Blog
/
Email
/
July 9, 2024

How Darktrace Detects NTLM Hash Theft

Explore Darktrace's innovative methods for detecting NTLM hash theft and safeguarding your organization from cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jul 2024

What is credential theft and how does it work?

What began as a method to achieve unauthorized access to an account, often driven by the curiosity of individual attackers, credentials theft become a key tactic for malicious actors and groups, as stolen login credentials can be abused to gain unauthorized access to accounts and systems. This access can be leveraged to carry out malicious activities such as data exfiltration, fraud, espionage and malware deployment.

It is therefore no surprise that the number of dark web marketplaces selling privileged credentials has increased in recent years, making it easier for malicious actors to monetize stolen credentials [1]. This, in turn, has created new opportunities for threat actors to use increasingly sophisticated tactics such as phishing, social engineering and credential stuffing in their attacks, targeting individuals, organizations and government entities alike [1].

Credential theft example

TA577 Threat Actor

TA577 is a threat actor known to leverage stolen credentials, also known as Hive0118 [2], an initial access broker (IAB) group that was previously known for delivering malicious payloads [2]. On March 4, 2024, Proofpoint reported evidence of TA577 using a new attack chain with a different aim in mind: stealing NT LAN Manager (NTLM) hashes that can be used to authenticate to systems without needing to know plaintext passwords [3].

How does TA577 steal credentials?

Proofpoint reported that this new attack chain, which was first observed on February 26 and 27, was made up of two distinct campaigns. The first campaign consisted of a phishing attack featuring tens of thousands of emails targeting hundreds of organizations globally [3]. These phishing emails often appeared as replies to previous messages (thread hijacking) and contained zipped HTML attachments that each contained a unique file hash, customized for each recipient [3]. These attached files also contained a HTTP Meta refresh function, which triggered an automatic connection to a text file hosted on external IP addresses running as SMB servers [3].

When attempting to access the text file, the server requires an SMB session authentication via NTLM. This session is initiated when a client sends an ‘SMB_COM_NEGOTIATE’ request to the server, which answers with a ‘SMB_COM_NEGOTIATE’ response.

The client then proceeds to send a ‘SMB_COM_SESSION_SETUP_ANDX’ request to start the SMB session setup process, which includes initiating the NTLM authentication process. The server responds with an ‘SMB_COM_SESSION_SETUP_ANDX’ response, which includes an NTLM challenge message [6].

The client can then use the challenge message and its own credentials to generate a response by hashing its password using an NTLM hash algorithm. The response is sent to the server in an ‘SMB_COM_SESSION_SETUP_ANDX’ request. The server validates the response and, if the authentication is successful, the server answers with a final ‘SMB_COM_SESSION_SETUP_ANDX’ response, which completes the session setup process and allows the client to access the file listed on the server [6].

What is the goal of threat actor TA577?

As no malware delivery was detected during these sessions, researchers have suggested that the aim of TA577 was not to deliver malware, but rather to take advantage of the NTLMV2 challenge/response to steal NTLM authentication hashes [3] [4]. Hashes stolen by attackers can be exploited in pass-the-hash attacks to authenticate to a remote server or service [4]. They can also be used for offline password cracking which, if successful, could be utilized to escalate privileges or perform lateral movement through a target network [4]. Under certain circumstances, these hashes could also permit malicious actors to hijack accounts, access sensitive information and evade security products [4].

The open-source toolkit Impacket, which includes modules for password cracking [5] and which can be identified by the default NTLM server challenge “aaaaaaaaaaaaaaaa”[3], was observed during the SMB sessions. This indicates that TA577 actor aim to use stolen credentials for password cracking and pass-the-hash attacks.

TA577 has previously been associated with Black Basta ransomware infections and Qbot, and has been observed delivering various payloads including IcedID, SystemBC, SmokeLoader, Ursnif, and Cobalt Strike [2].This change in tactic to follow the current trend of credential theft may indicate that not only are TA577 actors aware of which methods are most effective in the current threat landscape, but they also have monetary and time resources needed to create new methods to bypass existing detection tools [3].  

Darktrace’s Coverage of TA577 Activity

On February 26 and 27, coinciding with the campaign activity reported by Proofpoint, Darktrace/Email™ observed a surge of inbound emails from numerous suspicious domains targeting multiple customer environments. These emails consistently included zip files with seemingly randomly generated names, containing HTLM content and links to an unusual external IP address [3].

A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Figure 1: A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.
Figure 2: Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.

The URL of these links contained an unusually named .txt file, which corresponds with Proofpoint reports of the automatic connection to a text file hosted on an external SMB server made when the attachment is opened [3].

A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.
Figure 3: A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.

Darktrace identified devices on multiple customer networks connecting to external SMB servers via the SMB protocol. It understood this activity was suspicious as the SMB protocol is typically reserved for internal connections and the endpoint in question had never previously been observed on the network.

The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
Figure 4: The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
External Sites Summary highlighting the rarity of the external SMB server.
Figure 5: External Sites Summary highlighting the rarity of the external SMB server.
External Sites Summary highlightin that the SMB server is geolocated in Moldova.
Figure 6: External Sites Summary highlightin that the SMB server is geolocated in Moldova.

During these connections, Darktrace observed multiple devices establishing an SMB session to this server via a NTLM challenge/response, representing the potential theft of the credentials used in this session. During this session, some devices also attempted to access an unusually named .txt file, further indicating that the affected devices were trying to access the .txt file hosted on external SMB servers [3].

Packet captures (PCAPs) of these sessions show the default NTLM server challenge, indicating the use of Impacket, suggesting that the captured NTLM hashes were to be used for password cracking or pass-the-hash-attacks [3]

PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.
Figure 7: PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.

Conclusions

Ultimately, Darktrace’s suite of products effectively detected and alerted for multiple aspects of the TA577 attack chain and NTLM hash data theft activity across its customer base. Darktrace/Email was able to uncover the inbound phishing emails that served as the initial access vector for TA577 actors, while Darktrace DETECT identified the subsequent external connections to unusual external locations and suspicious SMB sessions.

Furthermore, Darktrace’s anomaly-based approach enabled it to detect suspicious TA577 activity across the customer base on February 26 and 27, prior to Proofpoint’s report on their new attack chain. This showcases Darktrace’s ability to identify emerging threats based on the subtle deviations in a compromised device’s behavior, rather than relying on a static list of indicators of compromise (IoCs) or ‘known bads’.

This approach allows Darktrace to remain one step ahead of increasingly adaptive threat actors, providing organizations and their security teams with a robust AI-driven solution able to safeguard their networks in an ever-evolving threat landscape.

Credit to Charlotte Thompson, Cyber Analyst, Anna Gilbertson, Cyber Analyst.

References

1)    https://www.sentinelone.com/cybersecurity-101/what-is-credential-theft/

2)    https://malpedia.caad.fkie.fraunhofer.de/actor/ta577

3)    https://www.proofpoint.com/us/blog/threat-insight/ta577s-unusual-attack-chain-leads-ntlm-data-theft

4)    https://www.bleepingcomputer.com/news/security/hackers-steal-windows-ntlm-authentication-hashes-in-phishing-attacks/

5)    https://pawanjswal.medium.com/the-power-of-impacket-a-comprehensive-guide-with-examples-1288f3a4c674

6)    https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/c083583f-1a8f-4afe-a742-6ee08ffeb8cf

7)    https://www.hivepro.com/threat-advisory/ta577-targeting-windows-ntlm-hashes-in-global-campaigns/

Darktrace Model Detections

Darktrace/Email

·       Attachment / Unsolicited Archive File

·       Attachment / Unsolicited Attachment

·       Link / New Correspondent Classified Link

·       Link / New Correspondent Rare Link

·       Spoof / Internal User Similarities

Darktrace DETECT

·       Compliance / External Windows Communications

Darktrace RESPOND

·       Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

IoCs

IoC - Type - Description

176.123.2[.]146 - IP address -Likely malicious SMB Server

89.117.2[.]33 - IP address - Likely malicious SMB Server

89.117.1[.]161 - IP address - Likely malicious SMB Server

104.129.20[.]167 - IP address - Likely malicious SMB Server

89.117.1[.]160 - IP address - Likely malicious SMB Server

85.239.33[.]149 - IP address - Likely malicious SMB Server

89.117.2[.]34 - IP address - Likely malicious SMB Server

146.19.213[.]36 - IP address - Likely malicious SMB Server

66.63.188[.]19 - IP address - Likely malicious SMB Server

103.124.104[.]76 - IP address - Likely malicious SMB Server

103.124.106[.]224 - IP address - Likely malicious SMB Server

\5aohv\9mn.txt - SMB Path and File - SMB Path and File

\hvwsuw\udrh.txt - SMB Path and File - SMB Path and File

\zkf2rj4\VmD.txt = SMB Path and File - SMB Path and File

\naams\p3aV.txt - SMB Path and File - SMB Path and File

\epxq\A.txt - SMB Path and File - SMB Path and File

\dbna\H.txt - SMB Path and File - SMB Path and File

MAGNAMSB.zip – Filename - Phishing Attachment

e751f9dddd24f7656459e1e3a13307bd03ae4e67 - SHA1 Hash - Phishing Attachment

OMNIS2C.zip  - Filename - Phishing Attachment

db982783b97555232e28d5a333525118f10942e1 - SHA1 Hash - Phishing Attachment

aaaaaaaaaaaaaaaa - NTLM Server Challenge -Impacket Default NTLM Challenge

MITRE ATT&CK Tactics, Techniques and Procedures (TTPs)

Tactic - Technique

TA0001            Initial Access

TA0002            Execution

TA0008            Lateral Movement

TA0003            Persistence

TA0005            Defense Evasion

TA0006            Credential Access

T1021.002       SMB/Windows Admin Shares

T1021  Remote Services

T1566.001       Spearfishing Attachment

T1566  Phishing

T1204.002       Malicious File

T1204  User Execution

T1021.002       SMB/Windows Admin Shares

T1574  Hijack Execution Flow

T1021  Remote Services

T1555.004       Windows Credential Manager

T1555  Credentials from Password Stores

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst

More in this series

No items found.

Blog

/

Proactive Security

/

January 8, 2026

How a leading bank is prioritizing risk management to power a resilient future

Default blog imageDefault blog image

As one of the region’s most established financial institutions, this bank sits at the heart of its community’s economic life – powering everything from daily transactions to business growth and long-term wealth planning. Its blend of physical branches and advanced digital services gives customers the convenience they expect and the personal trust they rely on. But as the financial world becomes more interconnected and adversaries more sophisticated, safeguarding that trust requires more than traditional cybersecurity. It demands a resilient, forward-leaning approach that keeps pace with rising threats and tightening regulatory standards.

A complex risk landscape demands a new approach

The bank faced a challenge familiar across the financial sector: too many tools, not enough clarity. Vulnerability scans, pen tests, and risk reports all produced data, yet none worked together to show how exposures connected across systems or what they meant for day-to-day operations. Without a central platform to link and contextualize this data, teams struggled to see how individual findings translated into real exposure across the business.

  • Fragmented risk assessments: Cyber and operational risks were evaluated in silos, often duplicated across teams, and lacked the context needed to prioritize what truly mattered.
  • Limited executive visibility: Leadership struggled to gain a complete, real-time view of trends or progress, making risk ownership difficult to enforce.
  • Emerging compliance pressure: This gap also posed compliance challenges under the EU’s Digital Operational Resilience Act (DORA), which requires financial institutions to demonstrate continuous oversight, effective reporting, and the ability to withstand and recover from cyber and IT disruptions.
“The issue wasn’t the lack of data,” recalls the bank’s Chief Technology Officer. “The challenge was transforming that data into a unified, contextualized picture we could act on quickly and decisively.”

As the bank advanced its digital capabilities and embraced cloud services, its risk environment became more intricate. New pathways for exploitation emerged, human factors grew harder to quantify, and manual processes hindered timely decision-making. To maintain resilience, the security team sought a proactive, AI-powered platform that could consolidate exposures, deliver continuous insight, and ensure high-value risks were addressed before they escalated.

Choosing Darktrace to unlock proactive cyber resilience

To reclaim control over its fragmented risk landscape, the bank selected Darktrace / Proactive Exposure Management™ for cyber risk insight. The solution’s ability to consolidate scanner outputs, pen test results, CVE data, and operational context into one AI-powered view made it the clear choice. Darktrace delivered comprehensive visibility the team had long been missing.

By shifting from a reactive model to proactive security, the bank aimed to:

  • Improve resilience and compliance with DORA
  • Prioritize remediation efforts with greater accuracy
  • Eliminate duplicated work across teams
  • Provide leadership with a complete view of risk, updated continuously
  • Reduce the overall likelihood of attack or disruption

The CTO explains: “We needed a solution that didn’t just list vulnerabilities but showed us what mattered most for our business – how risks connected, how they could be exploited, and what actions would create the biggest reduction in exposure. Darktrace gave us that clarity.”

Targeting the risks that matter most

Darktrace / Proactive Exposure Management offered the bank a new level of visibility and control by continuously analyzing misconfigurations, critical attack paths, human communication patterns, and high-value assets. Its AI-driven risk scoring allowed the team to understand which vulnerabilities had meaningful business impact, not just which were technically severe.

Unifying exposure across architectures

Darktrace aggregates and contextualizes data from across the bank’s security stack, eliminating the need to manually compile or correlate findings. What once required hours of cross-team coordination now appears in a single, continuously updated dashboard.

Revealing an adversarial view of risk

The solution maps multi-stage, complex attack paths across network, cloud, identity systems, email environments, and endpoints – highlighting risks that traditional CVE lists overlook.

Identifying misconfigurations and controlling gaps

Using Self-Learning AI, Darktrace / Proactive Exposure Management spots misconfigurations and prioritizes them based on MITRE adversary techniques, business context, and the bank’s unique digital environment.

Enhancing red-team and pen test effectiveness

By directing testers to the highest-value targets, Darktrace removes guesswork and validates whether defenses hold up against realistic adversarial behavior.

Supporting DORA compliance

From continuous monitoring to executive-ready reporting, the solution provides the transparency and accountability the bank needs to demonstrate operational resilience frameworks.

Proactive security delivers tangible outcomes

Since deploying Darktrace / Proactive Exposure Management, the bank has significantly strengthened its cybersecurity posture while improving operational efficiency.

Greater insight, smarter prioritization, stronger defensee

Security teams are now saving more than four hours per week previously spent aggregating and analyzing risk data. With a unified view of their exposure, they can focus directly on remediation instead of manually correlating multiple reports.

Because risks are now prioritized based on business impact and real-time operational context, they no longer waste time on low-value tasks. Instead, critical issues are identified and resolved sooner, reducing potential windows for exploitation and strengthening the bank’s ongoing resilience against both known and emerging threats.

“Our goal was to move from reactive to proactive security,” the CTO says. “Darktrace didn’t just help us achieve that, it accelerated our roadmap. We now understand our environment with a level of clarity we simply didn’t have before.”

Leadership clarity and stronger governance

Executives and board stakeholders now receive clear, organization-wide visibility into the bank’s risk posture, supported by consistent reporting that highlights trends, progress, and areas requiring attention. This transparency has strengthened confidence in the bank’s cyber resilience and enabled leadership to take true ownership of risk across the institution.

Beyond improved visibility, the bank has also deepened its overall governance maturity. Continuous monitoring and structured oversight allow leaders to make faster, more informed decisions that strategically align security efforts with business priorities. With a more predictable understanding of exposure and risk movement over time, the organization can maintain operational continuity, demonstrate accountability, and adapt more effectively as regulatory expectations evolve.

Trading stress for control

With Darktrace, leaders now have the clarity and confidence they need to report to executives and regulators with accuracy. The ability to see organization-wide risk in context provides assurance that the right issues are being addressed at the right time. That clarity is also empowering security analysts who no longer shoulder the anxiety of wondering which risks matter most or whether something critical has slipped through the cracks. Instead, they’re working with focus and intention, redirecting hours of manual effort into strategic initiatives that strengthen the bank’s overall resilience.

Prioritizing risk to power a resilient future

For this leading financial institution, Darktrace / Proactive Exposure Management has become the foundation for a more unified, data-driven, and resilient cybersecurity program. With clearer, business-relevant priorities, stronger oversight, and measurable efficiency gains, the bank has strengthened its resilience and met demanding regulatory expectations without adding operational strain.

Most importantly, it shifted the bank’s security posture from a reactive stance to a proactive, continuous program. Giving teams the confidence and intelligence to anticipate threats and safeguard the people and services that depend on them.

Continue reading
About the author
Kelland Goodin
Product Marketing Specialist

Blog

/

AI

/

January 5, 2026

How to Secure AI in the Enterprise: A Practical Framework for Models, Data, and Agents

How to secure AI in the enterprise: A practical framework for models, data, and agents Default blog imageDefault blog image

Introduction: Why securing AI is now a security priority

AI adoption is at the forefront of the digital movement in businesses, outpacing the rate at which IT and security professionals can set up governance models and security parameters. Adopting Generative AI chatbots, autonomous agents, and AI-enabled SaaS tools promises efficiency and speed but also introduces new forms of risk that traditional security controls were never designed to manage. For many organizations, the first challenge is not whether AI should be secured, but what “securing AI” actually means in practice. Is it about protecting models? Governing data? Monitoring outputs? Or controlling how AI agents behave once deployed?  

While demand for adoption increases, securing AI use in the enterprise is still an abstract concept to many and operationalizing its use goes far beyond just having visibility. Practitioners need to also consider how AI is sourced, built, deployed, used, and governed across the enterprise.

The goal for security teams: Implement a clear, lifecycle-based AI security framework. This blog will demonstrate the variety of AI use cases that should be considered when developing this framework and how to frame this conversation to non-technical audiences.  

What does “securing AI” actually mean?

Securing AI is often framed as an extension of existing security disciplines. In practice, this assumption can cause confusion.

Traditional security functions are built around relatively stable boundaries. Application security focuses on code and logic. Cloud security governs infrastructure and identity. Data security protects sensitive information at rest and in motion. Identity security controls who can access systems and services. Each function has clear ownership, established tooling, and well-understood failure modes.

AI does not fit neatly into any of these categories. An AI system is simultaneously:

  • An application that executes logic
  • A data processor that ingests and generates sensitive information
  • A decision-making layer that influences or automates actions
  • A dynamic system that changes behavior over time

As a result, the security risks introduced by AI cuts across multiple domains at once. A single AI interaction can involve identity misuse, data exposure, application logic abuse, and supply chain risk all within the same workflow. This is where the traditional lines between security functions begin to blur.

For example, a malicious prompt submitted by an authorized user is not a classic identity breach, yet it can trigger data leakage or unauthorized actions. An AI agent calling an external service may appear as legitimate application behavior, even as it violates data sovereignty or compliance requirements. AI-generated code may pass standard development checks while introducing subtle vulnerabilities or compromised dependencies.

In each case, no single security team “owns” the risk outright.

This is why securing AI cannot be reduced to model safety, governance policies, or perimeter controls alone. It requires a shared security lens that spans development, operations, data handling, and user interaction. Securing AI means understanding not just whether systems are accessed securely, but whether they are being used, trained, and allowed to act in ways that align with business intent and risk tolerance.

At its core, securing AI is about restoring clarity in environments where accountability can quickly blur. It is about knowing where AI exists, how it behaves, what it is allowed to do, and how its decisions affect the wider enterprise. Without this clarity, AI becomes a force multiplier for both productivity and risk.

The five categories of AI risk in the enterprise

A practical way to approach AI security is to organize risk around how AI is used and where it operates. The framework below defines five categories of AI risk, each aligned to a distinct layer of the enterprise AI ecosystem  

How to Secure AI in the Enterprise:

  • Defending against misuse and emergent behaviors
  • Monitoring and controlling AI in operation
  • Protecting AI development and infrastructure
  • Securing the AI supply chain
  • Strengthening readiness and oversight

Together, these categories provide a structured lens for understanding how AI risk manifests and where security teams should focus their efforts.

1. Defending against misuse and emergent AI behaviors

Generative AI systems and agents can be manipulated in ways that bypass traditional controls. Even when access is authorized, AI can be misused, repurposed, or influenced through carefully crafted prompts and interactions.

Key risks include:

  • Malicious prompt injection designed to coerce unwanted actions
  • Unauthorized or unintended use cases that bypass guardrails
  • Exposure of sensitive data through prompt histories
  • Hallucinated or malicious outputs that influence human behavior

Unlike traditional applications, AI systems can produce harmful outcomes without being explicitly compromised. Securing this layer requires monitoring intent, not just access. Security teams need visibility into how AI systems are being prompted, how outputs are consumed, and whether usage aligns with approved business purposes

2. Monitoring and controlling AI in operation

Once deployed, AI agents operate at machine speed and scale. They can initiate actions, exchange data, and interact with other systems with little human oversight. This makes runtime visibility critical.

Operational AI risks include:

  • Agents using permissions in unintended ways
  • Uncontrolled outbound connections to external services or agents
  • Loss of forensic visibility into ephemeral AI components
  • Non-compliant data transmission across jurisdictions

Securing AI in operation requires real-time monitoring of agent behavior, centralized control points such as AI gateways, and the ability to capture agent state for investigation. Without these capabilities, security teams may be blind to how AI systems behave once live, particularly in cloud-native or regulated environments.

3. Protecting AI development and infrastructure

Many AI risks are introduced long before deployment. Development pipelines, infrastructure configurations, and architectural decisions all influence the security posture of AI systems.

Common risks include:

  • Misconfigured permissions and guardrails
  • Insecure or overly complex agent architectures
  • Infrastructure-as-Code introducing silent misconfigurations
  • Vulnerabilities in AI-generated code and dependencies

AI-generated code adds a new dimension of risk, as hallucinated packages or insecure logic may be harder to detect and debug than human-written code. Securing AI development means applying security controls early, including static analysis, architectural review, and continuous configuration monitoring throughout the build process.

4. Securing the AI supply chain

AI supply chains are often opaque. Models, datasets, dependencies, and services may come from third parties with varying levels of transparency and assurance.

Key supply chain risks include:

  • Shadow AI tools used outside approved controls
  • External AI agents granted internal access
  • Suppliers applying AI to enterprise data without disclosure
  • Compromised models, training data, or dependencies

Securing the AI supply chain requires discovering where AI is used, validating the provenance and licensing of models and data, and assessing how suppliers process and protect enterprise information. Without this visibility, organizations risk data leakage, regulatory exposure, and downstream compromise through trusted integrations.

5. Strengthening readiness and oversight

Even with strong technical controls, AI security fails without governance, testing, and trained teams. AI introduces new incident scenarios that many security teams are not yet prepared to handle.

Oversight risks include:

  • Lack of meaningful AI risk reporting
  • Untested AI systems in production
  • Security teams untrained in AI-specific threats

Organizations need AI-aware reporting, red and purple team exercises that include AI systems, and ongoing training to build operational readiness. These capabilities ensure AI risks are understood, tested, and continuously improved, rather than discovered during a live incident.

Reframing AI security for the boardroom

AI security is not just a technical issue. It is a trust, accountability, and resilience issue. Boards want assurance that AI-driven decisions are reliable, explainable, and protected from tampering.

Effective communication with leadership focuses on:

  • Trust: confidence in data integrity, model behavior, and outputs
  • Accountability: clear ownership across teams and suppliers
  • Resilience: the ability to operate, audit, and adapt under attack or regulation

Mapping AI security efforts to recognized frameworks such as ISO/IEC 42001 and the NIST AI Risk Management Framework helps demonstrate maturity and aligns AI security with broader governance objectives.

Conclusion: Securing AI is a lifecycle challenge

The same characteristics that make AI transformative also make it difficult to secure. AI systems blur traditional boundaries between software, users, and decision-making, expanding the attack surface in subtle but significant ways.

Securing AI requires restoring clarity. Knowing where AI exists, how it behaves, who controls it, and how it is governed. A framework-based approach allows organizations to innovate with AI while maintaining trust, accountability, and control.

The journey to secure AI is ongoing, but it begins with understanding the risks across the full AI lifecycle and building security practices that evolve alongside the technology.

Continue reading
About the author
Brittany Woodsmall
Product Marketing Manager, AI
Your data. Our AI.
Elevate your network security with Darktrace AI