Blog
/
/
February 12, 2018

The Rise of Cryptocurrency Attacks & Cyber Defense Solutions

Darktrace can detect cryptocurrency-related attacks with machine learning. Identify nefarious use of resources and protect against Coinhive drive-by mining.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
12
Feb 2018

Prelude

The last 12 months have shown tremendous volatility in the value of cryptocurrencies, of which Bitcoin is the most prominent example. At the start of 2017, Bitcoin lingered around the $2,000 mark before suddenly taking off, climbing to historic highs of close to $20,000 in December 2017. Demand has since subsided, and at the time of writing, the price of Bitcoin is near to $10,772.

While Bitcoin is the most popular cryptocurrency, numerous alternatives, often called ‘altcoins’ have emerged and grown in value in the last 12 months. For example, Dogecoin, originally created to be a spoof cryptocurrency after a widespread internet meme, reached a notable market capitalization milestone of $2bn in January 2018.

Nowadays it is almost impossible to profitably mine Bitcoin on commodity hardware such as laptops, smartphones or desktop computers. At this late state, it just takes too long to perform the relevant calculations, and the cost of electricity is higher than the anticipated revenue in most cases. Other altcoins such as Monero use different algorithms, making them viable alternatives for aspiring crypto miners. It is often still feasible to mine altcoins on commodity hardware and see a return on investment.

The value of most altcoins is closely tied to the value of Bitcoin and, in many cases, the relationship is broadly proportional – a rise in Bitcoin prompting a similar lift in the altcoins. Monero, which has been rapidly adopted by Darknet markets, has profited from this effect. While Monero was valued at around $10 in January 2017, its price has been pumped up to $419 a year later.

There is much that is still not clear about the cryptocurrency phenomenon. Debate as to its relative value and its status as a currency rages, and will not be resolved any time soon. However, from a cyber security perspective there can be no doubt that the combination of altcoins being mineable on commodity hardware, the fact that mining is now becoming profitable as a side-effect of Bitcoin’s rise, and a maturity in cryptocurrency-related tech has led to a surge in cryptocurrency-related attacks.

Attack vectors

Darktrace has observed an abrupt increase of cryptocurrency-related attacks over the last 12 months. Both the frequency and the diversity of these attacks has grown significantly and largely mirrors the remarkable rise in the value of Bitcoin over that period.

Previously, cyber-criminals monetized their operations via banking Trojans/credit card fraud, selling stolen data and ransomware on the Darknet. However, criminals are notoriously adaptable and will follow the money wherever it leads, leading to an increase in cryptojacking’s popularity.

Cryptocurrency mining might not be as profitable as ransomware is upfront, but it can be secretly pursued for months without creating the havoc that characterizes ransomware attacks. Most users and security products might not notice a cryptocurrency miner being installed on a corporate device as it does not show obvious threats or messages to a user, except for an occasional increase in CPU or RAM usage.

Identifying these attacks can be very difficult for traditional security tools as they were not originally designed to catch this type of threat. Nor was Darktrace, but its approach – which relies on its evolving understanding of patterns of behavior – means that it can detect such attacks without having to know what to look for in advance.

Darktrace has detected a number of different attack vectors related to cryptocurrency attacks.

  1. Nefarious use of corporate resources
    Darktrace has detected a range of incidents where employees were intentionally installing cryptocurrency mining software on their corporate devices to mine for personal gain. These employees do not have to pay for the electricity used to run the corporate device in the office – they are basically turning their employer’s electricity into cash by commandeering it for mining operations.

    This is commonly seen as a compliance breach and increases the attack surface of a device that has mining software installed. It puts the corporate device at risk and also increases operational costs as the power consumption usually goes up for mining devices. The most popular cryptocurrency choices for this kind of mining in the last 12 months were Etherium and Monero – altcoins that can profitably be mined without the need for inordinate electricity.
  2. Coinhive drive-by mining
    Coinhive is a technology that allows website owners to use their visitors’ computing power to mine a tiny fraction of cryptocurrency for the website owner. Visitors will experience a small increase in computer resource consumption while browsing the website. Some websites experiment with this model to create new forms of revenue streams alternative to advertisement and banner placements.

    Coinhive usage is often not an opt-in process. Darktrace has observed various customer devices that regularly visit websites leveraging Coinhive technology. While the power consumption increase for a device browsing a website with Coinhive is ultimately negligible, the cumulative effect of a sizeable portion of the workforce unwittingly browsing websites using Coinhive results in increased power consumption cost for the organization as a whole.
  3. Malicious insider
    A malicious insider compromised his employer’s website to put a Coinhive script on there. This then mined Monero for every visitor on the employer’s website for the malicious insider’s personal gain.
  4. Traditional malware
    Cyber criminals are constantly looking to improve the return on investment of their operations. Reports suggest that criminals are starting to adjust their monetization methods based on the financial means of their targets. Suppose you can’t pay the fee extorted in a ransomware attack? They’ll just install a crypto miner on your device instead to ensure that the attack is not completely fruitless.

    As malware authors become more sophisticated, they often deploy multi-staged malware that can swap weaponized payloads. Once malware has infected a system successfully, its authors can often decide what actions to take next. Encrypt the device and extort a ransom? Install a banking Trojan to harvest credit card details? Install more spyware modules to look for data exfiltration? Or, now, install a cryptocurrency miner.

    These pieces of malware operate stealthily and often go undetected for several weeks. An infection might start with a phishing email that contains a macro-enabled document. As soon as a user enabled the macro, the malware will download a file-less stager that lives in memory and cannot be detected by traditional antivirus. Command and control communication is usually maintained via IP addresses that change on a daily basis in order to outrun threat intelligence and blacklisting attempts. As no obvious damage is done straight away, these attacks often stay under the radar for prolonged times, so long as self-learning technology such as Darktrace is not employed.

    This becomes much more concerning as malware authors could swap one payload for another overnight if they deem it more profitable, switching from a furtive crypto mining Trojan to ransomware the next day. While we have not observed this kind of attack in the wild yet, it is plausible, and in cyberspace what can be done, will be done.

Conclusions

Revolutionary technologies like cryptocurrencies have both their dark and light aspects. For all of the creative energy released by the crypto-blockchain revolution, Bitcoin and its alternatives have quickly become the universal currency of the criminal underworld. Indeed, the former Chief Economist of the World Bank, Joseph Stiglitz – an adamant critic of cryptocurrencies – has said that the whole value of Bitcoin resides in its “potential for circumvention” and “lack of oversight”.

While Stiglitz’s case may be overstated, there can be no question that cyber criminals have sensed a new opportunity to make money. A lot of organizations still regard crypto mining as a compliance incident. This can lead to grave consequences as a cryptocurrency mining device might lead to more severe incidents that can have a serious effect on business operations.

This kind of threat is difficult to detect as no obvious damage is done. However, with Darktrace’s machine learning we can correlate even the weakest indicators of such an attack into a compelling picture of threat. While traditional tools may struggle to see these deviations, Darktrace can pinpoint the changes in behavior effected by cryptocurrency miners without having to rely on any blacklists or signatures.

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

Identity

/

July 3, 2025

Top Eight Threats to SaaS Security and How to Combat Them

Default blog imageDefault blog image

The latest on the identity security landscape

Following the mass adoption of remote and hybrid working patterns, more critical data than ever resides in cloud applications – from Salesforce and Google Workspace, to Box, Dropbox, and Microsoft 365.

On average, a single organization uses 130 different Software-as-a-Service (SaaS) applications, and 45% of organizations reported experiencing a cybersecurity incident through a SaaS application in the last year.

As SaaS applications look set to remain an integral part of the digital estate, organizations are being forced to rethink how they protect their users and data in this area.

What is SaaS security?

SaaS security is the protection of cloud applications. It includes securing the apps themselves as well as the user identities that engage with them.

Below are the top eight threats that target SaaS security and user identities.

1.  Account Takeover (ATO)

Attackers gain unauthorized access to a user’s SaaS or cloud account by stealing credentials through phishing, brute-force attacks, or credential stuffing. Once inside, they can exfiltrate data, send malicious emails, or escalate privileges to maintain persistent access.

2. Privilege escalation

Cybercriminals exploit misconfigurations, weak access controls, or vulnerabilities to increase their access privileges within a SaaS or cloud environment. Gaining admin or superuser rights allows attackers to disable security settings, create new accounts, or move laterally across the organization.

3. Lateral movement

Once inside a network or SaaS platform, attackers move between accounts, applications, and cloud workloads to expand their foot- hold. Compromised OAuth tokens, session hijacking, or exploited API connections can enable adversaries to escalate access and exfiltrate sensitive data.

4. Multi-Factor Authentication (MFA) bypass and session hijacking

Threat actors bypass MFA through SIM swapping, push bombing, or exploiting session cookies. By stealing an active authentication session, they can access SaaS environments without needing the original credentials or MFA approval.

5. OAuth token abuse

Attackers exploit OAuth authentication mechanisms by stealing or abusing tokens that grant persistent access to SaaS applications. This allows them to maintain access even if the original user resets their password, making detection and mitigation difficult.

6. Insider threats

Malicious or negligent insiders misuse their legitimate access to SaaS applications or cloud platforms to leak data, alter configurations, or assist external attackers. Over-provisioned accounts and poor access control policies make it easier for insiders to exploit SaaS environments.

7. Application Programming Interface (API)-based attacks

SaaS applications rely on APIs for integration and automation, but attackers exploit insecure endpoints, excessive permissions, and unmonitored API calls to gain unauthorized access. API abuse can lead to data exfiltration, privilege escalation, and service disruption.

8. Business Email Compromise (BEC) via SaaS

Adversaries compromise SaaS-based email platforms (e.g., Microsoft 365 and Google Workspace) to send phishing emails, conduct invoice fraud, or steal sensitive communications. BEC attacks often involve financial fraud or data theft by impersonating executives or suppliers.

BEC heavily uses social engineering techniques, tailoring messages for a specific audience and context. And with the growing use of generative AI by threat actors, BEC is becoming even harder to detect. By adding ingenuity and machine speed, generative AI tools give threat actors the ability to create more personalized, targeted, and convincing attacks at scale.

Protecting against these SaaS threats

Traditionally, security leaders relied on tools that were focused on the attack, reliant on threat intelligence, and confined to a single area of the digital estate.

However, these tools have limitations, and often prove inadequate for contemporary situations, environments, and threats. For example, they may lack advanced threat detection, have limited visibility and scope, and struggle to integrate with other tools and infrastructure, especially cloud platforms.

AI-powered SaaS security stays ahead of the threat landscape

New, more effective approaches involve AI-powered defense solutions that understand the digital business, reveal subtle deviations that indicate cyber-threats, and action autonomous, targeted responses.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email

Blog

/

Proactive Security

/

July 2, 2025

Pre-CVE Threat Detection: 10 Examples Identifying Malicious Activity Prior to Public Disclosure of a Vulnerability

Default blog imageDefault blog image

Vulnerabilities are weaknesses in a system that can be exploited by malicious actors to gain unauthorized access or to disrupt normal operations. Common Vulnerabilities and Exposures (or CVEs) are a list of publicly disclosed cybersecurity vulnerabilities that can be tracked and mitigated by the security community.

When a vulnerability is discovered, the standard practice is to report it to the vendor or the responsible organization, allowing them to develop and distribute a patch or fix before the details are made public. This is known as responsible disclosure.

With a record-breaking 40,000 CVEs reported for 2024 and a predicted higher number for 2025 by the Forum for Incident Response and Security Teams (FIRST) [1], anomaly-detection is essential for identifying these potential risks. The gap between exploitation of a zero-day and disclosure of the vulnerability can sometimes be considerable, and retroactively attempting to identify successful exploitation on your network can be challenging, particularly if taking a signature-based approach.

Detecting threats without relying on CVE disclosure

Abnormal behaviors in networks or systems, such as unusual login patterns or data transfers, can indicate attempted cyber-attacks, insider threats, or compromised systems. Since Darktrace does not rely on rules or signatures, it can detect malicious activity that is anomalous even without full context of the specific device or asset in question.

For example, during the Fortinet exploitation late last year, the Darktrace Threat Research team were investigating a different Fortinet vulnerability, namely CVE 2024-23113, for exploitation when Mandiant released a security advisory around CVE 2024-47575, which aligned closely with Darktrace’s findings.

Retrospective analysis like this is used by Darktrace’s threat researchers to better understand detections across the threat landscape and to add additional context.

Below are ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

ten examples from the past year where Darktrace detected malicious activity days or even weeks before a vulnerability was publicly disclosed.

Trends in pre-cve exploitation

Often, the disclosure of an exploited vulnerability can be off the back of an incident response investigation related to a compromise by an advanced threat actor using a zero-day. Once the vulnerability is registered and publicly disclosed as having been exploited, it can kick off a race between the attacker and defender: attack vs patch.

Nation-state actors, highly skilled with significant resources, are known to use a range of capabilities to achieve their target, including zero-day use. Often, pre-CVE activity is “low and slow”, last for months with high operational security. After CVE disclosure, the barriers to entry lower, allowing less skilled and less resourced attackers, like some ransomware gangs, to exploit the vulnerability and cause harm. This is why two distinct types of activity are often seen: pre and post disclosure of an exploited vulnerability.

Darktrace saw this consistent story line play out during several of the Fortinet and PAN OS threat actor campaigns highlighted above last year, where nation-state actors were seen exploiting vulnerabilities first, followed by ransomware gangs impacting organizations [2].

The same applies with the recent SAP Netweaver exploitations being tied to a China based threat actor earlier this spring with subsequent ransomware incidents being observed [3].

Autonomous Response

Anomaly-based detection offers the benefit of identifying malicious activity even before a CVE is disclosed; however, security teams still need to quickly contain and isolate the activity.

For example, during the Ivanti chaining exploitation in the early part of 2025, a customer had Darktrace’s Autonomous Response capability enabled on their network. As a result, Darktrace was able to contain the compromise and shut down any ongoing suspicious connectivity by blocking internal connections and enforcing a “pattern of life” on the affected device.

This pre-CVE detection and response by Darktrace occurred 11 days before any public disclosure, demonstrating the value of an anomaly-based approach.

In some cases, customers have even reported that Darktrace stopped malicious exploitation of devices several days before a public disclosure of a vulnerability.

For example, During the ConnectWise exploitation, a customer informed the team that Darktrace had detected malicious software being installed via remote access. Upon further investigation, four servers were found to be impacted, while Autonomous Response had blocked outbound connections and enforced patterns of life on impacted devices.

Conclusion

By continuously analyzing behavioral patterns, systems can spot unusual activities and patterns from users, systems, and networks to detect anomalies that could signify a security breach.

Through ongoing monitoring and learning from these behaviors, anomaly-based security systems can detect threats that traditional signature-based solutions might miss, while also providing detailed insights into threat tactics, techniques, and procedures (TTPs). This type of behavioral intelligence supports pre-CVE detection, allows for a more adaptive security posture, and enables systems to evolve with the ever-changing threat landscape.

Credit to Nathaniel Jones (VP, Security & AI Strategy, Field CISO), Emma Fougler (Global Threat Research Operations Lead), Ryan Traill (Analyst Content Lead)

References and further reading:

  1. https://www.first.org/blog/20250607-Vulnerability-Forecast-for-2025
  2. https://cloud.google.com/blog/topics/threat-intelligence/fortimanager-zero-day-exploitation-cve-2024-47575
  3. https://thehackernews.com/2025/05/china-linked-hackers-exploit-sap-and.html

Related Darktrace blogs:

*Self-reported by customer, confirmed afterwards.

**Updated January 2024 blog now reflects current findings

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI