Blog
/
Email
/
April 20, 2022

Email Compromise To Mass Phishing Campaign

Read Darktrace's in-depth analysis on the shift from business email compromise to mass phishing campaigns. Gain the knowledge to safeguard your business.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Shuh Chin Goh
Written by
Sam Lister
SOC Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
20
Apr 2022

It is common for attackers to send large volumes of malicious emails from the email accounts which they compromise. Before carrying out this mass-mailing activity, there are predictable, preparatory steps which attackers take, such as registering mass-mailing applications and creating new inbox rules. In this blog, we will provide details of an attack observed in February 2022 in which a threat actor conducted a successful mass-mailing attack at a financial company based in Africa.

Attack summary

In February 2022, an attacker attempted to infiltrate the email environment of a financial services company based in Africa. At the beginning of February, the attacker likely gained a foothold in the company’s email environment by tricking an internal user into entering the credentials of their corporate email account into a phishing page. Over the following week, the attacker used the compromised account credentials to conduct a variety of activities, such as registering a mass-mailing application and creating a new inbox rule.

After taking these preparatory steps, the attacker went on to send out large volumes of phishing emails from the internal user’s email account. The attacker consequently obtained the credentials of several further internal corporate accounts. They used the credentials of one of these accounts to carry out similar preparatory steps (registering a mass-mailing application and creating a new inbox rule). After taking these steps, the attacker again sent large volumes of phishing emails from the account. At this point, the customer requested assistance from Darktrace’s SOC to aid investigation, and the intrusion was consequently contained by the company.

Since the attacker carried out their activities using a VPN and an Amazon cloud service, the endpoints from which the activities took place did not serve as particularly helpful indicators of an attack. However, prior to sending out phishing emails from internal users’ accounts, the attacker did carry out other predictable, preparatory activities. One of the main goals of this blog is to highlight that these behaviors serve as valuable signs of preparation for mass-mailing activity.

Attack timeline

Figure 1: Timeline of the intrusion

On February 3, the attacker sent a phishing email to the corporate account of an employee. The email was sent from the corporate account of an employee at a company with business ties to the victim enterprise. It is likely that the attacker had compromised this account prior to sending the phishing email from it. The phishing email in question claimed to be an overdue payment reminder. Within the email, there was a link hidden behind the display text “view invoice”. The hostname of the phishing link’s URL was a subdomain of questionpro[.]eu — an online survey platform. The page referred to by the URL was a fake Microsoft Outlook login page.

Figure 2: Destination of phishing link within the email sent by the attacker

Antigena Email, Darktrace’s email security solution, identified the highly unusual linguistic structure of the email, given its understanding of ‘normal’ for that sender. This was reflected in an inducement shift score of 100. However, in this case, the original URL of the phishing link was rewritten by Mimecast’s URL protection service in a way which made the full URL impossible to extract. Consequently, Antigena Email did not know what the original URL of the link was. Since the link was rewritten by Mimecast’s URL protection service, the email’s recipient will have received a warning notification in their browser upon clicking the link. It seems that the recipient ignored the warning, and consequently divulged their email account credentials to the attacker.

For Antigena Email to hold an email from a user’s mailbox, it must judge with high confidence that the email is malicious. In cases where the email contains no suspicious attachments or links, it is difficult for Antigena Email to obtain such high degrees of confidence, unless the email displays clear payload-independent malicious indicators, such as indicators of spoofing or indicators of extortion. In this case, the email, as seen by Antigena Email, didn’t contain any suspicious links or attachments (since Mimecast had rewritten the suspicious link) and the email didn’t contain any indicators of spoofing or extortion.

Figure 3: The email’s high inducement shift score highlights that the email’s linguistic content and structure were unusual for the email’s sender

Shortly after receiving the email, the internal user’s corporate device was observed making SSL connections to the questionpro[.]eu phishing endpoint. It is likely that the user divulged their email account credentials during these connections.

Figure 4: The above screenshot — obtained from Advanced Search — depicts the connections made by the account owner’s device on February 3

Between February 3 and February 7, the attacker logged into the user’s email account several times. Since these logins were carried out using a common VPN service, they were not identified as particularly unusual by Darktrace. However, during their login sessions, the attacker exhibited behavior which was highly unusual for the email account’s owner. The attacker was observed creating an inbox rule called “ _ ” on the user’s email account,[1] as well as registering and granting permissions to a mass-mailing application called Newsletter Software SuperMailer. These steps were taken by the attacker in preparation for their subsequent mass-mailing activity.

On February 7, the attacker sent out phishing emails from the user’s account. The emails were sent to hundreds of internal and external mailboxes. The email claimed to be an overdue payment reminder and it contained a questionpro[.]eu link hidden behind the display text “view invoice”. It is likely that the inbox rule created by the attacker caused all responses to this phishing email to be deleted. Attackers regularly create inbox rules on the email accounts which they compromise to ensure that responses to the malicious emails which they distribute are hidden from the accounts’ owners.[2]

Since Antigena Email does not have visibility of internal-to-internal emails, the phishing email was delivered fully weaponized to hundreds of internal mailboxes. On February 7, after the phishing email was sent from the compromised internal account, more than twenty internal devices were observed making SSL connections to the relevant questionpro[.]eu endpoint, indicating that many internal users had clicked the phishing link and possibly revealed their account credentials to the attacker.

Figure 5: The above screenshot — obtained from Advanced Search — depicts the large volume of connections made by internal devices to the phishing endpoint

Over the next five days, the attacker was observed logging into the corporate email accounts of at least six internal users. These logins were carried out from the same VPN endpoints as the attacker’s original logins. On February 11, the attacker was observed creating an inbox rule named “ , ” on one of these accounts. Shortly after, the attacker went on to register and grant permissions to the same mass-mailing application, Newsletter Software SuperMailer. As with the other account, these steps were taken by the attacker in preparation for subsequent mass-mailing activity.

Figure 6: The above screenshot — obtained from Advanced Search — outlines all of the actions involving the mass-mailing application that were taken by the attacker (accounts have been redacted)

On February 11, shortly after 08:30 (UTC), the attacker widely distributed a phishing email from this second user’s account. The phishing email was distributed to hundreds of internal and external mailboxes. Unlike the other phishing emails used by the attacker, this one claimed to be a purchase order notification, and it contained an HTML file named PurchaseOrder.html. Within this file, there was a link to a suspicious page on the public relations (PR) news site, everything-pr[.]com. After the phishing email was sent from the compromised internal account, more than twenty internal devices were observed making SSL connections to the relevant everything-pr[.]com endpoint, indicating that many internal users had opened the malicious attachment.

Figure 7: The above screenshot — obtained from Advanced Search — depicts the connections made by internal devices to the endpoint referenced in the malicious attachment

On February 11, the customer submitted an Ask the Expert (ATE) request to Darktrace’s SOC team. The guidance provided by the SOC helped the security team to contain the intrusion. The attacker managed to maintain a presence within the organization’s email environment for eight days. During these eight days, the attacker sent out large volumes of phishing emails from two corporate accounts. Before sending out these phishing emails, the attacker carried out predictable, preparatory actions. These actions included registering a mass-mailing application with Azure AD and creating an inbox rule.

Darktrace guidance

There are many learning points for this particular intrusion. First, it is important to be mindful of signs of preparation for malicious mass-mailing activity. After an attacker compromises an email account, there are several actions which they will likely perform before they send out large volumes of malicious emails. For example, they may create an inbox rule on the account, and they may register a mass-mailing application with Azure AD. The Darktrace models SaaS / Compliance / New Email Rule and SaaS / Admin / OAuth Permission Grant are designed to pick up on these behaviors.

Second, in cases where an attacker succeeds in sending out phishing emails from an internal, corporate account, it is advised that customers make use of Darktrace’s Advanced Search to identify users that may have divulged account credentials to the attacker. The phishing email sent from the compromised account will likely contain a suspicious link. Once the hostname of the link has been identified, it is possible to ask Advanced Search to display all HTTP or SSL connections to the host in question. If the hostname is www.example.com, you can get Advanced Search to display all SSL connections to the host by using the Advanced Search query, @fields.server_name:"www.example.com", and you can get Advanced Search to display all HTTP connections to the host by using the query, @fields.host:"www.example.com".

Third, it is advised that customers make use of Darktrace’s ‘watched domains’ feature[3] in cases where an attacker succeeds in sending out malicious emails from the accounts they compromise. If a hostname is added to the watched domains list, then a model named Compromise / Watched Domain will breach whenever an internal device is observed connecting to it. If Antigena Network is configured, then observed attempts to connect to the relevant host will be blocked if the hostname is added to the watched domains list with the ‘flag for Antigena’ toggle switched on. If an attacker succeeds in sending out a malicious email from an internal, corporate account, it is advised that customers add hostnames of phishing links within the email to the watched domains list and enable the Antigena flag. Doing so will cause Darktrace to identify and thwart any attempts to connect to the relevant phishing endpoints.

Figure 8: The above screenshot — obtained from the Model Editor — shows that Antigena Network prevented ten internal devices from connecting to phishing endpoints after the relevant phishing hostnames were added to the watched domains list on February 11

For Darktrace customers who want to find out more about phishing detection, refer here for an exclusive supplement to this blog.

MITRE ATT&CK techniques observed

Thanks to Paul Jennings for his contributions.

Footnotes

1. https://docs.microsoft.com/en-us/powershell/module/exchange/new-inboxrule?view=exchange-ps

2. https://www.fireeye.com/current-threats/threat-intelligence-reports/rpt-fin4.html

3. https://customerportal.darktrace.com/product-guides/main/watched-domains

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Shuh Chin Goh
Written by
Sam Lister
SOC Analyst

More in this series

No items found.

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher

Blog

/

/

April 22, 2025

How NDR and Secure Access Service Edge (SASE) Work Together to Achieve Network Security Outcomes

woman looking out at buildingsDefault blog imageDefault blog image

Modern networks are evolving rapidly, with traffic patterns, user behavior, and critical assets extending far beyond the boundaries of traditional network security tools. As organizations adopt hybrid infrastructures, remote working, and cloud-native services, it is essential to maintain visibility and protect this expanding attack surface.

Network Detection and Response (NDR) and Secure Access Service Edge (SASE) are two technologies commonly used to safeguard organizational networks. While both play crucial roles in enhancing security, one does not replace the other. Instead, NDR and SASE complement each other, taking on different roles to create a robust network security framework. This blog will unpack the relationship between NDR and SASE, including the component functionalities that comprise SASE, highlighting their unique contributions to maintaining a comprehensive and resilient network security strategy.

Network Detection and Response (NDR) and Secure Access Service Edge (SASE) explained

NDR solutions, such as Darktrace / NETWORK, are designed to detect, investigate, and respond to suspicious activities within any network. By leveraging machine learning and behavioral analytics, NDR continuously monitors network traffic to identify anomalies that could indicate potential threats and to contain those threats at machine speed. These solutions analyze both North-South traffic (between internal and external networks) and East-West traffic (within internal networks), providing comprehensive visibility into network activities.

SASE, on the other hand, comprises multiple solutions, focused on providing hybrid and remote users access to services while adhering to the Zero Trust principle of "never trust, always verify". Within SASE architectures, Zero Trust Network Access (ZTNA) solutions provide secure remote access to private applications and services the user has been explicitly granted, and Secure Web Gateways (SWG) provide Internet access, again based on policy groups. Unlike traditional security models that grant implicit trust to users within the network perimeter, ZTNA requires continuous verification of user identity and device health before granting access to resources. This approach minimizes the attack surface and reduces the risk of unauthorized access to sensitive data and internal applications. Similarly, SWGs filter web traffic based on the verified user identity and can block known malware, further reducing the attack surface for the client estate.

Limitations of SASE highlights the importance of NDR

While SASE, including ZTNA and SWG, is a powerful tool for enforcing secure access to company networks and resources as well as the Internet, it is not a comprehensive security solution, or a replacement for dedicated network monitoring and NDR capabilities. Some of the main limitations include:

  • Focused on policies rather than security: SASE delivers strong networking outcomes but provides policy-based protections, rather than a full suite of security features. It can provide simple alerting for disallowed actions, but it lacks the security context needed for comprehensive threat detection, such as knowing if user credentials have been compromised.
  • Can only detect known threats: SASE solutions cannot detect novel attacks such as zero-days and insider threats. This is because they rely on a rule-based approach that does not have a behavioral understanding of network entities that can detect anomalies or suspicious activity.
  • Limited response capabilities: Due to the limited detection capabilities of SASE solutions, it is not possible to automate response actions to threats that slip past existing policies.  While access to internal resources and the Internet can be revoked or severely limited as part of a response, this must be done after human investigation and analysis, allowing more time for the threat to continue before being contained.
  • Limited scope: SASE provides cloud-hosted secure networking, which lends itself much more toward the client estate of any organization. As a result, servers and unmanaged devices—whether IT/IoT/OT—are mostly out of scope and do not benefit from the policies SASE enforces.

The complementary roles of NDR and ZTNA

NDR solutions provide full visibility into network activity, with the ability to detect and respond to threats that may bypass initial access controls and filters. When combined, NDR and SASE create a layered security approach that addresses different aspects of network security, for example:

  • Detection of novel, unknown and insider threats: NDR solutions can monitor all network traffic using behavioral anomaly detection. This can identify suspicious activities, such as insider threats from authorized users who have passed policy checks, or novel attacks that have never been seen before.
  • Validation of policies: By continuously monitoring network traffic, NDR can validate the effectiveness of existing policies and identify any gaps in security that need addressing due to organizational changes or outdated rule sets.
  • Reducing risk and impact of threats: Together, SASE and NDR solutions shift toward proactive security by reducing the potential impact of a threat through predefined policies and by detecting and containing a threat in its earliest stages, even if it is novel or nuanced.
  • Enhanced contextual information: Alerts raised by SASE solutions can provide additional context into potential threats, which can be used by NDR solutions to increase investigation quality and context.
  • Containment of network threats: SASE solutions can prohibit access to resources on an internal company network or on the Internet if predefined access control criteria are not met or a site matches a threat signature. When combined with an NDR solution, organizations can go far beyond this, detecting and responding to a much wider variety of network threats to prevent attacks from escalating.

When implementing SASE and NDR solutions, it is also crucial to consider the best configurations to maximize interoperability, and integrations will often increase functionality. Well-designed implementations, combined with integrations, will strengthen both SASE and NDR solutions for organizations.

How Darktrace continues to secure SASE networks

With the latest 6.3 update, Darktrace continues to extend its capabilities with new innovations that support modern enterprise networks and the use of SASE across remote and hybrid worker devices. This expands on existing Darktrace integrations and partnerships with SASE vendors such as Netskope and Zscaler.

Traditional methods to contain remote access and internet-born threats are either signature or policy based, and response to nuanced threats requires manual, human-led investigation and decision-making. By the time security teams can react, the damage is often already done.

With Darktrace 6.3, customers using Zscaler can now configure Darktrace Autonomous Response to quarantine ZPA-connected user devices at machine speed. This provides a powerful new mechanism for containing remote threats at the earliest sign of suspicious activity, without disrupting broader operations.

By automatically shutting down ZPA access for compromised user accounts, Darktrace gives SOC teams valuable time to investigate and respond, while continuing to protect the rest of the organization. This integration enhances Darktrace’s ability to take actions for remote user devices, helping customers contain threats faster and keep the business running smoothly.

For organizations using SASE technologies to address the challenges of securing large, distributed networks across a range of geographies, SaaS applications and remote worker devices, Darktrace also now integrates with Netskope Cloud TAP to provide visibility into and analysis over tunneled traffic, reducing blind spots and enabling organizations to maintain detection capabilities across their expanding network perimeters.

Conclusion

While NDR and ZTNA serve distinct purposes, their integration is crucial for a comprehensive security strategy. ZTNA provides robust access controls, ensuring that only authorized users can access network resources. NDR, on the other hand, offers continuous visibility into network activities, detecting and responding to threats that may bypass initial access controls. By leveraging the strengths of both solutions, organizations can enhance their security posture and protect against a wide range of network security threats.

Understanding the complementary roles of NDR and ZTNA is essential for building a resilient security framework. As cyber threats continue to evolve, adopting a multi-layered, defense-in-depth security approach will be key to safeguarding organizational networks.

Click here for more information about the latest product innovations in Darktrace 6.3, or learn more about Darktrace / NETWORK here.

Continue reading
About the author
Mikey Anderson
Product Marketing Manager, Network Detection & Response
Your data. Our AI.
Elevate your network security with Darktrace AI