and refining detection strategies. Purpose-built agentic AI systems with business context are trusted with specific tasks, improving precision and prioritization.

L4 – AI Delegation

At this stage, Specialized AI Agent Systems performs most security tasks independently at machine speed, while human teams provide high-level strategic oversight. This means the highest time and effort commitment activities by the human security team is focused on proactive activities while AI handles routine cybersecurity tasks

Specialized AI Agent Systems operate with deep business context including impact context to drive fast, effective decisions.

Join the webinar

Get a look at the minds shaping this model by joining our upcoming webinar using this link. We’ll walk through real use cases, share lessons learned from the field, and show how security teams are navigating the path to operational AI safely, strategically, and successfully.

Continue reading
About the author

Blog

/

/

July 17, 2025

Forensics or Fauxrensics: Five Core Capabilities for Cloud Forensics and Incident Response

people working and walking in officeDefault blog imageDefault blog image

The speed and scale at which new cloud resources can be spun up has resulted in uncontrolled deployments, misconfigurations, and security risks. It has had security teams racing to secure their business’ rapid migration from traditional on-premises environments to the cloud.

While many organizations have successfully extended their prevention and detection capabilities to the cloud, they are now experiencing another major gap: forensics and incident response.

Once something bad has been identified, understanding its true scope and impact is nearly impossible at times. The proliferation of cloud resources across a multitude of cloud providers, and the addition of container and serverless capabilities all add to the complexities. It’s clear that organizations need a better way to manage cloud incident response.

Security teams are looking to move past their homegrown solutions and open-source tools to incorporate real cloud forensics capabilities. However, with the increased buzz around cloud forensics, it can be challenging to decipher what is real cloud forensics, and what is “fauxrensics.”

This blog covers the five core capabilities that security teams should consider when evaluating a cloud forensics and incident response solution.

[related-resource]

1. Depth of data

There have been many conversations among the security community about whether cloud forensics is just log analysis. The reality, however, is that cloud forensics necessitates access to a robust dataset that extends far beyond traditional log data sources.

While logs provide valuable insights, a forensics investigation demands a deeper understanding derived from multiple data sources, including disk, network, and memory, within the cloud infrastructure. Full disk analysis complements log analysis, offering crucial context for identifying the root cause and scope of an incident.

For instance, when investigating an incident involving a Kubernetes cluster running on an EC2 instance, access to bash history can provide insights into the commands executed by attackers on the affected instance, which would not be available through cloud logs alone.

Having all of the evidence in one place is also a capability that can significantly streamline investigations, unifying your evidence be it disk images, memory captures or cloud logs, into a single timeline allowing security teams to reconstruct an attacks origin, path and impact far more easily. Multi–cloud environments also require platforms that can support aggregating data from many providers and services into one place. Doing this enables more holistic investigations and reduces security blind spots.

There is also the importance of collecting data from ephemeral resources in modern cloud and containerized environments. Critical evidence can be lost in seconds as resources are constantly spinning up and down, so having the ability to capture this data before its gone can be a huge advantage to security teams, rather than having to figure out what happened after the affected service is long gone.

darktrace / cloud, cado, cloud logs, ost, and memory information. value of cloud combined analysis

2. Chain of custody

Chain of custody is extremely critical in the context of legal proceedings and is an essential component of forensics and incident response. However, chain of custody in the cloud can be extremely complex with the number of people who have access and the rise of multi-cloud environments.

In the cloud, maintaining a reliable chain of custody becomes even more complex than it already is, due to having to account for multiple access points, service providers and third parties. Having automated evidence tracking is a must. It means that all actions are logged, from collection to storage to access. Automation also minimizes the chance of human error, reducing the risk of mistakes or gaps in evidence handling, especially in high pressure fast moving investigations.

The ability to preserve unaltered copies of forensic evidence in a secure manner is required to ensure integrity throughout an investigation. It is not just a technical concern, its a legal one, ensuring that your evidence handling is documented and time stamped allows it to stand up to court or regulatory review.

Real cloud forensics platforms should autonomously handle chain of custody in the background, recording and safeguarding evidence without human intervention.

3. Automated collection and isolation

When malicious activity is detected, the speed at which security teams can determine root cause and scope is essential to reducing Mean Time to Response (MTTR).

Automated forensic data collection and system isolation ensures that evidence is collected and compromised resources are isolated at the first sign of malicious activity. This can often be before an attacker has had the change to move latterly or cover their tracks. This enables security teams to prevent potential damage and spread while a deeper-dive forensics investigation takes place. This method also ensures critical incident evidence residing in ephemeral environments is preserved in the event it is needed for an investigation. This evidence may only exist for minutes, leaving no time for a human analyst to capture it.

Cloud forensics and incident response platforms should offer the ability to natively integrate with incident detection and alerting systems and/or built-in product automation rules to trigger evidence capture and resource isolation.

4. Ease of use

Security teams shouldn’t require deep cloud or incident response knowledge to perform forensic investigations of cloud resources. They already have enough on their plates.

While traditional forensics tools and approaches have made investigation and response extremely tedious and complex, modern forensics platforms prioritize usability at their core, and leverage automation to drastically simplify the end-to-end incident response process, even when an incident spans multiple Cloud Service Providers (CSPs).

Useability is a core requirement for any modern forensics platform. Security teams should not need to have indepth knowledge of every system and resource in a given estate. Workflows, automation and guidance should make it possible for an analyst to investigate whatever resource they need to.

Unifying the workflow across multiple clouds can also save security teams a huge amount of time and resources. Investigations can often span multiple CSP’s. A good security platform should provide a single place to search, correlate and analyze evidence across all environments.

Offering features such as cross cloud support, data enrichment, a single timeline view, saved search, and faceted search can help advanced analysts achieve greater efficiency, and novice analysts are able to participate in more complex investigations.

5. Incident preparedness

Incident response shouldn't just be reactive. Modern security teams need to regularly test their ability to acquire new evidence, triage assets and respond to threats across both new and existing resources, ensuring readiness even in the rapidly changing environments of the cloud.  Having the ability to continuously assess your incident response and forensics workflows enables you to rapidly improve your processes and identify and mitigate any gaps identified that could prevent the organization from being able to effectively respond to potential threats.

Real forensics platforms deliver features that enable security teams to prepare extensively and understand their shortcomings before they are in the heat of an incident. For example, cloud forensics platforms can provide the ability to:

  • Run readiness checks and see readiness trends over time
  • Identify and mitigate issues that could prevent rapid investigation and response
  • Ensure the correct logging, management agents, and other cloud-native tools are appropriately configured and operational
  • Ensure that data gathered during an investigation can be decrypted
  • Verify that permissions are aligned with best practices and are capable of supporting incident response efforts

Cloud forensics with Darktrace

Darktrace delivers a proactive approach to cyber resilience in a single cybersecurity platform, including cloud coverage. Darktrace / CLOUD is a real time Cloud Detection and Response (CDR) solution built with advanced AI to make cloud security accessible to all security teams and SOCs. By using multiple machine learning techniques, Darktrace brings unprecedented visibility, threat detection, investigation, and incident response to hybrid and multi-cloud environments.

Darktrace’s cloud offerings have been bolstered with the acquisition of Cado Security Ltd., which enables security teams to gain immediate access to forensic-level data in multi-cloud, container, serverless, SaaS, and on-premises environments.

[related-resource]

Continue reading
About the author
Your data. Our AI.
Elevate your network security with Darktrace AI