Blog
/
/
March 17, 2021

AI Neutralized Hafnium-Inspired Cyber-Attacks

Learn from this real-life scenario where Darktrace detected a ProxyLogon vulnerability and took action to protect Exchange servers. Read more here.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Mar 2021

On March 11 and 12, 2021, Darktrace detected multiple attempts by a broad campaign to attack vulnerable servers in customer environments. The campaign targeted Internet-facing Microsoft Exchange servers, exploiting the recently discovered ProxyLogon vulnerability (CVE-2021-26855).

While this exploit was initially attributed to a group known as Hafnium, Microsoft has announced that the vulnerability is also being rapidly weaponized by other threat actors. These new, unattributed campaigns, which have never been seen before, have been disrupted by Cyber AI in real time.

Hafnium copycats

As soon as a vulnerability is made public it is common for there to be an influx of attacks as hackers capitalize on the chaos and attempt to compromise vulnerable networks.

Patches are rapidly reverse-engineered by hackers once they have been published by the vendor, leading to mass high-impact exploits. At the same time, the offensive tooling trickles down from the first adopters, such as nation-state actors, to ransomware gangs and other opportunistic attackers. Darktrace has observed this exact phenomenon as a result of Hafnium’s attacks against vulnerable Microsoft Exchange email servers this month.

Exchange servers attacked: AI analysis

Cyber AI has observed threat actors attempting to download and install malware using ProxyLogon as the initial attack vector. For customers with Autonomous Response, the malicious payload was intercepted at this point, stopping the attack before any developments.

In other Darktrace customer environments, the Darktrace Immune System identified and alerted on every stage of the attack. Generally, the malware has been observed acting as a generic backdoor, without much follow-up activity. Various forms of command and control (C2) channels were detected, including Telegra[.]ph. In a few intrusions, the attackers installed cryptocurrency miners.

Once a foothold has been established in the digital environment, it is likely that the actors will begin a hands-on-keyboard attack, exfiltrating data, moving laterally, or deploying ransomware.

Figure 1: Timeline of a typical ProxyLogon exploit

After the ProxyLogon vulnerability was exploited, the Exchange servers reached out to the malicious domain microsoftsoftwaredownload[.]com, utilizing a PowerShell User Agent. Darktrace flagged this anomalous behavior as the particular User Agent had never been used before by the Exchange server, let alone to access a malicious domain which had never been observed in the network.

Figure 2: Darktrace revealing an anomalous PowerShell connection

The malware executable was masqueraded as a ZIP file, further trying to obfuscate the attack. Darktrace identified this highly anomalous file download and the masqueraded file.

Figure 3: Darktrace revealing key information around the anomalous file download

In some cases, Darktrace AI also observed cryptocurrency mining seconds or minutes after the initial malware download.

Figure 4: Darktrace’s Crypto Currency Mining model is breached

In terms of C2 traffic, Darktrace has observed various potential channels. Around the time of the malware download, some of the Exchange servers began to beacon out to several external destinations using unusual SSL or TLS encrypted connections.

  • Telegra[.]ph — popular messenger application
  • dev.opendrive[.]com — cloud storage service
  • od[.]lk — cloud storage service

In this case, Darktrace recognized that none of these three external domains had ever been contacted before by anybody in the organization, let alone in a beaconing fashion. The fact that these communications started around the same time as the malware downloads strongly suggests a correlation. Darktrace’s Cyber AI Analyst automatically began an investigation into the incident, stitching together these events into one coherent narrative.

Investigating with AI

Cyber AI Analyst then automatically created a summary incident report about the activity, covering the malware download as well as the various C2 channels observed.

Figure 5: Cyber AI Analyst automatically generating a high-level incident summary

Looking at an infected Exchange server ([REDACTED].local) from a birds-eye perspective shows that Darktrace created various alerts when the attack hit. Every one of the colored dots in the graph below represents a major anomaly detected by Darktrace.

Figure 6: Darktrace reveals the anomalous number of connections and subsequent model breaches

This activity was prioritized as the most urgent incident in Cyber AI Analyst among a full week’s worth of data. In this particular organization, there were only four incidents for that week in total in Cyber AI Analyst. Such precise and clear alerting allows security teams to immediately understand the top threats facing their digital environment, without being overwhelmed by unnecessary alerts and false positives.

Machine-speed response

For customers with Darktrace Antigena, Antigena autonomously acted to block all outgoing traffic to malicious external endpoints on the relevant ports. This behavior is held for several hours to interrupt the threat actor from escalating the attack, while giving security teams time to react and remediate.

Antigena responded within seconds of the attack starting, effectively containing the attack in its earliest stage – without interrupting regular business activity (emails could still be sent and received), and despite this being a zero-day campaign.

Figure 7: Darktrace Antigena autonomously responds

Catching a zero-day exploit

This is not the first time Darktrace has stopped an attack leveraging a zero-day or a freshly released n-day vulnerability. Back in March 2020, Darktrace detected APT41 exploiting the Zoho ManageEngine vulnerability, two weeks before public attribution.

It is highly likely that there will be more cyber-criminals exploiting ProxyLogon in the wake of Hafnium. And while the recent Exchange server vulnerabilities were today’s threat, next time it might be a software or hardware supply chain attack, or a different zero-day. Novel threats are emerging every week. In this climate we now find ourselves in, where ‘known unknowns’ which are difficult or impossible to pre-define are the new norm, we need to be more adaptable and proactive than ever.

As soon as an attacker begins to exhibit unusual activity, Darktrace AI will detect it, even if there is no threat intelligence associated with the attack. This is where Darktrace works best, autonomously detecting, investigating and responding to advanced and never-before-seen threats in real time.

Learn more about the Darktrace Immune System

Example Darktrace model detections:

  • Antigena / Network / Compliance / Antigena Crypto Currency Mining Block
  • Compliance / Crypto Currency Mining Activity
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Anomalous Connection / Suspicious Expired SSL
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Device / Initial Breach Chain Compromise
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / EXE from Rare External Location
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Anomalous File / Internet Facing System File Download
  • Device / New PowerShell User Agent
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous Connection / Powershell to Rare External

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

April 24, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats using signatures and threat intelligence, Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO

Blog

/

/

April 22, 2025

Obfuscation Overdrive: Next-Gen Cryptojacking with Layers

man looking at multiple computer screensDefault blog imageDefault blog image

Out of all the services honeypotted by Darktrace, Docker is the most commonly attacked, with new strains of malware emerging daily. This blog will analyze a novel malware campaign with a unique obfuscation technique and a new cryptojacking technique.

What is obfuscation?

Obfuscation is a common technique employed by threat actors to prevent signature-based detection of their code, and to make analysis more difficult. This novel campaign uses an interesting technique of obfuscating its payload.

Docker image analysis

The attack begins with a request to launch a container from Docker Hub, specifically the kazutod/tene:ten image. Using Docker Hub’s layer viewer, an analyst can quickly identify what the container is designed to do. In this case, the container is designed to run the ten.py script which is built into itself.

 Docker Hub Image Layers, referencing the script ten.py.
Figure 1: Docker Hub Image Layers, referencing the script ten.py.

To gain more information on the Python file, Docker’s built in tooling can be used to download the image (docker pull kazutod/tene:ten) and then save it into a format that is easier to work with (docker image save kazutod/tene:ten -o tene.tar). It can then be extracted as a regular tar file for further investigation.

Extraction of the resulting tar file.
Figure 2: Extraction of the resulting tar file.

The Docker image uses the OCI format, which is a little different to a regular file system. Instead of having a static folder of files, the image consists of layers. Indeed, when running the file command over the sha256 directory, each layer is shown as a tar file, along with a JSON metadata file.

Output of the file command over the sha256 directory.
Figure 3: Output of the file command over the sha256 directory.

As the detailed layers are not necessary for analysis, a single command can be used to extract all of them into a single directory, recreating what the container file system would look like:

find blobs/sha256 -type f -exec sh -c 'file "{}" | grep -q "tar archive" && tar -xf "{}" -C root_dir' \;

Result of running the command above.
Figure 4: Result of running the command above.

The find command can then be used to quickly locate where the ten.py script is.

find root_dir -name ten.py

root_dir/app/ten.py

Details of the above ten.py script.
Figure 5: Details of the above ten.py script.

This may look complicated at first glance, however after breaking it down, it is fairly simple. The script defines a lambda function (effectively a variable that contains executable code) and runs zlib decompress on the output of base64 decode, which is run on the reversed input. The script then runs the lambda function with an input of the base64 string, and then passes it to exec, which runs the decoded string as Python code.

To help illustrate this, the code can be cleaned up to this simplified function:

def decode(input):
   reversed = input[::-1]

   decoded = base64.decode(reversed)
   decompressed = zlib.decompress(decoded)
   return decompressed

decoded_string = decode(the_big_text_blob)
exec(decoded_string) # run the decoded string

This can then be set up as a recipe in Cyberchef, an online tool for data manipulation, to decode it.

Use of Cyberchef to decode the ten.py script.
Figure 6: Use of Cyberchef to decode the ten.py script.

The decoded payload calls the decode function again and puts the output into exec. Copy and pasting the new payload into the input shows that it does this another time. Instead of copy-pasting the output into the input all day, a quick script can be used to decode this.

The script below uses the decode function from earlier in order to decode the base64 data and then uses some simple string manipulation to get to the next payload. The script will run this over and over until something interesting happens.

# Decode the initial base64

decoded = decode(initial)
# Remove the first 11 characters and last 3

# so we just have the next base64 string

clamped = decoded[11:-3]

for i in range(1, 100):
   # Decode the new payload

   decoded = decode(clamped)
   # Print it with the current step so we

   # can see what’s going on

   print(f"Step {i}")

   print(decoded)
   # Fetch the next base64 string from the

   # output, so the next loop iteration will

   # decode it

   clamped = decoded[11:-3]

Result of the 63rd iteration of this script.
Figure 7: Result of the 63rd iteration of this script.

After 63 iterations, the script returns actual code, accompanied by an error from the decode function as a stopping condition was never defined. It not clear what the attacker’s motive to perform so many layers of obfuscation was, as one round of obfuscation versus several likely would not make any meaningful difference to bypassing signature analysis. It’s possible this is an attempt to stop analysts or other hackers from reverse engineering the code. However,  it took a matter of minutes to thwart their efforts.

Cryptojacking 2.0?

Cleaned up version of the de-obfuscated code.
Figure 8: Cleaned up version of the de-obfuscated code.

The cleaned up code indicates that the malware attempts to set up a connection to teneo[.]pro, which appears to belong to a Web3 startup company.

Teneo appears to be a legitimate company, with Crunchbase reporting that they have raised USD 3 million as part of their seed round [1]. Their service allows users to join a decentralized network, to “make sure their data benefits you” [2]. Practically, their node functions as a distributed social media scraper. In exchange for doing so, users are rewarded with “Teneo Points”, which are a private crypto token.

The malware script simply connects to the websocket and sends keep-alive pings in order to gain more points from Teneo and does not do any actual scraping. Based on the website, most of the rewards are gated behind the number of heartbeats performed, which is likely why this works [2].

Checking out the attacker’s dockerhub profile, this sort of attack seems to be their modus operandi. The most recent container runs an instance of the nexus network client, which is a project to perform distributed zero-knowledge compute tasks in exchange for cryptocurrency.

Typically, traditional cryptojacking attacks rely on using XMRig to directly mine cryptocurrency, however as XMRig is highly detected, attackers are shifting to alternative methods of generating crypto. Whether this is more profitable remains to be seen. There is not currently an easy way to determine the earnings of the attackers due to the more “closed” nature of the private tokens. Translating a user ID to a wallet address does not appear to be possible, and there is limited public information about the tokens themselves. For example, the Teneo token is listed as “preview only” on CoinGecko, with no price information available.

Conclusion

This blog explores an example of Python obfuscation and how to unravel it. Obfuscation remains a ubiquitous technique employed by the majority of malware to aid in detection/defense evasion and being able to de-obfuscate code is an important skill for analysts to possess.

We have also seen this new avenue of cryptominers being deployed, demonstrating that attackers’ techniques are still evolving - even tried and tested fields. The illegitimate use of legitimate tools to obtain rewards is an increasingly common vector. For example,  as has been previously documented, 9hits has been used maliciously to earn rewards for the attack in a similar fashion.

Docker remains a highly targeted service, and system administrators need to take steps to ensure it is secure. In general, Docker should never be exposed to the wider internet unless absolutely necessary, and if it is necessary both authentication and firewalling should be employed to ensure only authorized users are able to access the service. Attacks happen every minute, and even leaving the service open for a short period of time may result in a serious compromise.

References

1. https://www.crunchbase.com/funding_round/teneo-protocol-seed--a8ff2ad4

2. https://teneo.pro/

Continue reading
About the author
Nate Bill
Threat Researcher
Your data. Our AI.
Elevate your network security with Darktrace AI