ブログ
/
/
March 17, 2021

AI Neutralized Hafnium-Inspired Cyber-Attacks

Learn from this real-life scenario where Darktrace detected a ProxyLogon vulnerability and took action to protect Exchange servers. Read more here.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
17
Mar 2021

On March 11 and 12, 2021, Darktrace detected multiple attempts by a broad campaign to attack vulnerable servers in customer environments. The campaign targeted Internet-facing Microsoft Exchange servers, exploiting the recently discovered ProxyLogon vulnerability (CVE-2021-26855).

While this exploit was initially attributed to a group known as Hafnium, Microsoft has announced that the vulnerability is also being rapidly weaponized by other threat actors. These new, unattributed campaigns, which have never been seen before, have been disrupted by Cyber AI in real time.

Hafnium copycats

As soon as a vulnerability is made public it is common for there to be an influx of attacks as hackers capitalize on the chaos and attempt to compromise vulnerable networks.

Patches are rapidly reverse-engineered by hackers once they have been published by the vendor, leading to mass high-impact exploits. At the same time, the offensive tooling trickles down from the first adopters, such as nation-state actors, to ransomware gangs and other opportunistic attackers. Darktrace has observed this exact phenomenon as a result of Hafnium’s attacks against vulnerable Microsoft Exchange email servers this month.

Exchange servers attacked: AI analysis

Cyber AI has observed threat actors attempting to download and install malware using ProxyLogon as the initial attack vector. For customers with Autonomous Response, the malicious payload was intercepted at this point, stopping the attack before any developments.

In other Darktrace customer environments, the Darktrace Immune System identified and alerted on every stage of the attack. Generally, the malware has been observed acting as a generic backdoor, without much follow-up activity. Various forms of command and control (C2) channels were detected, including Telegra[.]ph. In a few intrusions, the attackers installed cryptocurrency miners.

Once a foothold has been established in the digital environment, it is likely that the actors will begin a hands-on-keyboard attack, exfiltrating data, moving laterally, or deploying ransomware.

Figure 1: Timeline of a typical ProxyLogon exploit

After the ProxyLogon vulnerability was exploited, the Exchange servers reached out to the malicious domain microsoftsoftwaredownload[.]com, utilizing a PowerShell User Agent. Darktrace flagged this anomalous behavior as the particular User Agent had never been used before by the Exchange server, let alone to access a malicious domain which had never been observed in the network.

Figure 2: Darktrace revealing an anomalous PowerShell connection

The malware executable was masqueraded as a ZIP file, further trying to obfuscate the attack. Darktrace identified this highly anomalous file download and the masqueraded file.

Figure 3: Darktrace revealing key information around the anomalous file download

In some cases, Darktrace AI also observed cryptocurrency mining seconds or minutes after the initial malware download.

Figure 4: Darktrace’s Crypto Currency Mining model is breached

In terms of C2 traffic, Darktrace has observed various potential channels. Around the time of the malware download, some of the Exchange servers began to beacon out to several external destinations using unusual SSL or TLS encrypted connections.

  • Telegra[.]ph — popular messenger application
  • dev.opendrive[.]com — cloud storage service
  • od[.]lk — cloud storage service

In this case, Darktrace recognized that none of these three external domains had ever been contacted before by anybody in the organization, let alone in a beaconing fashion. The fact that these communications started around the same time as the malware downloads strongly suggests a correlation. Darktrace’s Cyber AI Analyst automatically began an investigation into the incident, stitching together these events into one coherent narrative.

Investigating with AI

Cyber AI Analyst then automatically created a summary incident report about the activity, covering the malware download as well as the various C2 channels observed.

Figure 5: Cyber AI Analyst automatically generating a high-level incident summary

Looking at an infected Exchange server ([REDACTED].local) from a birds-eye perspective shows that Darktrace created various alerts when the attack hit. Every one of the colored dots in the graph below represents a major anomaly detected by Darktrace.

Figure 6: Darktrace reveals the anomalous number of connections and subsequent model breaches

This activity was prioritized as the most urgent incident in Cyber AI Analyst among a full week’s worth of data. In this particular organization, there were only four incidents for that week in total in Cyber AI Analyst. Such precise and clear alerting allows security teams to immediately understand the top threats facing their digital environment, without being overwhelmed by unnecessary alerts and false positives.

Machine-speed response

For customers with Darktrace Antigena, Antigena autonomously acted to block all outgoing traffic to malicious external endpoints on the relevant ports. This behavior is held for several hours to interrupt the threat actor from escalating the attack, while giving security teams time to react and remediate.

Antigena responded within seconds of the attack starting, effectively containing the attack in its earliest stage – without interrupting regular business activity (emails could still be sent and received), and despite this being a zero-day campaign.

Figure 7: Darktrace Antigena autonomously responds

Catching a zero-day exploit

This is not the first time Darktrace has stopped an attack leveraging a zero-day or a freshly released n-day vulnerability. Back in March 2020, Darktrace detected APT41 exploiting the Zoho ManageEngine vulnerability, two weeks before public attribution.

It is highly likely that there will be more cyber-criminals exploiting ProxyLogon in the wake of Hafnium. And while the recent Exchange server vulnerabilities were today’s threat, next time it might be a software or hardware supply chain attack, or a different zero-day. Novel threats are emerging every week. In this climate we now find ourselves in, where ‘known unknowns’ which are difficult or impossible to pre-define are the new norm, we need to be more adaptable and proactive than ever.

As soon as an attacker begins to exhibit unusual activity, Darktrace AI will detect it, even if there is no threat intelligence associated with the attack. This is where Darktrace works best, autonomously detecting, investigating and responding to advanced and never-before-seen threats in real time.

Learn more about the Darktrace Immune System

Example Darktrace model detections:

  • Antigena / Network / Compliance / Antigena Crypto Currency Mining Block
  • Compliance / Crypto Currency Mining Activity
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Anomalous Connection / Suspicious Expired SSL
  • Antigena / Network / Significant Anomaly / Antigena Significant Anomaly from Client Block
  • Antigena / Network / Significant Anomaly / Antigena Enhanced Monitoring from Client Block
  • Device / Initial Breach Chain Compromise
  • Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block
  • Anomalous File / Masqueraded File Transfer
  • Anomalous File / EXE from Rare External Location
  • Antigena / Network / External Threat / Antigena Suspicious File Block
  • Antigena / Network / External Threat / Antigena File then New Outbound Block
  • Antigena / Network / Significant Anomaly / Antigena Controlled and Model Breach
  • Anomalous File / Internet Facing System File Download
  • Device / New PowerShell User Agent
  • Anomalous File / Multiple EXE from Rare External Locations
  • Anomalous Connection / Powershell to Rare External


Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Max Heinemeyer
Global Field CISO

More in this series

No items found.

Blog

/

/

January 13, 2026

Runtime Is Where Cloud Security Really Counts: The Importance of Detection, Forensics and Real-Time Architecture Awareness

Default blog imageDefault blog image

Introduction: Shifting focus from prevention to runtime

Cloud security has spent the last decade focused on prevention; tightening configurations, scanning for vulnerabilities, and enforcing best practices through Cloud Native Application Protection Platforms (CNAPP). These capabilities remain essential, but they are not where cloud attacks happen.

Attacks happen at runtime: the dynamic, ephemeral, constantly changing execution layer where applications run, permissions are granted, identities act, and workloads communicate. This is also the layer where defenders traditionally have the least visibility and the least time to respond.

Today’s threat landscape demands a fundamental shift. Reducing cloud risk now requires moving beyond static posture and CNAPP only approaches and embracing realtime behavioral detection across workloads and identities, paired with the ability to automatically preserve forensic evidence. Defenders need a continuous, real-time understanding of what “normal” looks like in their cloud environments, and AI capable of processing massive data streams to surface deviations that signal emerging attacker behavior.

Runtime: The layer where attacks happen

Runtime is the cloud in motion — containers starting and stopping, serverless functions being called, IAM roles being assumed, workloads auto scaling, and data flowing across hundreds of services. It’s also where attackers:

  • Weaponize stolen credentials
  • Escalate privileges
  • Pivot programmatically
  • Deploy malicious compute
  • Manipulate or exfiltrate data

The challenge is complex: runtime evidence is ephemeral. Containers vanish; critical process data disappears in seconds. By the time a human analyst begins investigating, the detail required to understand and respond to the alert, often is already gone. This volatility makes runtime the hardest layer to monitor, and the most important one to secure.

What Darktrace / CLOUD Brings to Runtime Defence

Darktrace / CLOUD is purpose-built for the cloud execution layer. It unifies the capabilities required to detect, contain, and understand attacks as they unfold, not hours or days later. Four elements define its value:

1. Behavioral, real-time detection

The platform learns normal activity across cloud services, identities, workloads, and data flows, then surfaces anomalies that signify real attacker behavior, even when no signature exists.

2. Automated forensic level artifact collection

The moment Darktrace detects a threat, it can automatically capture volatile forensic evidence; disk state, memory, logs, and process context, including from ephemeral resources. This preserves the truth of what happened before workloads terminate and evidence disappears.

3. AI-led investigation

Cyber AI Analyst assembles cloud behaviors into a coherent incident story, correlating identity activity, network flows, and Cloud workload behavior. Analysts no longer need to pivot across dashboards or reconstruct timelines manually.

4. Live architectural awareness

Darktrace continuously maps your cloud environment as it operates; including services, identities, connectivity, and data pathways. This real-time visibility makes anomalies clearer and investigations dramatically faster.

Together, these capabilities form a runtime-first security model.

Why CNAPP alone isn’t enough

CNAPP platforms excel at pre deployment checks all the way down to developer workstations, identifying misconfigurations, concerning permission combinations, vulnerable images, and risky infrastructure choices. But CNAPP’s breadth is also its limitation. CNAPP is about posture. Runtime defense is about behavior.

CNAPP tells you what could go wrong; runtime detection highlights what is going wrong right now.

It cannot preserve ephemeral evidence, correlate active behaviors across domains, or contain unfolding attacks with the precision and speed required during a real incident. Prevention remains essential, but prevention alone cannot stop an attacker who is already operating inside your cloud environment.

Real-world AWS Scenario: Why Runtime Monitoring Wins

A recent incident detected by Darktrace / CLOUD highlights how cloud compromises unfold, and why runtime visibility is non-negotiable. Each step below reflects detections that occur only when monitoring behavior in real time.

1. External Credential Use

Detection: Unusual external source for credential use: An attacker logs into a cloud account from a never-before-seen location, the earliest sign of account takeover.

2. AWS CLI Pivot

Detection: Unusual CLI activity: The attacker switches to programmatic access, issuing commands from a suspicious host to gain automation and stealth.

3. Credential Manipulation

Detection: Rare password reset: They reset or assign new passwords to establish persistence and bypass existing security controls.

4. Cloud Reconnaissance

Detection: Burst of resource discovery: The attacker enumerates buckets, roles, and services to map high value assets and plan next steps.

5. Privilege Escalation

Detection: Anomalous IAM update: Unauthorized policy updates or role changes grant the attacker elevated access or a backdoor.

6. Malicious Compute Deployment

Detection: Unusual EC2/Lambda/ECS creation: The attacker deploys compute resources for mining, lateral movement, or staging further tools.

7. Data Access or Tampering

Detection: Unusual S3 modifications: They alter S3 permissions or objects, often a prelude to data exfiltration or corruption.

Only some of these actions would appear in a posture scan, crucially after the fact.
Every one of these runtime detections is visible only through real-time behavioral monitoring while the attack is in progress.

The future of cloud security Is runtime-first

Cloud defense can no longer revolve solely around prevention. Modern attacks unfold in runtime, across a fast-changing mesh of workloads, services, and — critically — identities. To reduce risk, organizations must be able to detect, understand, and contain malicious activity as it happens, before ephemeral evidence disappears and before attacker's pivot across identity layers.

Darktrace / CLOUD delivers this shift by turning runtime, the most volatile and consequential layer in the cloud, into a fully defensible control point through unified visibility across behavior, workloads, and identities. It does this by providing:

  • Real-time behavior detection across workloads and identity activity
  • Autonomous response actions for rapid containment
  • Automated forensic level artifact preservation the moment events occur
  • AI-driven investigation that separates weak signals from true attacker patterns
  • Live cloud environment insight to understand context and impact instantly

Cloud security must evolve from securing what might go wrong to continuously understanding what is happening; in runtime, across identities, and at the speed attackers operate. Unifying runtime and identity visibility is how defenders regain the advantage.

[related-resource]

Continue reading
About the author
Adam Stevens
Senior Director of Product, Cloud | Darktrace

Blog

/

Network

/

January 12, 2026

Maduro Arrest Used as a Lure to Deliver Backdoor

Default blog imageDefault blog image

Introduction

Threat actors frequently exploit ongoing world events to trick users into opening and executing malicious files. Darktrace security researchers recently identified a threat group using reports around the arrest of Venezuelan President Nicolàs Maduro on January 3, 2025, as a lure to deliver backdoor malware.

Technical Analysis

While the exact initial access method is unknown, it is likely that a spear-phishing email was sent to victims, containing a zip archive titled “US now deciding what’s next for Venezuela.zip”. This file included an executable named “Maduro to be taken to New York.exe” and a dynamic-link library (DLL), “kugou.dll”.  

The binary “Maduro to be taken to New York.exe” is a legitimate binary (albeit with an expired signature) related to KuGou, a Chinese streaming platform. Its function is to load the DLL “kugou.dll” via DLL search order. In this instance, the expected DLL has been replaced with a malicious one with the same name to load it.  

DLL called with LoadLibraryW.
Figure 1: DLL called with LoadLibraryW.

Once the DLL is executed, a directory is created C:\ProgramData\Technology360NB with the DLL copied into the directory along with the executable, renamed as “DataTechnology.exe”. A registry key is created for persistence in “HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Lite360” to run DataTechnology.exe --DATA on log on.

 Registry key added for persistence.
Figure 2. Registry key added for persistence.
Folder “Technology360NB” created.
Figure 3: Folder “Technology360NB” created.

During execution, a dialog box appears with the caption “Please restart your computer and try again, or contact the original author.”

Message box prompting user to restart.
Figure 4. Message box prompting user to restart.

Prompting the user to restart triggers the malware to run from the registry key with the command --DATA, and if the user doesn't, a forced restart is triggered. Once the system is reset, the malware begins periodic TLS connections to the command-and-control (C2) server 172.81.60[.]97 on port 443. While the encrypted traffic prevents direct inspection of commands or data, the regular beaconing and response traffic strongly imply that the malware has the ability to poll a remote server for instructions, configuration, or tasking.

Conclusion

Threat groups have long used geopolitical issues and other high-profile events to make malicious content appear more credible or urgent. Since the onset of the war in Ukraine, organizations have been repeatedly targeted with spear-phishing emails using subject lines related to the ongoing conflict, including references to prisoners of war [1]. Similarly, the Chinese threat group Mustang Panda frequently uses this tactic to deploy backdoors, using lures related to the Ukrainian war, conventions on Tibet [2], the South China Sea [3], and Taiwan [4].  

The activity described in this blog shares similarities with previous Mustang Panda campaigns, including the use of a current-events archive, a directory created in ProgramData with a legitimate executable used to load a malicious DLL and run registry keys used for persistence. While there is an overlap of tactics, techniques and procedures (TTPs), there is insufficient information available to confidently attribute this activity to a specific threat group. Users should remain vigilant, especially when opening email attachments.

Credit to Tara Gould (Malware Research Lead)
Edited by Ryan Traill (Analyst Content Lead)

Indicators of Compromise (IoCs)

172.81.60[.]97
8f81ce8ca6cdbc7d7eb10f4da5f470c6 - US now deciding what's next for Venezuela.zip
722bcd4b14aac3395f8a073050b9a578 - Maduro to be taken to New York.exe
aea6f6edbbbb0ab0f22568dcb503d731  - kugou.dll

References

[1] https://cert.gov.ua/article/6280422  

[2] https://www.ibm.com/think/x-force/hive0154-mustang-panda-shifts-focus-tibetan-community-deploy-pubload-backdoor

[3] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

[4] https://www.ibm.com/think/x-force/hive0154-targeting-us-philippines-pakistan-taiwan

Continue reading
About the author
Tara Gould
Malware Research Lead
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ