Blog
/
Cloud
/
July 31, 2024

CDR is just NDR for the Cloud... Right?

As cloud adoption surges, the need for scalable, cloud-native security is paramount. This blog explores whether Cloud Detection and Response (CDR) is merely Network Detection and Response (NDR) tailored for the cloud, highlighting the unique challenges and essential solutions SOC teams require to secure dynamic cloud environments effectively.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
31
Jul 2024

The need for scalable cloud-native security

The cybersecurity landscape is undergoing a rapid transformation driven by the accelerated adoption of cloud computing, compelling organizations to reevaluate their security strategies. According to Forrester’s Infrastructure Cloud Survey, 2023, cloud decision-makers who are moving to a cloud computing infrastructure estimated they have already moved 39% of their application portfolio to the cloud and intend to move another 53% in the next two years [1].

This explosive growth underscores not only the increased dependency on cloud services, but also the evolving sophistication of cyber threats targeting these platforms, and the critical need for dedicated security measures tailored to cloud infrastructures — thereby making cloud security a pivotal focus for Security Operations Center (SOC) teams.

As organizations increasingly migrate to cloud environments and their reliance on cloud infrastructures deepens, they encounter new security challenges that require reevaluating their security strategies. Traditional measures like Network Detection and Response (NDR) are being reassessed in favor of more dynamic, scalable cloud-native solutions.

However, can we truly say that cloud detection and response (CDR) is fundamentally different? Or is it simply an evolution of NDR tailored for the cloud?

Cloud Detection and Response (CDR) vs Network Detection and Response (NDR)

Cloud Detection and Response (CDR) has emerged as a pivotal technology in the race against threat actors targeting cloud assets. CDR is typically centered around the same foundational principles as NDR. As such, NDR providers are well placed to provide these capabilities within dynamic cloud environments – particularly those providers that are built upon the foundation of understanding your business, its digital footprint, and leveraging that understanding to detect subtle deviations and highlighting anomalies as opposed to pre training or relying on rules and signatures.

However, there are unique challenges within cloud environments that require a wider, richer, context-aware approach.

Why SOC Teams Care

Widespread UseThe shift towards cloud services is no longer a trend but a standard practice across industries. Organizations increasingly rely on cloud infrastructures for essential operations across IaaS, PaaS, and SaaS platforms. According to Gartner, worldwide end-user spending on public cloud services is forecast to grow 20.4% to total $678.8 billion in 2024, up from $563.6 billion in 2023 [2]. This widespread adoption necessitates a security approach that can operate seamlessly across varied cloud environments, addressing both the scalability and the agility that these platforms offer.

Sophisticated AttacksCyber threats have evolved in sophistication, specifically targeting cloud platforms due to their growing prevalence. Attackers exploit the dynamic nature of cloud services, where traditional security measures often fall short. The cloud has emerged as a major target for threat actors who want to control access to, manipulate, and steal that data. This makes cloud resources a bigger target than ever for attackers. According to the IBM Cost of a Data Breach 2023 report, 82% of breaches involved data stored in the cloud [3]. Examples include data breaches initiated through misconfigured storage instances or through the exploitation of incomplete data deletion processes, highlighting the need for cloud-specific security responses.

Dynamic EnvironmentsCloud environments are inherently dynamic, characterized by the rapid provisioning and de-provisioning of resources, this fluidity presents a significant challenge for maintaining continuous security oversight, organizations need to be able to see what individual assets in the cloud look like at any given moment, who or what can access those, but also to be able to detect and respond to changes in real time. Unlike traditional infrastructure, detection and response in the cloud is challenging because of the ephemeral nature of some cloud assets and the velocity and volume of new app deployment – traditional signature-based detections will often struggle to work with such data.

What SOC Teams Need

Centralized VisibilityEffective security management requires a comprehensive, unified view spanning all operational environments including multi-cloud platforms and on-premises datacenters. Furthermore, in today's complex IT landscape, where organizations operate across both on-premises and various cloud environments, the need for centralized visibility becomes paramount. This comprehensive oversight is crucial for detecting anomalies and potential threats in real time, allowing SOC teams to manage security from a single source of truth, despite the dispersed nature of cloud assets and the heterogeneity of on-premises resources. By integrating these views, organizations can ensure a seamless security posture that encompasses all operational environments, enhancing their ability to respond swiftly to incidents and reduce security gaps.

AutomationGiven the vast scale and complexity of cloud operations, automation in detection and response processes is indispensable. Automated security solutions can instantly respond to threats, or adjust permissions across the cloud, enhancing both the efficiency and effectiveness of security measures.

Containment and RemediationThe capability for swift containment and remediation of security incidents is vital to minimize their impact on business operations. Automated response mechanisms that can isolate affected systems, revoke access, or reroute traffic until the threat is neutralized are essential components of modern CDR solutions.

Unpacking the Essentials: What Sets CDR Apart from NDR

While CDR and NDR share similar goals of threat mitigation, the context within cloud environments brings additional complexities:

Who: The identification of user roles and access patterns in cloud environments is crucial for detecting insider threats or compromised accounts. For example, an account behaving irregularly or accessing unusual data points may indicate a security breach.

What: Understanding what resources are deployed in the cloud (such as VMs, containers, and serverless functions) and the types of data they handle helps prioritize security efforts. Protecting data with varying sensitivity levels requires different security protocols.

Where: The geographic distribution of cloud datacenters affects regulatory compliance and data sovereignty. Security measures must consider these factors to ensure that data storage and processing comply with local laws and regulations.

How: Monitoring the configuration and usage of cloud services helps in identifying misconfigurations and anomalous usage patterns, which are common vectors for attacks. Tools that can automatically scan and rectify configurations in real time are particularly valuable in maintaining cloud security.

Key takeaways and benefits of CDR

As cloud adoption continues to surge, the strategic importance of CDR becomes increasingly evident. However, NDR vendors are well-positioned to provide these capabilities, especially those who deeply understand customer environments by learning the pattern of life of resources rather than relying on static rules and signatures.

Cloud environments, at their core, are still comprised of networks for communication. Interactions between cloud resources need to be monitored in real time, and access to these resources needs to be tracked and managed. As the cloud changes dynamically, the understanding and visualization of what is deployed and where needs to be updated quickly. Above all effective and proportional cloud-native response needs to be provided to mitigate threats and avoid business disruption.

Moreover, the ideal solutions will not only monitor network interactions but also bring in cloud contextual awareness. By combining these insights, SOC teams can gain a deeper understanding of permissions, assess risk vulnerabilities, and integrate all these elements into a single, cohesive platform. Importantly, SOC teams need to go beyond detection and response to actively mitigate potential misconfigurations and stay preventative. After all, proactive security is much better than reactive. By leveraging such comprehensive solutions, SOC teams can better equip themselves to tackle the modern cybersecurity landscape, ensuring robust, responsive, and adaptable defenses.

Learn more about Darktrace / CLOUD

Darktrace / CLOUD is intelligent cloud security powered by Self-Learning AI that delivers continuous, context-aware visibility and monitoring of cloud assets to unlock real-time detection and response​,​ and proactive cloud risk management. Read more about our cloud security solution here.

References

[1]  Gartner Forecasts Worldwide Public Cloud End-User Spending to Surpass $675 Billion in 2024

[2]  Public Cloud Market Insights, 2023 | Forrester

[3]  IBM Cost of a Data Breach 2023 Report

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
David Ison
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI