Blog
/
Cloud
/
February 3, 2025

CNAPP Alone Isn’t Enough: Focusing on CDR for Real-Time Cross Domain Protection

This blog dives into the strengths and limitations of CNAPP, explaining how a CDR solution can enhance cloud security to identify and mitigate cross-domain threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Feb 2025

Forecasts predict public cloud spending will soar to over $720 billion by 2025, with 90%[1] of organizations embracing a hybrid cloud approach by 2027. These figures could also be eclipsed as more businesses unearth the potential impact that AI can make on their productivity. The pace of evolution is staggering, but one thing hasn’t changed: the cloud security market is a maze of complexity. Filled with acronyms, overlapping capabilities, and endless use cases tailored to every buyer persona.

On top of this, organizations face a fragmented landscape of security tools, each designed to cover just one slice of the cloud security puzzle. Then there’s CNAPP (Cloud-Native Application Protection Platform) — a broad platform promising to do it all but often falling short, especially around providing runtime detection and response capabilities. It’s no wonder organizations struggle to cut through the noise and find the precision they require.

Looking more closely at what CNAPP has to offer, it can feel like as if it is all you would ever need, but is that really the case?

Strengths and limitations of CNAPP

A CNAPP is undeniably a compelling solution, originally coming from CSPM (Cloud Security Posture Management), it provided organizations with a snapshot of their deployed cloud assets, highlighting whether they were as secure as intended. However, this often resulted in an overwhelming list of issues to fix, leaving organizations unsure where to focus their energy for maximum impact.

To address this, CNAPP’s evolved, incorporating capabilities like; identifying software vulnerabilities, mapping attack paths, and understanding which identities could act within the cloud. The goal became clear: prioritize fixes to reduce the risk of compromise.

But what if we could avoid these problems altogether? Imagine deploying software securely from the start — preventing the merging of vulnerable packages and ensuring proper configurations in production environments by shifting left. This preventative approach is vital to any “secure by design” strategy, CNAPP’s again evolving to add this functionality alongside.

However, as applications grow more complex, so do the variety and scope of potential issues. The responsibility for addressing these challenges often falls to engineers, who are left balancing the pressure to write code with the burden of fixing critical findings that may never even pose a real risk to the organization.

While CNAPP serves as an essential risk prevention tool — focusing on hygiene, compliance, and enabling organizations to deploy high-quality code on well-configured infrastructure — its role is largely limited to reducing the potential for issues. Once applications and infrastructure are live, the game changes. Security’s focus shifts to detecting unwanted activity and responding to real-time risks.

Limitations of CNAPP

Here’s where CNAPP shows its limitations:

1. Blind spots for on-premises workloads

Designed for cloud-native environments, it can leave blind spots for workloads that remain on-premises — a significant concern given that 90% of organizations are expected to adopt a hybrid cloud strategy by 2027. These blind spots can increase the risk of cross-domain attacks, underscoring the need for a solution that goes beyond purely prevention but adds real-time detection and response.

2. Detecting and mitigating cross-domain threats

Adversaries have evolved to exploit the complexity of hybrid and cloud environments through cross-domain attacks. These attacks span multiple domains — including traditional network environments, identity systems, SaaS platforms, and cloud environments — making them exceptionally difficult to detect and mitigate. Attackers are human and will naturally choose the path of least resistance, why spend time writing a detailed software exploit for a vulnerability if you can just target the identity?

Imagine a scenario where an attacker compromises an organization via leaked credentials and then moves laterally, similar to the example outlined in this blog: The Price of Admission: Countering Stolen Credentials with Darktrace. If an attacker identifies cloud credentials and moves into the cloud control plane, they could access additional sensitive data. Without a detection platform that monitors these areas for unusual activity, while working to consolidate findings into a unified timeline, detecting these types of attacks becomes incredibly challenging.

A CNAPP might only point to a potential misconfiguration of an identity or for example a misconfiguration around secret storage, but it cannot detect when that misconfiguration has been exploited — let alone respond to it.

Identity + Network: Unlocking cross-domain threats

Identity is more than just a role or username; it is essentially an access point for attackers to leverage and move between different areas of a digital estate. Real-time monitoring of human and non-human identities is crucial for understanding intent, spotting anomalies, and preventing possible attacks before they spread.

Non-human roles, such as service accounts or automation tooling, often operate with trust and without oversight. In 2024, the Cybersecurity and Critical Infrastructure Agency (CISA) [2] released a warning regarding new strategies employed by SolarWinds attackers. These strategies were primarily aimed at cloud infrastructure and non-human identities. The warning details how attackers leverage credentials and valid applications for malicious purposes.

With organizations opting for a hybrid approach, combining network, identity, cloud management and cloud runtime activity is essential to detecting and mitigating cross domain attacks, these are just some of the capabilities needed for effective detection and response:

  • AI driven automated and unified investigation of events – due to the volume of data and activity within businesses digital estates leveraging AI is vital, to enable SOC teams in understanding and facilitating proportional and effective responses.
  • Real-time monitoring auditing combined with anomaly detection for human and non-human identities.
  • A unified investigation platform that can deliver a real-time understanding of Identity, deployed cloud assets, runtime and contextual findings as well as coverage for remaining on premises workloads.
  • The ability to leverage threat intelligence automatically to detect potential malicious activities quickly.

The future of cloud security: Balancing risk management with real-time detection and response

Darktrace / CLOUD's CDR approach enhances CNAPP by providing the essential detection and native response needed to protect against cross-domain threats. Its agentless, default setup is both cost-effective and scalable, creating a runtime baseline that significantly boosts visibility for security teams. While proactive controls are crucial for cloud security, pairing them with Cloud Detection and Response solutions addresses a broader range of challenges.

With Darktrace / CLOUD, organizations benefit from continuous, real-time monitoring and advanced AI-driven behavioral detection, ensuring proactive detection and a robust cloud-native response. This integrated approach delivers comprehensive protection across the digital estate.

Unlock advanced cloud protection

Darktrace / CLOUD solution brief screenshot

Download the Darktrace / CLOUD solution brief to discover how autonomous, AI-driven defense can secure your environment in real-time.

  • Achieve 60% more accurate detection of unknown and novel cloud threats.
  • Respond instantly with autonomous threat response, cutting response time by 90%.
  • Streamline investigations with automated analysis, improving ROI by 85%.
  • Gain a 30% boost in cloud asset visibility with real-time architecture modeling.

References

  1. https://www.gartner.com/en/newsroom/press-releases/2024-11-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-total-723-billion-dollars-in-2025
  2. https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-057a
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace

More in this series

No items found.

Blog

/

Email

/

December 18, 2025

Why organizations are moving to label-free, behavioral DLP for outbound email

Man at laptopDefault blog imageDefault blog image

Why outbound email DLP needs reinventing

In 2025, the global average cost of a data breach fell slightly — but remains substantial at USD 4.44 million (IBM Cost of a Data Breach Report 2025). The headline figure hides a painful reality: many of these breaches stem not from sophisticated hacks, but from simple human error: mis-sent emails, accidental forwarding, or replying with the wrong attachment. Because outbound email is a common channel for sensitive data leaving an organization, the risk posed by everyday mistakes is enormous.

In 2025, 53% of data breaches involved customer PII, making it the most commonly compromised asset (IBM Cost of a Data Breach Report 2025). This makes “protection at the moment of send” essential. A single unintended disclosure can trigger compliance violations, regulatory scrutiny, and erosion of customer trust –consequences that are disproportionate to the marginal human errors that cause them.

Traditional DLP has long attempted to mitigate these impacts, but it relies heavily on perfect labelling and rigid pattern-matching. In reality, data loss rarely presents itself as a neat, well-structured pattern waiting to be caught – it looks like everyday communication, just slightly out of context.

How data loss actually happens

Most data loss comes from frustratingly familiar scenarios. A mistyped name in auto-complete sends sensitive data to the wrong “Alex.” A user forwards a document to a personal Gmail account “just this once.” Someone shares an attachment with a new or unknown correspondent without realizing how sensitive it is.

Traditional, content-centric DLP rarely catches these moments. Labels are missing or wrong. Regexes break the moment the data shifts formats. And static rules can’t interpret the context that actually matters – the sender-recipient relationship, the communication history, or whether this behavior is typical for the user.

It’s the everyday mistakes that hurt the most. The classic example: the Friday 5:58 p.m. mis-send, when auto-complete selects Martin, a former contractor, instead of Marta in Finance.

What traditional DLP approaches offer (and where gaps remain)

Most email DLP today follows two patterns, each useful but incomplete.

  • Policy- and label-centric DLP works when labels are correct — but content is often unlabeled or mislabeled, and maintaining classification adds friction. Gaps appear exactly where users move fastest
  • Rule and signature-based approaches catch known patterns but miss nuance: human error, new workflows, and “unknown unknowns” that don’t match a rule

The takeaway: Protection must combine content + behavior + explainability at send time, without depending on perfect labels.

Your technology primer: The three pillars that make outbound DLP effective

1) Label-free (vs. data classification)

Protects all content, not just what’s labeled. Label-free analysis removes classification overhead and closes gaps from missing or incorrect tags. By evaluating content and context at send time, it also catches misdelivery and other payload-free errors.

  • No labeling burden; no regex/rule maintenance
  • Works when tags are missing, wrong, or stale
  • Detects misdirected sends even when labels look right

2) Behavioral (vs. rules, signatures, threat intelligence)

Understands user behavior, not just static patterns. Behavioral analysis learns what’s normal for each person, surfacing human error and subtle exfiltration that rules can’t. It also incorporates account signals and inbound intel, extending across email and Teams.

  • Flags risk without predefined rules or IOCs
  • Catches misdelivery, unusual contacts, personal forwards, odd timing/volume
  • Blends identity and inbound context across channels

3) Proprietary DSLM (vs. generic LLM)

Optimized for precise, fast, explainable on-send decisions. A DSLM understands email/DLP semantics, avoids generative risks, and stays auditable and privacy-controlled, delivering intelligence reliably without slowing mail flow.

  • Low-latency, on-send enforcement
  • Non-generative for predictable, explainable outcomes
  • Governed model with strong privacy and auditability

The Darktrace approach to DLP

Darktrace / EMAIL – DLP stops misdelivery and sensitive data loss at send time using hold/notify/justify/release actions. It blends behavioral insight with content understanding across 35+ PII categories, protecting both labeled and unlabeled data. Every action is paired with clear explainability: AI narratives show exactly why an email was flagged, supporting analysts and helping end-users learn. Deployment aligns cleanly with existing SOC workflows through mail-flow connectors and optional Microsoft Purview label ingestion, without forcing duplicate policy-building.

Deployment is simple: Microsoft 365 routes outbound mail to Darktrace for real-time, inline decisions without regex or rule-heavy setup.

A buyer’s checklist for DLP solutions

When choosing your DLP solution, you want to be sure that it can deliver precise, explainable protection at the moment it matters – on send – without operational drag.  

To finish, we’ve compiled a handy list of questions you can ask before choosing an outbound DLP solution:

  • Can it operate label free when tags are missing or wrong? 
  • Does it truly learn per user behavior (no shortcuts)? 
  • Is there a domain specific model behind the content understanding (not a generic LLM)? 
  • Does it explain decisions to both analysts and end users? 
  • Will it integrate with your label program and SOC workflows rather than duplicate them? 

For a deep dive into Darktrace’s DLP solution, check out the full solution brief.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Email

/

December 17, 2025

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with Darktrace

Beyond MFA: Detecting Adversary-in-the-Middle Attacks and Phishing with DarktraceDefault blog imageDefault blog image

What is an Adversary-in-the-middle (AiTM) attack?

Adversary-in-the-Middle (AiTM) attacks are a sophisticated technique often paired with phishing campaigns to steal user credentials. Unlike traditional phishing, which multi-factor authentication (MFA) increasingly mitigates, AiTM attacks leverage reverse proxy servers to intercept authentication tokens and session cookies. This allows attackers to bypass MFA entirely and hijack active sessions, stealthily maintaining access without repeated logins.

This blog examines a real-world incident detected during a Darktrace customer trial, highlighting how Darktrace / EMAILTM and Darktrace / IDENTITYTM identified the emerging compromise in a customer’s email and software-as-a-service (SaaS) environment, tracked its progression, and could have intervened at critical moments to contain the threat had Darktrace’s Autonomous Response capability been enabled.

What does an AiTM attack look like?

Inbound phishing email

Attacks typically begin with a phishing email, often originating from the compromised account of a known contact like a vendor or business partner. These emails will often contain malicious links or attachments leading to fake login pages designed to spoof legitimate login platforms, like Microsoft 365, designed to harvest user credentials.

Proxy-based credential theft and session hijacking

When a user clicks on a malicious link, they are redirected through an attacker-controlled proxy that impersonates legitimate services.  This proxy forwards login requests to Microsoft, making the login page appear legitimate. After the user successfully completes MFA, the attacker captures credentials and session tokens, enabling full account takeover without the need for reauthentication.

Follow-on attacks

Once inside, attackers will typically establish persistence through the creation of email rules or registering OAuth applications. From there, they often act on their objectives, exfiltrating sensitive data and launching additional business email compromise (BEC) campaigns. These campaigns can include fraudulent payment requests to external contacts or internal phishing designed to compromise more accounts and enable lateral movement across the organization.

Darktrace’s detection of an AiTM attack

At the end of September 2025, Darktrace detected one such example of an AiTM attack on the network of a customer trialling Darktrace / EMAIL and Darktrace / IDENTITY.

In this instance, the first indicator of compromise observed by Darktrace was the creation of a malicious email rule on one of the customer’s Office 365 accounts, suggesting the account had likely already been compromised before Darktrace was deployed for the trial.

Darktrace / IDENTITY observed the account creating a new email rule with a randomly generated name, likely to hide its presence from the legitimate account owner. The rule marked all inbound emails as read and deleted them, while ignoring any existing mail rules on the account. This rule was likely intended to conceal any replies to malicious emails the attacker had sent from the legitimate account owner and to facilitate further phishing attempts.

Darktrace’s detection of the anomalous email rule creation.
Figure 1: Darktrace’s detection of the anomalous email rule creation.

Internal and external phishing

Following the creation of the email rule, Darktrace / EMAIL observed a surge of suspicious activity on the user’s account. The account sent emails with subject lines referencing payment information to over 9,000 different external recipients within just one hour. Darktrace also identified that these emails contained a link to an unusual Google Drive endpoint, embedded in the text “download order and invoice”.

Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Figure 2: Darkrace’s detection of an unusual surge in outbound emails containing suspicious content, shortly following the creation of a new email rule.
Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.
Figure 3: Darktrace / EMAIL’s detection of the compromised account sending over 9,000 external phishing emails, containing an unusual Google Drive link.

As Darktrace / EMAIL flagged the message with the ‘Compromise Indicators’ tag (Figure 2), it would have been held automatically if the customer had enabled default Data Loss Prevention (DLP) Action Flows in their email environment, preventing any external phishing attempts.

Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.
Figure 4: Darktrace / EMAIL’s preview of the email sent by the offending account.

Darktrace analysis revealed that, after clicking the malicious link in the email, recipients would be redirected to a convincing landing page that closely mimicked the customer’s legitimate branding, including authentic imagery and logos, where prompted to download with a PDF named “invoice”.

Figure 5: Download and login prompts presented to recipients after following the malicious email link, shown here in safe view.

After clicking the “Download” button, users would be prompted to enter their company credentials on a page that was likely a credential-harvesting tool, designed to steal corporate login details and enable further compromise of SaaS and email accounts.

Darktrace’s Response

In this case, Darktrace’s Autonomous Response was not fully enabled across the customer’s email or SaaS environments, allowing the compromise to progress,  as observed by Darktrace here.

Despite this, Darktrace / EMAIL’s successful detection of the malicious Google Drive link in the internal phishing emails prompted it to suggest ‘Lock Link’, as a recommended action for the customer’s security team to manually apply. This action would have automatically placed the malicious link behind a warning or screening page blocking users from visiting it.

Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.
Figure 6: Autonomous Response suggesting locking the malicious Google Drive link sent in internal phishing emails.

Furthermore, if active in the customer’s SaaS environment, Darktrace would likely have been able to mitigate the threat even earlier, at the point of the first unusual activity: the creation of a new email rule. Mitigative actions would have included forcing the user to log out, terminating any active sessions, and disabling the account.

Conclusion

AiTM attacks represent a significant evolution in credential theft techniques, enabling attackers to bypass MFA and hijack active sessions through reverse proxy infrastructure. In the real-world case we explored, Darktrace’s AI-driven detection identified multiple stages of the attack, from anomalous email rule creation to suspicious internal email activity, demonstrating how Autonomous Response could have contained the threat before escalation.

MFA is a critical security measure, but it is no longer a silver bullet. Attackers are increasingly targeting session tokens rather than passwords, exploiting trusted SaaS environments and internal communications to remain undetected. Behavioral AI provides a vital layer of defense by spotting subtle anomalies that traditional tools often miss

Security teams must move beyond static defenses and embrace adaptive, AI-driven solutions that can detect and respond in real time. Regularly review SaaS configurations, enforce conditional access policies, and deploy technologies that understand “normal” behavior to stop attackers before they succeed.

Credit to David Ison (Cyber Analyst), Bertille Pierron (Solutions Engineer), Ryan Traill (Analyst Content Lead)

Appendices

Models

SaaS / Anomalous New Email Rule

Tactic – Technique – Sub-Technique  

Phishing - T1566

Adversary-in-the-Middle - T1557

Continue reading
About the author
David Ison
Cyber Analyst
Your data. Our AI.
Elevate your network security with Darktrace AI