Blog
/
AI
/
August 22, 2022

Emotet Resurgence: Cross-Industry Analysis

Technical insights on the Emotet resurgence in 2022 across various client environments, industries, and regions.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Eugene Chua
Cyber Security Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
22
Aug 2022

Introduction

Last year provided further evidence that the cyber threat landscape remains both complex and challenging to predict. Between uncertain attribution, novel exploits and rapid malware developments, it is becoming harder to know where to focus security efforts. One of the largest surprises of 2021 was the re-emergence of the infamous Emotet botnet. This is an example of a campaign that ignored industry verticals or regions and seemingly targeted companies indiscriminately. Only 10 months after the Emotet takedown by law enforcement agencies in January, new Emotet activities in November were discovered by security researchers. These continued into the first quarter of 2022, a period which this blog will explore through findings from the Darktrace Threat Intel Unit. 

Dating back to 2019, Emotet was known to deliver Trickbot payloads which ultimately deployed Ryuk ransomware strains on compromised devices. This interconnectivity highlighted the hydra-like nature of threat groups wherein eliminating one (even with full-scale law enforcement intervention) would not rule them out as a threat nor indicate that the threat landscape would be any more secure. 

When Emotet resurged, as expected, one of the initial infection vectors involved leveraging existing Trickbot infrastructure. However, unlike the original attacks, it featured a brand new phishing campaign.

Figure 1: Distribution of observed Emotet activities across Darktrace deployments

Although similar to the original Emotet infections, the new wave of infections has been classified into two categories: Epochs 4 and 5. These had several key differences compared to Epochs 1 to 3. Within Darktrace’s global deployments, Emotet compromises associated to Epoch 4 appeared to be the most prevalent. Affected customer environments were seen within a large range of countries (Figure 1) and industry verticals such as manufacturing and supply chain, hospitality and travel, public administration, technology and telecoms and healthcare. Company demographics and size did not appear to be a targeting factor as affected customers had varying employee counts ranging from less than 250, to over 5000.

Key differences between Epochs 1-3 vs 4-5

Based on wider security research into the innerworkings of the Emotet exploits, several key differences were identified between Epochs 4/5 and its predecessors. The newer epochs used:

·       A different Microsoft document format (OLE vs XML-based).

·       A different encryption algorithm for communication. The new epochs used Elliptic Curve Cryptograph (ECC) [1] with public encryption keys contained in the C2 configuration file [2]. This was different from the previous Rivest-Shamir-Adleman (RSA) key encryption method.

·       Control Flow Flattening was used as an obfuscation technique to make detection and reverse engineering more difficult. This is done by hiding a program’s control flow [3].

·       New C2 infrastructure was observed as C2 communications were directed to over 230 unique IPs all associated to the new Epochs 4 and 5.

In addition to the new Epoch 4 and 5 features, Darktrace detected unsurprising similarities in those deployments affected by the renewed campaign. This included self-signed SSL connections to Emotet’s new infrastructure as well as malware spam activities to multiple rare external endpoints. Preceding these outbound communications, devices across multiple deployments were detected downloading Emotet-associated payloads (algorithmically generated DLL files).

Emotet Resurgence Campaign

Figure 2: Darktrace’s Detection Timeline for Emotet Epoch 4 and 5 compromises

1. Initial Compromise

The initial point of entry for the resurgence activity was almost certainly via Trickbot infrastructure or a successful phishing attack (Figure 2). Following the initial intrusion, the malware strain begins to download payloads via macro-ladened files which are used to spawn PowerShell for subsequent malware downloads.

Following the downloads, malicious communication with Emotet’s C2 infrastructure was observed alongside activities from the spam module. Within Darktrace, key techniques were observed and documented below.

2. Establish Foothold: Binary Dynamic-link library (.dll) with algorithmically generated filenames 

Emotet payloads are polymorphic and contain algorithmically generated filenames . Within deployments, HTTP GET requests involving a suspicious hostname, www[.]arkpp[.]com, and Emotet related samples such as those seen below were observed:

·       hpixQfCoJb0fS1.dll (SHA256 hash: 859a41b911688b00e104e9c474fc7aaf7b1f2d6e885e8d7fbf11347bc2e21eaa)

·       M0uZ6kd8hnzVUt2BNbRzRFjRoz08WFYfPj2.dll (SHA256 hash: 9fbd590cf65cbfb2b842d46d82e886e3acb5bfecfdb82afc22a5f95bda7dd804)

·       TpipJHHy7P.dll (SHA256 hash: 40060259d583b8cf83336bc50cc7a7d9e0a4de22b9a04e62ddc6ca5dedd6754b)

These DLL files likely represent the distribution of Emotet loaders which depends on windows processes such as rundll32[.]exe and regsvr32[.]exe to execute. 

3. Establish Foothold: Outbound SSL connections to Emotet C2 servers 

A clear network indicator of compromise for Emotet’s C2 communication involved self-signed SSL using certificate issuers and subjects which matched ‘CN=example[.]com,OU=IT Department,O=Global Security,L=London,ST=London,C=GB’ , and a common JA3 client fingerprint (72a589da586844d7f0818ce684948eea). The primary C2 communications were seen involving infrastructures classified as Epoch 4 rather than 5. Despite encryption in the communication content, network contextual connection details were sufficient for the detection of the C2 activities (Figure 3).

Figure 3: UI Model Breach logs on download and outbound SSL activities.

Outbound SSL and SMTP connections on TCP ports 25, 465, 587 

An anomalous user agent such as, ‘Microsoft Outlook 15.0’, was observed being used for SMTP connections with some subject lines of the outbound emails containing Base64-encoded strings. In addition, this JA3 client fingerprint (37cdab6ff1bd1c195bacb776c5213bf2) was commonly seen from the SSL connections. Based on the set of malware spam hostnames observed across at least 10 deployments, the majority of the TLDs were .jp, .com, .net, .mx, with the Japanese TLD being the most common (Figure 4).

Figure 4: Malware Spam TLDs observed in outbound SSL and SMTP

 Plaintext spam content generated from the spam module were seen in PCAPs (Figure 5). Examples of clear phishing or spam indicators included 1) mismatched personal header and email headers, 2) unusual reply chain and recipient references in the subject line, and 3) suspicious compressed file attachments, e.g. Electronic form[.]zip.

Figure 5: Example of PCAP associated to SPAM Module

4. Accomplish Mission

 The Emotet resurgence also showed through secondary compromises involving anomalous SMB drive writes related to CobaltStrike. This consistently included the following JA3 hash (72a589da586844d7f0818ce684948eea) seen in SSL activities as well as SMB writes involving the svchost.exe file.

Darktrace Detection

 The key DETECT models used to identify Emotet Resurgence activities were focused on determining possible C2. These included:

·       Suspicious SSL Activity

·       Suspicious Self-Signed SSL

·       Rare External SSL Self-Signed

·       Possible Outbound Spam

File-focused models were also beneficial and included:

·       Zip or Gzip from Rare External Location

·       EXE from Rare External Location

Darktrace’s detection capabilities can also be shown through a sample of case studies identified during the Threat Research team’s investigations.

Case Studies 

Darktrace’s detection of Emotet activities was not limited by industry verticals or company sizing. Although there were many similar features seen across the new epoch, each incident displayed varying techniques from the campaign. This is shown in two client environments below:

When investigating a large customer environment within the public administration sector, 16 different devices were detected making 52,536 SSL connections with the example[.]com issuer. Devices associated with this issuer were mainly seen breaching the same Self-Signed and Spam DETECT models. Although anomalous incoming octet-streams were observed prior to this SSL, there was no clear relation between the downloads and the Emotet C2 connections. Despite the total affected devices occupying only a small portion of the total network, Darktrace analysts were able to filter against the much larger network ‘noise’ and locate detailed evidence of compromise to notify the customer.

Darktrace also identified new Emotet activities in much smaller customer environments. Looking at a company in the healthcare and pharmaceutical sector, from mid-March 2022 a single internal device was detected making an HTTP GET request to the host arkpp[.]com involving the algorithmically-generated DLL, TpipJHHy7P.dll with the SHA256 hash: 40060259d583b8cf83336bc50cc7a7d9e0a4de22b9a04e62ddc6ca5dedd6754b (Figure 6). 

Figure 6: A screenshot from VirusTotal, showing that the SHA256 hash has been flagged as malicious by other security vendors.

After the sample was downloaded, the device contacted a large number of endpoints that had never been contacted by devices on the network. The endpoints were contacted over ports 443, 8080, and 7080 involving Emotet related IOCs and the same SSL certificate mentioned previously. Malware spam activities were also observed during a similar timeframe.

 The Emotet case studies above demonstrate how autonomous detection of an anomalous sequence of activities - without depending on conventional rules and signatures - can reveal significant threat activities. Though possible staged payloads were only seen in a proportion of the affected environments, the following outbound C2 and malware spam activities involving many endpoints and ports were sufficient for the detection of Emotet.

 If present, in both instances Darktrace’s Autonomous Response technology, RESPOND, would recommend or implement surgical actions to precisely target activities associated with the staged payload downloads, outgoing C2 communications, and malware spam activities. Additionally, restriction to the devices’ normal pattern of life will prevent simultaneously occurring malicious activities while enabling the continuity of normal business operations.

 Conclusion 

·       The technical differences between past and present Emotet strains emphasizes the versatility of malicious threat actors and the need for a security solution that is not reliant on signatures.

·       Darktrace’s visibility and unique behavioral detection continues to provide visibility to network activities related to the novel Emotet strain without reliance on rules and signatures. Key examples include the C2 connections to new Emotet infrastructure.

·       Looking ahead, detection of C2 establishment using suspicious DLLs will prevent further propagation of the Emotet strains across networks.

·       Darktrace’s AI detection and response will outpace conventional post compromise research involving the analysis of Emotet strains through static and dynamic code analysis, followed by the implementation of rules and signatures.

Thanks to Paul Jennings and Hanah Darley for their contributions to this blog.

Appendices

Model breaches

·       Anomalous Connection / Anomalous SSL without SNI to New External 

·       Anomalous Connection / Application Protocol on Uncommon Port 

·       Anomalous Connection / Multiple Connections to New External TCP Port 

·       Anomalous Connection / Multiple Failed Connections to Rare Endpoint 

·       Anomalous Connection / Multiple HTTP POSTs to Rare Hostname 

·       Anomalous Connection / Possible Outbound Spam 

·       Anomalous Connection / Rare External SSL Self-Signed 

·       Anomalous Connection / Repeated Rare External SSL Self-Signed      

·       Anomalous Connection / Suspicious Expired SSL 

·       Anomalous Connection / Suspicious Self-Signed SSL

·       Anomalous File / Anomalous Octet Stream (No User Agent) 

·       Anomalous File / Zip or Gzip from Rare External Location 

·       Anomalous File / EXE from Rare External Location

·       Compromise / Agent Beacon to New Endpoint 

·       Compromise / Beacon to Young Endpoint 

·       Compromise / Beaconing Activity To External Rare 

·       Compromise / New or Repeated to Unusual SSL Port 

·       Compromise / Repeating Connections Over 4 Days 

·       Compromise / Slow Beaconing Activity To External Rare 

·       Compromise / SSL Beaconing to Rare Destination 

·       Compromise / Suspicious Beaconing Behaviour 

·       Compromise / Suspicious Spam Activity 

·       Compromise / Suspicious SSL Activity 

·       Compromise / Sustained SSL or HTTP Increase 

·       Device / Initial Breach Chain Compromise 

·       Device / Large Number of Connections to New Endpoints 

·       Device / Long Agent Connection to New Endpoint 

·       Device / New User Agent 

·       Device / New User Agent and New IP 

·       Device / SMB Session Bruteforce 

·       Device / Suspicious Domain 

·       Device / Suspicious SMB Scanning Activity 

For Darktrace customers who want to know more about using Darktrace to triage Emotet, refer here for an exclusive supplement to this blog.

References

[1] https://blog.lumen.com/emotet-redux/

[2] https://blogs.vmware.com/security/2022/03/emotet-c2-configuration-extraction-and-analysis.html

[3] https://news.sophos.com/en-us/2022/05/04/attacking-emotets-control-flow-flattening/

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Eugene Chua
Cyber Security Analyst

More in this series

No items found.

Blog

/

Network

/

June 27, 2025

Patch and Persist: Darktrace’s Detection of Blind Eagle (APT-C-36)

login on laptop dual factor authenticationDefault blog imageDefault blog image

What is Blind Eagle?

Since 2018, APT-C-36, also known as Blind Eagle, has been observed performing cyber-attacks targeting various sectors across multiple countries in Latin America, with a particular focus on Colombian organizations.

Blind Eagle characteristically targets government institutions, financial organizations, and critical infrastructure [1][2].

Attacks carried out by Blind Eagle actors typically start with a phishing email and the group have been observed utilizing various Remote Access Trojans (RAT) variants, which often have in-built methods for hiding command-and-control (C2) traffic from detection [3].

What we know about Blind Eagle from a recent campaign

Since November 2024, Blind Eagle actors have been conducting an ongoing campaign targeting Colombian organizations [1].

In this campaign, threat actors have been observed using phishing emails to deliver malicious URL links to targeted recipients, similar to the way threat actors have previously been observed exploiting CVE-2024-43451, a vulnerability in Microsoft Windows that allows the disclosure of a user’s NTLMv2 password hash upon minimal interaction with a malicious file [4].

Despite Microsoft patching this vulnerability in November 2024 [1][4], Blind Eagle actors have continued to exploit the minimal interaction mechanism, though no longer with the intent of harvesting NTLMv2 password hashes. Instead, phishing emails are sent to targets containing a malicious URL which, when clicked, initiates the download of a malicious file. This file is then triggered by minimal user interaction.

Clicking on the file triggers a WebDAV request, with a connection being made over HTTP port 80 using the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19044’. WebDAV is a transmission protocol which allows files or complete directories to be made available through the internet, and to be transmitted to devices [5]. The next stage payload is then downloaded via another WebDAV request and malware is executed on the target device.

Attackers are notified when a recipient downloads the malicious files they send, providing an insight into potential targets [1].

Darktrace’s coverage of Blind Eagle

In late February 2025, Darktrace observed activity assessed with medium confidence to be  associated with Blind Eagle on the network of a customer in Colombia.

Within a period of just five hours, Darktrace / NETWORK detected a device being redirected through a rare external location, downloading multiple executable files, and ultimately exfiltrating data from the customer’s environment.

Since the customer did not have Darktrace’s Autonomous Response capability enabled on their network, no actions were taken to contain the compromise, allowing it to escalate until the customer’s security team responded to the alerts provided by Darktrace.

Darktrace observed a device on the customer’s network being directed over HTTP to a rare external IP, namely 62[.]60[.]226[.]112, which had never previously been seen in this customer’s environment and was geolocated in Germany. Multiple open-source intelligence (OSINT) providers have since linked this endpoint with phishing and malware campaigns [9].

The device then proceeded to download the executable file hxxp://62[.]60[.]226[.]112/file/3601_2042.exe.

Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Figure 1: Darktrace’s detection of the affected device connecting to an unusual location based in Germany.
Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.
Figure 2: Darktrace’s detection of the affected device downloading an executable file from the suspicious endpoint.

The device was then observed making unusual connections to the rare endpoint 21ene.ip-ddns[.]com and performing unusual external data activity.

This dynamic DNS endpoint allows a device to access an endpoint using a domain name in place of a changing IP address. Dynamic DNS services ensure the DNS record of a domain name is automatically updated when the IP address changes. As such, malicious actors can use these services and endpoints to dynamically establish connections to C2 infrastructure [6].

Further investigation into this dynamic endpoint using OSINT revealed multiple associations with previous likely Blind Eagle compromises, as well as Remcos malware, a RAT commonly deployed via phishing campaigns [7][8][10].

Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.
Figure 3: Darktrace’s detection of the affected device connecting to the suspicious dynamic DNS endpoint, 21ene.ip-ddns[.]com.

Shortly after this, Darktrace observed the user agent ‘Microsoft-WebDAV-MiniRedir/10.0.19045’, indicating usage of the aforementioned transmission protocol WebDAV. The device was subsequently observed connected to an endpoint associated with Github and downloading data, suggesting that the device was retrieving a malicious tool or payload. The device then began to communicate to the malicious endpoint diciembrenotasenclub[.]longmusic[.]com over the new TCP port 1512 [11].

Around this time, the device was also observed uploading data to the endpoints 21ene.ip-ddns[.]com and diciembrenotasenclub[.]longmusic[.]com, with transfers of 60 MiB and 5.6 MiB observed respectively.

Figure 4: UI graph showing external data transfer activity.

This chain of activity triggered an Enhanced Monitoring model alert in Darktrace / NETWORK. These high-priority model alerts are designed to trigger in response to higher fidelity indicators of compromise (IoCs), suggesting that a device is performing activity consistent with a compromise.

 Darktrace’s detection of initial attack chain activity.
Figure 5: Darktrace’s detection of initial attack chain activity.

A second Enhanced Monitoring model was also triggered by this device following the download of the aforementioned executable file (hxxp://62[.]60[.]226[.]112/file/3601_2042.exe) and the observed increase in C2 activity.

Following this activity, Darktrace continued to observe the device beaconing to the 21ene.ip-ddns[.]com endpoint.

Darktrace’s Cyber AI Analyst was able to correlate each of the individual detections involved in this compromise, identifying them as part of a broader incident that encompassed C2 connectivity, suspicious downloads, and external data transfers.

Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 6: Cyber AI Analyst’s investigation into the activity observed on the affected device.
Figure 7: Cyber AI Analyst’s detection of the affected device’s broader connectivity throughout the course of the attack.

As the affected customer did not have Darktrace’s Autonomous Response configured at the time, the attack was able to progress unabated. Had Darktrace been properly enabled, it would have been able to take a number of actions to halt the escalation of the attack.

For example, the unusual beaconing connections and the download of an unexpected file from an uncommon location would have been shut down by blocking the device from making external connections to the relevant destinations.

Conclusion

The persistence of Blind Eagle and ability to adapt its tactics, even after patches were released, and the speed at which the group were able to continue using pre-established TTPs highlights that timely vulnerability management and patch application, while essential, is not a standalone defense.

Organizations must adopt security solutions that use anomaly-based detection to identify emerging and adapting threats by recognizing deviations in user or device behavior that may indicate malicious activity. Complementing this with an autonomous decision maker that can identify, connect, and contain compromise-like activity is crucial for safeguarding organizational networks against constantly evolving and sophisticated threat actors.

Credit to Charlotte Thompson (Senior Cyber Analyst), Eugene Chua (Principal Cyber Analyst) and Ryan Traill (Analyst Content Lead)

Appendices

IoCs

IoC – Type - Confidence
Microsoft-WebDAV-MiniRedir/10.0.19045 – User Agent

62[.]60[.]226[.]112 – IP – Medium Confidence

hxxp://62[.]60[.]226[.]112/file/3601_2042.exe – Payload Download – Medium Confidence

21ene.ip-ddns[.]com – Dynamic DNS Endpoint – Medium Confidence

diciembrenotasenclub[.]longmusic[.]com  - Hostname – Medium Confidence

Darktrace’s model alert coverage

Anomalous File / Suspicious HTTP Redirect
Anomalous File / EXE from Rare External Location
Anomalous File / Multiple EXE from Rare External Location
Anomalous Server Activity / Outgoing from Server
Unusual Activity / Unusual External Data to New Endpoint
Device / Anomalous Github Download
Anomalous Connection / Multiple Connections to New External TCP Port
Device / Initial Attack Chain Activity
Anomalous Server Activity / Rare External from Server
Compromise / Suspicious File and C2
Compromise / Fast Beaconing to DGA
Compromise / Large Number of Suspicious Failed Connections
Device / Large Number of Model Alert

Mitre Attack Mapping:

Tactic – Technique – Technique Name

Initial Access - T1189 – Drive-by Compromise
Initial Access - T1190 – Exploit Public-Facing Application
Initial Access ICS - T0862 – Supply Chain Compromise
Initial Access ICS - T0865 – Spearphishing Attachment
Initial Access ICS - T0817 - Drive-by Compromise
Resource Development - T1588.001 – Malware
Lateral Movement ICS - T0843 – Program Download
Command and Control - T1105 - Ingress Tool Transfer
Command and Control - T1095 – Non-Application Layer Protocol
Command and Control - T1571 – Non-Standard Port
Command and Control - T1568.002 – Domain Generation Algorithms
Command and Control ICS - T0869 – Standard Application Layer Protocol
Evasion ICS - T0849 – Masquerading
Exfiltration - T1041 – Exfiltration Over C2 Channel
Exfiltration - T1567.002 – Exfiltration to Cloud Storage

References

1)    https://research.checkpoint.com/2025/blind-eagle-and-justice-for-all/

2)    https://assets.kpmg.com/content/dam/kpmgsites/in/pdf/2025/04/kpmg-ctip-blind-eagle-01-apr-2025.pdf.coredownload.inline.pdf

3)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-remote-access-trojan/#:~:text=They%20might%20be%20attached%20to,remote%20access%20or%20system%20administration

4)    https://msrc.microsoft.com/update-guide/vulnerability/CVE-2024-43451

5)    https://www.ionos.co.uk/digitalguide/server/know-how/webdav/

6)    https://vercara.digicert.com/resources/dynamic-dns-resolution-as-an-obfuscation-technique

7)    https://threatfox.abuse.ch/ioc/1437795

8)    https://www.checkpoint.com/cyber-hub/threat-prevention/what-is-malware/remcos-malware/

9)    https://www.virustotal.com/gui/url/b3189db6ddc578005cb6986f86e9680e7f71fe69f87f9498fa77ed7b1285e268

10) https://www.virustotal.com/gui/domain/21ene.ip-ddns.com

11) https://www.virustotal.com/gui/domain/diciembrenotasenclub.longmusic.com/community

Continue reading
About the author
Charlotte Thompson
Cyber Analyst

Blog

/

Email

/

June 18, 2025

Darktrace Collaborates with Microsoft: Unifying Email Security with a Shared Vision

Default blog imageDefault blog image

In today’s threat landscape, email remains the most targeted vector for cyberattacks. Organizations require not only multi-layered defenses but also advanced, integrated systems that work collaboratively to proactively mitigate threats before they cause damage

That’s why we’re proud to announce a new integration between Darktrace / EMAIL and Microsoft Defender for Office 365, delivering a Unified Quarantine experience that empowers security teams with seamless visibility, control, and response across both platforms.

This announcement builds on a strong and growing collaboration. In 2024, Darktrace was honored as Microsoft UK Partner of the Year and recognized as a Security Trailblazer at the annual Microsoft Security 20/20 Awards, a testament to our shared commitment to innovation and customer-centric security.

A Shared Mission: Stopping Threats at Machine Speed

This integration is more than a technical milestone,as it’s a reflection of a shared mission: to protect organizations from both known and unknown threats, with efficiency, accuracy, and transparency.

  • Microsoft Defender for Office 365 delivers a comprehensive security framework that safeguards Microsoft 365 email and collaboration workloads leveraging advanced AI, global threat intelligence and information on known attack infrastructure.
  • Darktrace / EMAIL complements this with Self-Learning AI that understands the unique communication patterns within each organization, detecting subtle anomalies that evade traditional detection methods.

Together, we’re delivering multi-layered, adaptive protection that’s greater than the sum of its parts.

“Our integration with Microsoft gives security teams the tools they need to act faster and more precisely to detect and respond to threats,” said Jill Popelka, CEO of Darktrace. “Together, we’re strengthening defenses where it matters most to our customers: at the inbox.”

Unified Quarantine: One View, Total Clarity

The new Unified Quarantine experience gives customers a single pane of glass to view and manage email threatsregardless of which product took action. This means:

  • Faster investigations with consolidated visibility
  • Clear attribution of actions and outcomes across both platforms
  • Streamlined workflows for security teams managing complex environments

“This integration is a testament to the power of combining Microsoft’s global threat intelligence with Darktrace’s unique ability to understand the ‘self’ of an organization,” said Jack Stockdale, CTO of Darktrace. “Together, we’re delivering a new standard in proactive, adaptive email security.”

A New Era of Collaborative Cyber Defense

This collaboration represents a broader shift in cybersecurity: from siloed tools to integrated ecosystems. As attackers become more sophisticated, defenders must move faster, smarter, and in unison.

Through this integration, Darktrace and Microsoft establish a new standard for collaboration between native and third-party security solutions, enhancing not only threat detection but also comprehensive understanding and proactive measures against threats.

We’re excited to bring this innovation to our customers and continue building a future where AI and human expertise collaborate to secure the enterprise.

[related-resource]

Continue reading
About the author
Carlos Gray
Senior Product Marketing Manager, Email
Your data. Our AI.
Elevate your network security with Darktrace AI