Blog
/
Cloud
/
February 3, 2025

CNAPP Alone Isn’t Enough: Focusing on CDR for Real-Time Cross Domain Protection

This blog dives into the strengths and limitations of CNAPP, explaining how a CDR solution can enhance cloud security to identify and mitigate cross-domain threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
03
Feb 2025

Forecasts predict public cloud spending will soar to over $720 billion by 2025, with 90%[1] of organizations embracing a hybrid cloud approach by 2027. These figures could also be eclipsed as more businesses unearth the potential impact that AI can make on their productivity. The pace of evolution is staggering, but one thing hasn’t changed: the cloud security market is a maze of complexity. Filled with acronyms, overlapping capabilities, and endless use cases tailored to every buyer persona.

On top of this, organizations face a fragmented landscape of security tools, each designed to cover just one slice of the cloud security puzzle. Then there’s CNAPP (Cloud-Native Application Protection Platform) — a broad platform promising to do it all but often falling short, especially around providing runtime detection and response capabilities. It’s no wonder organizations struggle to cut through the noise and find the precision they require.

Looking more closely at what CNAPP has to offer, it can feel like as if it is all you would ever need, but is that really the case?

Strengths and limitations of CNAPP

A CNAPP is undeniably a compelling solution, originally coming from CSPM (Cloud Security Posture Management), it provided organizations with a snapshot of their deployed cloud assets, highlighting whether they were as secure as intended. However, this often resulted in an overwhelming list of issues to fix, leaving organizations unsure where to focus their energy for maximum impact.

To address this, CNAPP’s evolved, incorporating capabilities like; identifying software vulnerabilities, mapping attack paths, and understanding which identities could act within the cloud. The goal became clear: prioritize fixes to reduce the risk of compromise.

But what if we could avoid these problems altogether? Imagine deploying software securely from the start — preventing the merging of vulnerable packages and ensuring proper configurations in production environments by shifting left. This preventative approach is vital to any “secure by design” strategy, CNAPP’s again evolving to add this functionality alongside.

However, as applications grow more complex, so do the variety and scope of potential issues. The responsibility for addressing these challenges often falls to engineers, who are left balancing the pressure to write code with the burden of fixing critical findings that may never even pose a real risk to the organization.

While CNAPP serves as an essential risk prevention tool — focusing on hygiene, compliance, and enabling organizations to deploy high-quality code on well-configured infrastructure — its role is largely limited to reducing the potential for issues. Once applications and infrastructure are live, the game changes. Security’s focus shifts to detecting unwanted activity and responding to real-time risks.

Limitations of CNAPP

Here’s where CNAPP shows its limitations:

1. Blind spots for on-premises workloads

Designed for cloud-native environments, it can leave blind spots for workloads that remain on-premises — a significant concern given that 90% of organizations are expected to adopt a hybrid cloud strategy by 2027. These blind spots can increase the risk of cross-domain attacks, underscoring the need for a solution that goes beyond purely prevention but adds real-time detection and response.

2. Detecting and mitigating cross-domain threats

Adversaries have evolved to exploit the complexity of hybrid and cloud environments through cross-domain attacks. These attacks span multiple domains — including traditional network environments, identity systems, SaaS platforms, and cloud environments — making them exceptionally difficult to detect and mitigate. Attackers are human and will naturally choose the path of least resistance, why spend time writing a detailed software exploit for a vulnerability if you can just target the identity?

Imagine a scenario where an attacker compromises an organization via leaked credentials and then moves laterally, similar to the example outlined in this blog: The Price of Admission: Countering Stolen Credentials with Darktrace. If an attacker identifies cloud credentials and moves into the cloud control plane, they could access additional sensitive data. Without a detection platform that monitors these areas for unusual activity, while working to consolidate findings into a unified timeline, detecting these types of attacks becomes incredibly challenging.

A CNAPP might only point to a potential misconfiguration of an identity or for example a misconfiguration around secret storage, but it cannot detect when that misconfiguration has been exploited — let alone respond to it.

Identity + Network: Unlocking cross-domain threats

Identity is more than just a role or username; it is essentially an access point for attackers to leverage and move between different areas of a digital estate. Real-time monitoring of human and non-human identities is crucial for understanding intent, spotting anomalies, and preventing possible attacks before they spread.

Non-human roles, such as service accounts or automation tooling, often operate with trust and without oversight. In 2024, the Cybersecurity and Critical Infrastructure Agency (CISA) [2] released a warning regarding new strategies employed by SolarWinds attackers. These strategies were primarily aimed at cloud infrastructure and non-human identities. The warning details how attackers leverage credentials and valid applications for malicious purposes.

With organizations opting for a hybrid approach, combining network, identity, cloud management and cloud runtime activity is essential to detecting and mitigating cross domain attacks, these are just some of the capabilities needed for effective detection and response:

  • AI driven automated and unified investigation of events – due to the volume of data and activity within businesses digital estates leveraging AI is vital, to enable SOC teams in understanding and facilitating proportional and effective responses.
  • Real-time monitoring auditing combined with anomaly detection for human and non-human identities.
  • A unified investigation platform that can deliver a real-time understanding of Identity, deployed cloud assets, runtime and contextual findings as well as coverage for remaining on premises workloads.
  • The ability to leverage threat intelligence automatically to detect potential malicious activities quickly.

The future of cloud security: Balancing risk management with real-time detection and response

Darktrace / CLOUD's CDR approach enhances CNAPP by providing the essential detection and native response needed to protect against cross-domain threats. Its agentless, default setup is both cost-effective and scalable, creating a runtime baseline that significantly boosts visibility for security teams. While proactive controls are crucial for cloud security, pairing them with Cloud Detection and Response solutions addresses a broader range of challenges.

With Darktrace / CLOUD, organizations benefit from continuous, real-time monitoring and advanced AI-driven behavioral detection, ensuring proactive detection and a robust cloud-native response. This integrated approach delivers comprehensive protection across the digital estate.

Unlock advanced cloud protection

Darktrace / CLOUD solution brief screenshot

Download the Darktrace / CLOUD solution brief to discover how autonomous, AI-driven defense can secure your environment in real-time.

  • Achieve 60% more accurate detection of unknown and novel cloud threats.
  • Respond instantly with autonomous threat response, cutting response time by 90%.
  • Streamline investigations with automated analysis, improving ROI by 85%.
  • Gain a 30% boost in cloud asset visibility with real-time architecture modeling.

References

  1. https://www.gartner.com/en/newsroom/press-releases/2024-11-19-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-total-723-billion-dollars-in-2025
  2. https://www.cisa.gov/news-events/cybersecurity-advisories/aa24-057a
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Adam Stevens
Senior Director of Product, Cloud | Darktrace

More in this series

No items found.

Blog

/

/

February 16, 2026

CVE-2026-1731: How Darktrace Sees the BeyondTrust Exploitation Wave Unfolding

Default blog imageDefault blog image

Note: Darktrace's Threat Research team is publishing now to help defenders. We will continue updating this blog as our investigations unfold.

Background

On February 6, 2026, the Identity & Access Management solution BeyondTrust announced patches for a vulnerability, CVE-2026-1731, which enables unauthenticated remote code execution using specially crafted requests.  This vulnerability affects BeyondTrust Remote Support (RS) and particular older versions of Privileged Remote Access (PRA) [1].

A Proof of Concept (PoC) exploit for this vulnerability was released publicly on February 10, and open-source intelligence (OSINT) reported exploitation attempts within 24 hours [2].

Previous intrusions against Beyond Trust technology have been cited as being affiliated with nation-state attacks, including a 2024 breach targeting the U.S. Treasury Department. This incident led to subsequent emergency directives from  the Cybersecurity and Infrastructure Security Agency (CISA) and later showed attackers had chained previously unknown vulnerabilities to achieve their goals [3].

Additionally, there appears to be infrastructure overlap with React2Shell mass exploitation previously observed by Darktrace, with command-and-control (C2) domain  avg.domaininfo[.]top seen in potential post-exploitation activity for BeyondTrust, as well as in a React2Shell exploitation case involving possible EtherRAT deployment.

Darktrace Detections

Darktrace’s Threat Research team has identified highly anomalous activity across several customers that may relate to exploitation of BeyondTrust since February 10, 2026. Observed activities include:

-              Outbound connections and DNS requests for endpoints associated with Out-of-Band Application Security Testing; these services are commonly abused by threat actors for exploit validation.  Associated Darktrace models include:

o    Compromise / Possible Tunnelling to Bin Services

-              Suspicious executable file downloads. Associated Darktrace models include:

o    Anomalous File / EXE from Rare External Location

-              Outbound beaconing to rare domains. Associated Darktrace models include:

o   Compromise / Agent Beacon (Medium Period)

o   Compromise / Agent Beacon (Long Period)

o   Compromise / Sustained TCP Beaconing Activity To Rare Endpoint

o   Compromise / Beacon to Young Endpoint

o   Anomalous Server Activity / Rare External from Server

o   Compromise / SSL Beaconing to Rare Destination

-              Unusual cryptocurrency mining activity. Associated Darktrace models include:

o   Compromise / Monero Mining

o   Compromise / High Priority Crypto Currency Mining

And model alerts for:

o    Compromise / Rare Domain Pointing to Internal IP

IT Defenders: As part of best practices, we highly recommend employing an automated containment solution in your environment. For Darktrace customers, please ensure that Autonomous Response is configured correctly. More guidance regarding this activity and suggested actions can be found in the Darktrace Customer Portal.  

Appendices

Potential indicators of post-exploitation behavior:

·      217.76.57[.]78 – IP address - Likely C2 server

·      hXXp://217.76.57[.]78:8009/index.js - URL -  Likely payload

·      b6a15e1f2f3e1f651a5ad4a18ce39d411d385ac7  - SHA1 - Likely payload

·      195.154.119[.]194 – IP address – Likely C2 server

·      hXXp://195.154.119[.]194/index.js - URL – Likely payload

·      avg.domaininfo[.]top – Hostname – Likely C2 server

·      104.234.174[.]5 – IP address - Possible C2 server

·      35da45aeca4701764eb49185b11ef23432f7162a – SHA1 – Possible payload

·      hXXp://134.122.13[.]34:8979/c - URL – Possible payload

·      134.122.13[.]34 – IP address – Possible C2 server

·      28df16894a6732919c650cc5a3de94e434a81d80 - SHA1 - Possible payload

References:

1.        https://nvd.nist.gov/vuln/detail/CVE-2026-1731

2.        https://www.securityweek.com/beyondtrust-vulnerability-targeted-by-hackers-within-24-hours-of-poc-release/

3.        https://www.rapid7.com/blog/post/etr-cve-2026-1731-critical-unauthenticated-remote-code-execution-rce-beyondtrust-remote-support-rs-privileged-remote-access-pra/

Continue reading
About the author
Emma Foulger
Global Threat Research Operations Lead

Blog

/

AI

/

February 13, 2026

How AI is redefining cybersecurity and the role of today’s CIO

Default blog imageDefault blog image

Why AI is essential to modern security

As attackers use automation and AI to outpace traditional tools and people, our approach to cybersecurity must fundamentally change. That’s why one of my first priorities as Withum's CIO was to elevate cybersecurity from a technical function to a business enabler.

What used to be “IT’s problem” is now a boardroom conversation – and for good reason. Protecting our data, our people, and our clients directly impacts revenue, reputation and competitive positioning.  

As CIOs / CISOs, our responsibilities aren’t just keeping systems running, but enabling trust, protecting our organization's reputation, and giving the business confidence to move forward even as the digital world becomes less predictable. To pull that off, we need to know the business inside-out, understand risk, and anticipate what's coming next. That's where AI becomes essential.

Staying ahead when you’re a natural target

With more than 3,100 team members and over 1,000 CPAs (Certified Public Accountant), Withum’s operates in an industry that naturally attracts attention from attackers. Firms like ours handle highly sensitive financial and personal information, which puts us squarely in the crosshairs for sophisticated phishing, ransomware, and cloud-based attacks.

We’ve built our security program around resilience, visibility, and scale. By using Darktrace’s AI-powered platform, we can defend against both known and unknown threats, across email and network, without slowing our teams down.

Our focus is always on what we’re protecting: our clients’ information, our intellectual property, and the reputation of the firm. With Darktrace, we’re not just keeping up with the massive volume of AI-powered attacks coming our way, we’re staying ahead. The platform defends our digital ecosystem around the clock, detecting potential threats across petabytes of data and autonomously investigating and responding to tens of thousands of incidents every year.

Catching what traditional tools miss

Beyond the sheer scale of attacks, Darktrace ActiveAI Security PlatformTM is critical for identifying threats that matter to our business. Today’s attackers don’t use generic techniques. They leverage automation and AI to craft highly targeted attacks – impersonating trusted colleagues, mimicking legitimate websites, and weaving in real-world details that make their messages look completely authentic.

The platform, covering our network, endpoints, inboxes, cloud and more is so effective because it continuously learns what’s normal for our business: how our users typically behave, the business- and industry-specific language we use, how systems communicate, and how cloud resources are accessed. It picks up on minute details that would sail right past traditional tools and even highly trained security professionals.

Freeing up our team to do what matters

On average, Darktrace autonomously investigates 88% of all our security events, using AI to connect the dots across email, network, and cloud activity to figure out what matters. That shift has changed how our team works. Instead of spending hours sorting through alerts, we can focus on proactive efforts that actually strengthen our security posture.

For example, we saved 1,850 hours on investigating security issues over a ten-day period. We’ve reinvested the time saved into strengthening policies, refining controls, and supporting broader business initiatives, rather than spending endless hours manually piecing together alerts.

Real confidence, real results

The impact of our AI-driven approach goes well beyond threat detection. Today, we operate from a position of confidence, knowing that threats are identified early, investigated automatically, and communicated clearly across our organization.

That confidence was tested when we withstood a major ransomware attack by a well-known threat group. Not only were we able to contain the incident, but we were able to trace attacker activity and provided evidence to law enforcement. That was an exhilarating experience! My team did an outstanding job, and moments like that reinforce exactly why we invest in the right technology and the right people.

Internally, this capability has strengthened trust at the executive level. We share security reporting regularly with leadership, translating technical activity into business-relevant insights. That transparency reinforces cybersecurity as a shared responsibility, one that directly supports growth, continuity, and reputation.

Culturally, we’ve embedded security awareness into daily operations through mandatory monthly training, executive communication, and real-world industry examples that keep cybersecurity top of mind for every employee.

The only headlines we want are positive ones: Withum expanding services, Withum growing year over year. Security plays a huge role in making sure that’s the story we get to tell.

What’s next

Looking ahead, we’re expanding our use of Darktrace, including new cloud capabilities that extend AI-driven visibility and investigation into our AWS and Azure environments.

As I continue shaping our security team, I look for people with passion, curiosity, and a genuine drive to solve problems. Those qualities matter just as much as formal credentials in my view. Combined with AI, these attributes help us build a resilient, engaged security function with low turnover and high impact.

For fellow technology leaders, my advice is simple: be forward-thinking and embrace change. We must understand the business, the threat landscape, and how technology enables both. By augmenting human expertise rather than replacing it, AI allows us to move upstream by anticipating risk, advising the business, and fostering stronger collaboration across teams.

Continue reading
About the author
Amel Edmond
Chief Information Officer
Your data. Our AI.
Elevate your network security with Darktrace AI