Blog
/
Proactive Security
/
June 25, 2024

Let the Dominos Fall! SOC and IR Metrics for ROI

Vendors are scrambling to compare MTTD metrics laid out in the latest MITRE Engenuity ATT&CK® Evaluations. But this analysis is reductive, ignoring the fact that in cybersecurity, there are far more metrics that matter.
Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
John Bradshaw
Sr. Director, Technical Marketing
Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
25
Jun 2024

One of the most enjoyable discussions (and debates) I engage in is the topic of Security Operations Center (SOC) and Incident Response (IR) metrics to measure and validate an organization’s Return on Investment (ROI). The debate part comes in when I hear vendor experts talking about “the only” SOC metrics that matter, and only list the two most well-known, while completely ignoring metrics that have a direct causal relationship.

In this blog, I will discuss what I believe are the SOC/IR metrics that matter, how each one has a direct impact on the others, and why organizations should ensure they are working towards the goal of why these metrics are measured in the first place: Reduction of Risk and Costs.

Reduction of Risk and Costs

Every security solution and process an organization puts in place should reduce the organization’s risk of a breach, exposure by an insider threat, or loss of productivity. How an organization realizes net benefits can be in several ways:

  • Improved efficiencies can result in SOC/IR staff focusing on other areas such as advanced threat hunting rather than churning through alerts on their security consoles. It may also help organizations dealing with the lack of skilled security staff by using Artificial Intelligence (AI) and automated processes.
  • A well-oiled SOC/IR team that has greatly reduced or even eliminated mundane tasks attracts, motivates, and retains talent resulting in reduced hiring and training costs.
  • The direct impact of a breach such as a ransomware attack can be devastating. According to the 2024 Data Breach Investigations Report by Verizon, MGM Resorts International reported the ALPHV ransomware cost the company approximately $100 million[1].
  • Failure to take appropriate steps to protect the organization can result in regulatory fines; and if an organization has, or is considering, purchasing Cyber Insurance, can result in declined coverage or increased premiums.

How does an organization demonstrate they are taking proactive measures to prevent breaches? That is where it's important to understand the nine (yes, nine) key metrics, and how each one directly influences the others, play their roles.

Metrics in the Incident Response Timeline

Let’s start with a review of the key steps in the Incident Response Timeline:

Seven of the nine key metrics are in the IR timeline, while two of the metrics occur before you ever have an incident. They occur in the Pre-Detection Stage.

Pre-Detection stage metrics are:

  • Preventions Per Intrusion Attempt (PPIA)
  • False Positive Reduction Rate (FPRR)

Next is the Detect and Investigate stage, there are three metrics to consider:

  • Mean Time to Detection (MTTD)
  • Mean Time to Triage (MTTT)
  • Mean Time to Understanding (MTTU)

This is followed by the Remediation stage, there are two metrics here:

  • Mean Time to Containment (MTTC)
  • Mean Time to Remediation / Recovery (MTTR)

Finally, there is the Risk Reduction stage, there are two metrics:

  • Mean Time to Advice (MTTA)
  • Mean Time to Implementation (MTTI)

Pre-Detection Stage

Preventions Per Intrusion Attempt

PPIA is defined as stopping any intrusion attempt at the earliest possible stage. Your network Intrusion Prevention System (IPS) blocks vulnerability exploits, your e-mail security solution intercepts and removes messages with malicious attachments or links, your egress firewall blocks unauthorized login attempts, etc. The adversary doesn’t get beyond Step 1 in the attack life cycle.

This metric is the first domino. Every organization should strive to improve on this metric every day. Why? For every intrusion attempt you stop right out of the gate, you eliminate the actions for every other metric. There is no incident to detect, triage, investigate, remediate, or analyze post-incident for ways to improve your security posture.

When I think about PPIA, I always remember back to a discussion with a former mentor, Tim Crothers, who discussed the benefits of focusing on Prevention Failure Detection.

The concept is that as you layer your security defenses, your PPIA moves ever closer to 100% (no one has ever reached 100%). This narrows the field of fire for adversaries to breach into your organization. This is where novel, unknown, and permuted threats live and breathe. This is where solutions utilizing Unsupervised Machine Learning excel in raising anomalous alerts – indications of potential compromise involving one of these threats. Unsupervised ML also raises alerts on anomalous activity generated by known threats and can raise detections before many signature-based solutions. Most organizations struggle to find strong permutations of known threats, insider threats, supply chain attacks, attacks utilizing n-day and 0-day exploits. Moving PPIA ever closer to 100% also frees your team up for conducting threat hunting activities – utilizing components of your SOC that collect and store telemetry to query for potential compromises based on hypothesis the team raises. It also significantly reduces the alerts your team must triage and investigate – solving many of the issues outlined at the start of this paper.

False Positive Reduction Rate

Before we discuss FPRR, I should clarify how I define False Positives (FPs). Many define FPs as an alert that is in error (i.e.: your EDR alerts on malware that turns out to be AV signature files). While that is a FP, I extend the definition to include any alert that did not require triage / investigation and distracts the SOC/IR team (meaning they conducted some level of triage / investigation).

This metric is the second domino. Why is this metric important? Every alert your team exerts time and effort on that is a non-issue distracts them from alerts that matter. One of the major issues that has resonated in the security industry for decades is that SOCs are inundated with alerts and cannot clear the backlog. When it comes to PPIA + FPRR, I have seen analysts spend time investigating alerts that were blocked out of the gate while their screen continued to fill up with more. You must focus on Prevention Failure Detection to get ahead of the backlog.

Detect and Investigate Stages

Mean Time to Detection

MTTD, or “Dwell Time”, has decreased dramatically over the past 12 years. From well over a year to 16 days in 2023[2]. MTTD is measured from the earliest possible point you could detect the intrusion to the moment you actually detect it.

This third domino is important because the longer an adversary remains undetected, the more the odds increase they will complete their mission objective. It also makes the tasks of triage and investigation more difficult as analysts must piece together more activity and adversaries may be erasing evidence along the way – or your storage retention does not cover the breach timeline.

Many solutions focusing solely on MTTD can actually create the very problem SOCs are looking to solve.  That is, they generate so much alerting that they flood the console, email, or text messaging app causing an unmanageable queue of alerts (this is the problem XDR solutions were designed to resolve by focusing on incidents rather than alerts).

Mean Time to Triage

MTTT involves SOCs that utilize Level 1 (aka Triage) analysts to render an “escalate / do not escalate” alert verdict accurately. Accuracy is important because Triage Analysts typically are staff new to cyber security (recent grad / certification) and may over escalate (afraid to miss something important) or under escalate (not recognize signs of a successful breach). Because of this, a small MTTT does not always equate to successful handling of incidents.

This metric is important because keeping your senior staff focused on progressing incidents in a timely manner (and not expending time on false positives) should reduce stress and required headcount.

Mean Time to Understanding

MTTU deals with understanding the complete nature of the incident being investigated. This is different than MTTT which only deals with whether the issue merits escalation to senior analysts. It is then up to the senior analysts to determine the scope of the incident, and if you are a follower of my UPSET Investigation Framework, you know understanding the full scope involves:

U = All compromised accounts

P = Persistence Mechanisms used

S = All systems involved (organization, adversary, and intermediaries)

E = Endgame (or mission objective)

T = Techniques, Tactics, Procedures (TTPs) utilized by the adversary

MTTU is important because this information is critical before any containment or remediation actions are taken. Leave a stone unturned, and you alert the adversary that you are onto them and possibly fail to close an avenue of access.

Remediation Stages

Mean Time to Containment

MTTC deals with neutralizing the threat. You may not have kicked the adversary out, but you have halted their progress to their mission objective and ability to inflict further damage. This may be through use of isolation capabilities, termination of malicious processes, or firewall blocks.

MTTC is important, especially with ransomware attacks where every second counts. Faster containment responses can result in reduced / eliminated disruption to business operations or loss of data.

Mean Time to Remediation / Recovery

The full scope of the incident is understood, the adversary has been halted in their tracks, no malicious processes are running on any systems in your organization. Now is the time to put things back to right. MTTR deals with the time involved in restoring business operations to pre-incident stage. It means all remnants of changes made by the adversary (persistence, account alterations, programs installed, etc.) are removed; all disrupted systems are restored to operations (i.e.: ransomware encrypted systems are recovered from backups / snapshots), compromised user accounts are reset, etc.

MTTR is important because it informs senior management of how fast the organization can recover from an incident. Disaster Recovery and Business Continuity plans play a major role in improving this score.

Risk Reduction Stages

Mean Time to Advice

After the dust has settled from the incident, the job is not done. MTTA deals with identifying and assessing the specific areas (vulnerabilities, misconfigurations, lack of security controls) that permitted the adversary to advance to the point where detection occurred (and any actions beyond). The SOC and IR teams should then compile a list of recommendations to present to management to improve the security posture of the organization so the same attack path cannot be used.

Mean Time to Implement

Once recommendations are delivered to management, how long does it take to implement them? MTTI tracks this timeline because none of it matters if you don’t fix the holes that led to the breach.

Nine Dominos

There are the nine dominos of SOC / IR metrics I recommend helping organizations know if they are on the right track to reduce risk, costs and improve morale / retention of the security teams. You may not wish to track all nine, but understanding how each metric impacts the others can provide visibility into why you are not seeing expected improvements when you implement a new security solution or change processes.

Improving prevention and reducing false positives can make huge positive impacts on your incident response timeline. Utilizing solutions that get you to resolution quicker allows the team to focus on recommendations and risk reduction strategies.

Whichever metrics you choose to track, just be sure the dominos fall in your favor.

References

[1] 2024 Verizon Data Breach Investigations Report, p83

[2] Mandiant M-Trends 2023

Inside the SOC
Darktrace cyber analysts are world-class experts in threat intelligence, threat hunting and incident response, and provide 24/7 SOC support to thousands of Darktrace customers around the globe. Inside the SOC is exclusively authored by these experts, providing analysis of cyber incidents and threat trends, based on real-world experience in the field.
Written by
John Bradshaw
Sr. Director, Technical Marketing

More in this series

No items found.

Blog

/

/

April 29, 2025

MFA Under Attack: AiTM Phishing Kits Abusing Legitimate Services

fingerprintDefault blog imageDefault blog image

In late 2024 and early 2025, the Darktrace Security Operations Center (SOC) investigated alerts regarding separate cases of Software-as-a-Service (SaaS) account compromises on two customer environments that presented several similarities, suggesting they were part of a wider phishing campaign.

This campaign was found to leverage the project collaboration and note-taking application, Milanote, and the Tycoon 2FA phishing kit.

Legitimate services abused

As highlighted in Darktrace's 2024 Annual Threat Report [1], threat actors are abusing legitimate services, like Milanote, in their phishing campaigns. By leveraging these trusted platforms and domains, malicious actors can bypass traditional security measures, making their phishing emails appear benign and increasing the likelihood of successful attacks.

Darktrace categorizes these senders and platforms as free content senders. These services allow users to send emails containing custom content (e.g., files) from fully validated, fixed service address belonging to legitimate corporations. Although some of these services permit full body and subject customization by attackers, the structure of these emails is generally consistent, making it challenging to differentiate between legitimate and malicious emails.

What is Tycoon 2FA?

Tycoon 2FA is an Adversary-in-the-Middle (AitM) phishing kit, first seen in August 2023 and distributed via the Phishing-as-a-Service (PhaaS) model [2]. It targets multi-factor authentication (MFA) by intercepting credentials and MFA tokens during authentication on fake Microsoft or Google login pages. The attacker captures session cookies after MFA is completed, allowing them to replay the session and access the user account, even if credentials are reset. The rise in MFA use has increased the popularity of AitM phishing kits like Tycoon 2FA and Mamba 2FA, another AiTM phishing kit investigated by Darktrace.

Initial access via phishing email

At the beginning of 2025, Darktrace observed phishing emails leveraging Milanote being sent to multiple internal recipients in an organization. In this attack, the same email was sent to 19 different users, all of which were held by Darktrace.

The subject line of the emails mentioned both a legitimate internal user of the company, the company name, as well as a Milanote board regarding a “new agreement” in German. It is a common social engineering technique to mention urgent matters, such as unpaid invoices, expired passwords, or awaiting voicemails, in the subject line to prompt immediate action from the user. However, this tactic is now widely covered in phishing awareness training, making users more suspicious of such emails. In this case, while the subject mentioned a “new agreement,” likely raising the recipient’s curiosity, the tone remained professional and not overly alarming. Additionally, the mention of a colleague and the standardized language typical of free content sender emails further helped dispel concerns regarding the email.

These emails were sent by the legitimate address support@milanote[.]com and referenced "Milanote" in the personal field of the header but originated from the freemail address “ahnermatternk.ef.od.13@gmail[.]com”. Darktrace / EMAIL recognized that none of the recipients had previously received a file share email from Milanote, making this sender unfamiliar in the customer's email environment

The emails contained several benign links to legitimate Milanote endpoints (including an unsubscribe link) which were not flagged by Darktrace. However, they also included a malicious link designed to direct recipients to a pre-filled credential harvesting page hosted on Milanote, prompting them to register for an account. Despite not blocking the legitimate Milanote links in the same email, Darktrace locked the malicious link, preventing users from visiting the credential harvester.

Credential harvesting page sent to recipients, as seen in. sandbox environment.
Figure 1: Credential harvesting page sent to recipients, as seen in. sandbox environment.

Around one minute later, one recipient received a legitimate email from Milanote confirming their successful account registration, indicating they had accessed the phishing page. This email had a lower anomaly score and was not flagged by Darktrace / EMAIL because, unlike the first email, it did not contain any suspicious links and was a genuine account registration notification. Similarly, in the malicious Milanote email, only the link leading to the phishing page was blocked, while the benign and legitimate Milanote links remained accessible, demonstrating Darktrace’s precise and targeted actioning.

A legitimate and a malicious Milanote email received by one recipient.
Figure 2: A legitimate and a malicious Milanote email received by one recipient.

Around the same time, Darktrace / NETWORK observed the same user’s device making DNS query for the domain name “lrn.ialeahed[.]com” , which has been flagged as a Tycoon 2FA domain [2], suggesting the use of this phishing platform.

Once the user had entered their details in the credential harvester, it is likely that they were presented a document hosted on Milanote that contained the final payload link – likely hidden behind text instructing users to access a “new agreement” document.

External research indicates that the user was likely directed to a Cloudflare Turnstile challenge meant to reroute unwanted traffic, such as automated security scripts and penetration testing tools [2] [3]. After these checks and other background processes are completed, the user is directed to the final landing page. In this case, it was likely a fake login prompt hosted on the attacker’s server, where the user is asked to authenticate to their account using MFA. By burrowing malicious links and files in this manner, threat actors can evade analysis by traditional security email gateways, effectively bypassing their protection.

Darktrace’s analysis of the structure and word content of the phishing emails resulted in an 82% probability score that the email was malicious, and the email further received a 67% phishing inducement score, representing how closely the structure and word content of the emails compared to typical phishing emails.

All these unusual elements triggered multiple alerts in Darktrace / EMAIL, focusing on two main suspicious aspects: a new, unknown sender with no prior correspondence with the recipients or the environment, and the inclusion of a link to a previously unseen file storage solution.

Milanote phishing email as seen within Darktrace / EMAIL.
Figure 3: Milanote phishing email as seen within Darktrace / EMAIL.

After detecting the fifth email, the “Sender Surge” model alert was triggered in Darktrace / EMAIL due to a significant number of recipients being emailed by this new suspicious sender in a short period. These recipients were from various departments across the customer’s organization, including sales, marketing, purchasing, and production. Darktrace / EMAIL determined that the emails were sent to a highly unusual group of internal recipients, further raising doubts about the business legitimacy.

Darktrace / EMAIL suggested actions to contain the attack by holding all Milanote phishing emails back from recipient’s inboxes, except for the detailed email with locked links. However, autonomous actions were not enabled at the time, allowing the initial email to reach recipients' inboxes, providing a brief window for interaction. Unfortunately, during this window, one recipient clicked on the Milanote payload link, leading to the compromise of their account.

SaaS account takeover

About three minutes after the malicious Milanote email was received, Darktrace / IDENTITY detected an unusual login to the email recipient’s SaaS account. The SaaS actor was observed accessing files from their usual location in Germany, while simultaneously, a 100% rare login occurred from a location in the US that had never been seen in the customer’s environment before. This login was also flagged as suspicious by Microsoft 365, triggering a 'Conditional Access Policy' that required MFA authentication, which was successfully completed.

Tycoon 2FA adnimistration panel login page dated from October 2023 [3].
Figure 4: Tycoon 2FA adnimistration panel login page dated from October 2023 [3].

Despite the successful authentication, Darktrace / IDENTITY recognized that the login from this unusual location, coupled with simultaneous activity in another geographically distant location, were highly suspicious. Darktrace went on to observe MFA-validated logins from three separate US-based IP addresses: 89.185.80[.]19, 5.181.3[.]68, and 38.242.7[.]252. Most of the malicious activity was performed from the latter, which is associated with the Hide My Ass (HMA) VPN network [5].

Darktrace’s detection of the suspicious login from the US while the legitimate user was logged in from Germany.
Figure 5: Darktrace’s detection of the suspicious login from the US while the legitimate user was logged in from Germany.
Darktrace’s detection of the suspicious login following successful MFA authentication.
Figure 6: Darktrace’s detection of the suspicious login following successful MFA authentication.

Following this, the malicious actor accessed the user’s inbox and created a new mailbox rule named “GTH” that deleted any incoming email containing the string “milanote” in the subject line or body. Rules like this are a common technique used by attackers to leverage compromised accounts for launching phishing campaigns and concealing replies to phishing emails that might raise suspicions among legitimate account holders. Using legitimate, albeit compromised, accounts to send additional phishing emails enhances the apparent legitimacy of the malicious emails. This tactic has been reported as being used by Tycoon 2FA attackers [4].

The attacker accessed over 140 emails within the legitimate user’s inbox, including both the inbox and the “Sent Items” folder. Notably, the attacker accessed five emails in the “Sent Items” folder and modified their attachments. These emails were mainly related to invoices, suggesting the threat actor may have been looking to hijack those email threads to send fake invoices or replicate previous invoice emails.

Darktrace’s Cyber AI AnalystTM launched autonomous investigations into the individual events surrounding this suspicious activity. It connected these separate events into a single, broad account takeover incident, providing the customer with a clearer view of the ongoing compromise.

Cyber AI Analyst’s detection of unusual SaaS account activities in a single incident.
Figure 7: Cyber AI Analyst’s detection of unusual SaaS account activities in a single incident.
Cyber AI Analyst investigation of suspicious activities performed by the attacker.
Figure 8: Cyber AI Analyst investigation of suspicious activities performed by the attacker.

Darktrace's response

Within three minutes of the first unusual login alert, Darktrace’s Autonomous Response intervened, disabling the compromised user account for two hours.

As the impacted customer was subscribed to the Managed Threat Detection Service, Darktrace’s SOC team investigated the activity further and promptly alerted the customer’s security team. With the user’s account still disabled by Autonomous Response, the attack was contained, allowing the customer’s security team valuable time to investigate and remediate. Within ten minutes of receiving the alert from Darktrace’s SOC, they reset the user’s password, closed all active SaaS sessions, and deleted the malicious email rule. Darktrace’s SOC further supported the customer through the Security Operations Service Support service by providing information about the data accessed and identifying any other affected users.

Autonomous Response actions carried out by Darktrace / IDENTITY to contain the malicious activity
Figure 9: Autonomous Response actions carried out by Darktrace / IDENTITY to contain the malicious activity.

A wider Milanote phishing campaign?

Around a month before this compromise activity, Darktrace alerted another customer to similar activities involving two compromised user accounts. These accounts created new inbox rules named “GFH” and “GVB” to delete all incoming emails containing the string “milanote” in their subject line and/or body.

The phishing emails that led to the compromise of these user accounts were similar to the ones discussed above. Specifically, these emails were sent via the Milanote platform and referenced a “new agreement” (in Spanish) being shared by a colleague. Additionally, the payload link included in the phishing emails showed the same UserPrincipalName (UPN) attribute (i.e., click?upn=u001.qLX9yCzR), which has been seen in other Milanote phishing emails leveraging Tycoon 2FA reported by OSINT sources [6]. Interestingly, in some cases, the email also referenced a “new agreement” in Portuguese, indicating a global campaign.

Based on the similarities in the rule’s naming convention and action, as well as the similarities in the phishing email subjects, it is likely that these were part of the same campaign leveraging Milanote and Tycoon 2FA to compromise user accounts. Since its introduction, the Tycoon 2FA phishing kit has undergone several enhancements to increase its stealth and obfuscation methods, making it harder for security tools to detect. For example, the latest versions contain special source code to obstruct web page analysis by defenders, prevent users from copying meaningful text from the phishing webpages, and disable the right-click menu to prevent offline analysis [4].

Conclusion

Threat actors are continually employing new methods to bypass security detection tools and measures. As highlighted in this blog, even robust security mechanisms like MFA can be compromised using AitM phishing kits. The misuse of legitimate services such as Milanote for malicious purposes can help attackers evade traditional email security solutions by blurring the distinction between legitimate and malicious content.

This is why security tools based on anomaly detection are crucial for defending against such attacks. However, user awareness is equally important. Delays in processing can impact the speed of response, making it essential for users to be informed about these threats.

Appendices

References

[1] https://www.darktrace.com/resources/annual-threat-report-2024

[2] https://www.validin.com/blog/tycoon_2fa_analyzing_and_hunting_phishing-as-a-service_domains

[3] https://blog.sekoia.io/tycoon-2fa-an-in-depth-analysis-of-the-latest-version-of-the-aitm-phishing-kit/#h-iocs-amp-technical-details

[4] https://blog.barracuda.com/2025/01/22/threat-spotlight-tycoon-2fa-phishing-kit

[5] https://spur.us/context/38.242.7.252    

[6] https://any.run/report/5ef1ac94e4c6c1dc35579321c206453aea80d414108f9f77abd2e2b03ffbd658/be5351d9-53c0-470b-8708-ee2e29300e70

Indicators of Compromise (IoCs)

IoC         Type      Description + Probability

89.185.80[.]19 - IP Address - Malicious login

5.181.3[.]68 - IP Address -Malicious login

38.242.7[.]252 - IP Address - Malicious login and new email inbox rule creation -  Hide My Ass VPN

lrn.ialeahed[.]com – Hostname - Likely Tycoon 2FA domain

Darktrace Model Detections

Email alerts

Platforms / Free Content Sender + High Sender Surge

Platforms / Free Content Sender + Sender Surge

Platforms / Free Content Sender + Unknown Initiator

Platforms / Free Content Sender

Platforms / Free Content Sender + First Time Recipient

Unusual / New Sender Surge

Unusual / Sender Surge

Antigena Anomaly / High Antigena Anomaly

Association / Unknown Sender

History / New Sender

Link / High Rarity Link to File Storage

Link/ Link To File Storage

Link / Link to File Storage + Unknown Sender

Link / Low Link Association

Platforms / Free Content Sender + First Time Initiator

Platforms / Free Content Sender + Unknown Initiator + Freemail

Platforms / Free Content Sender Link

Unusual / Anomalous Association

Unusual / Unlikely Recipient Association

IDENTITY

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Compromise / Login from Rare High Risk Endpoint

SaaS / Access / M365 High Risk Level Login

SaaS / Compromise / Login From Rare Endpoint While User Is Active

SaaS / Access / MailItemsAccessed from Rare Endpoint

SaaS / Unusual Activity / Multiple Unusual SaaS Activities

SaaS / Unusual Activity / Multiple Unusual External Sources For SaaS Credential

SaaS / Compliance / Anomalous New Email Rule

SaaS / Compromise / Unusual Login and New Email Rule

SaaS / Compromise / SaaS Anomaly Following Anomalous Login

Antigena / SaaS / Antigena Suspicious SaaS Activity Block

Antigena / SaaS / Antigena Enhanced Monitoring from SaaS User Block

Antigena / SaaS / Antigena Unusual Activity Block

Antigena / SaaS / Antigena Suspicious SaaS and Email Activity Block

Cyber AI Analyst Incident

Possible Hijack of Office365 Account

MITRE ATT&CK Mapping

Tactic – Technique

DEFENSE EVASION, PERSISTENCE, PRIVILEGE ESCALATION, INITIAL ACCESS - Cloud Accounts

INITIAL ACCESS - Phishing

CREDENTIAL ACCESS - Steal Web Session Cookie

PERSISTENCE - Account Manipulation

PERSISTENCE - Outlook Rules

RESOURCE DEVELOPMENT - Email Accounts

RESOURCE DEVELOPMENT - Compromise Accounts

Continue reading
About the author
Alexandra Sentenac
Cyber Analyst

Blog

/

/

April 29, 2025

The Importance of NDR in Resilient XDR

picture of hands typing on laptop Default blog imageDefault blog image

As threat actors become more adept at targeting and disabling EDR agents, relying solely on endpoint detection leaves critical blind spots.

Network detection and response (NDR) offers the visibility and resilience needed to catch what EDR can’t especially in environments with unmanaged devices or advanced threats that evade local controls.

This blog explores how threat actors can disable or bypass EDR-based XDR solutions and demonstrates how Darktrace’s approach to NDR closes the resulting security gaps with Self-Learning AI that enables autonomous, real-time detection and response.

Threat actors see local security agents as targets

Recent research by security firms has highlighted ‘EDR killers’: tools that deliberately target EDR agents to disable or damage them. These include the known malicious tool EDRKillShifter, the open source EDRSilencer, EDRSandblast and variants of Terminator, and even the legitimate business application HRSword.

The attack surface of any endpoint agent is inevitably large, whether the software is challenged directly, by contesting its local visibility and access mechanisms, or by targeting the Operating System it relies upon. Additionally, threat actors can readily access and analyze EDR tools, and due to their uniformity across environments an exploit proven in a lab setting will likely succeed elsewhere.

Sophos have performed deep research into the EDRShiftKiller tool, which ESET have separately shown became accessible to multiple threat actor groups. Cisco Talos have reported via TheRegister observing significant success rates when an EDR kill was attempted by ransomware actors.

With the local EDR agent silently disabled or evaded, how will the threat be discovered?

What are the limitations of relying solely on EDR?

Cyber attackers will inevitably break through boundary defences, through innovation or trickery or exploiting zero-days. Preventive measures can reduce but not completely stop this. The attackers will always then want to expand beyond their initial access point to achieve persistence and discover and reach high value targets within the business. This is the primary domain of network activity monitoring and NDR, which includes responsibility for securing the many devices that cannot run endpoint agents.

In the insights from a CISA Red Team assessment of a US CNI organization, the Red Team was able to maintain access over the course of months and achieve their target outcomes. The top lesson learned in the report was:

“The assessed organization had insufficient technical controls to prevent and detect malicious activity. The organization relied too heavily on host-based endpoint detection and response (EDR) solutions and did not implement sufficient network layer protections.”

This proves that partial, isolated viewpoints are not sufficient to track and analyze what is fundamentally a connected problem – and without the added visibility and detection capabilities of NDR, any downstream SIEM or MDR services also still have nothing to work with.

Why is network detection & response (NDR) critical?

An effective NDR finds threats that disable or can’t be seen by local security agents and generally operates out-of-band, acquiring data from infrastructure such as traffic mirroring from physical or virtual switches. This means that the security system is extremely inaccessible to a threat actor at any stage.

An advanced NDR such as Darktrace / NETWORK is fully capable of detecting even high-end novel and unknown threats.

Detecting exploitation of Ivanti CS/PS with Darktrace / NETWORK

On January 9th 2025, two new vulnerabilities were disclosed in Ivanti Connect Secure and Policy Secure appliances that were under malicious exploitation. Perimeter devices, like Ivanti VPNs, are designed to keep threat actors out of a network, so it's quite serious when these devices are vulnerable.

An NDR solution is critical because it provides network-wide visibility for detecting lateral movement and threats that an EDR might miss, such as identifying command and control sessions (C2) and data exfiltration, even when hidden within encrypted traffic and which an EDR alone may not detect.

Darktrace initially detected suspicious activity connected with the exploitation of CVE-2025-0282 on December 29, 2024 – 11 days before the public disclosure of the vulnerability, this early detection highlights the benefits of an anomaly-based network detection method.

Throughout the campaign and based on the network telemetry available to Darktrace, a wide range of malicious activities were identified, including the malicious use of administrative credentials, the download of suspicious files, and network scanning in the cases investigated.

Darktrace / NETWORK’s autonomous response capabilities played a critical role in containment by autonomously blocking suspicious connections and enforcing normal behavior patterns. At the same time, Darktrace Cyber AI Analyst™ automatically investigated and correlated the anomalous activity into cohesive incidents, revealing the full scope of the compromise.

This case highlights the importance of real-time, AI-driven network monitoring to detect and disrupt stealthy post-exploitation techniques targeting unmanaged or unprotected systems.

Unlocking adaptive protection for evolving cyber risks

Darktrace / NETWORK uses unique AI engines that learn what is normal behavior for an organization’s entire network, continuously analyzing, mapping and modeling every connection to create a full picture of your devices, identities, connections, and potential attack paths.

With its ability to uncover previously unknown threats as well as detect known threats Darktrace is an essential layer of the security stack. Darktrace has helped secure customers against attacks including 2024 threat actor campaigns against Fortinet’s FortiManager , Palo Alto firewall devices, and more.  

Stay tuned for part II of this series which dives deeper into the differences between NDR types.

Credit to Nathaniel Jones VP, Security & AI Strategy, FCISO & Ashanka Iddya, Senior Director of Product Marketing for their contribution to this blog.

Continue reading
About the author
Nathaniel Jones
VP, Security & AI Strategy, Field CISO
Your data. Our AI.
Elevate your network security with Darktrace AI